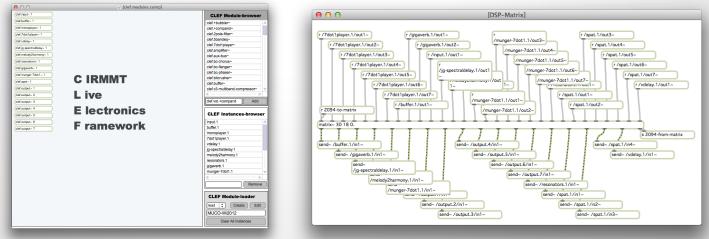
A Vibrotactile Synthesis Framework for Haptic Feedback in Live-Electronic **Music Performance**


Award Recipients: Marcello Giordano, Marlon Schumacher Supervisors: Marcelo M. Wanderley, Sean Ferguson

CLEF: <u>CIRMMT Live-Electronics Framework</u>

- Initial design inspired by prototype of the graphical interface developed for the Integra project [Bullock, Coccioli 2009]
- Goal to develop a compositional framework which is easily customizable and extensible by music students & composers without advanced programming skills
- Used for teaching/research purposes and production of live-electronic pieces at McGill University since 2009 (www.music.mcgill.ca/dcs)

CLEF: System components (Instruments)

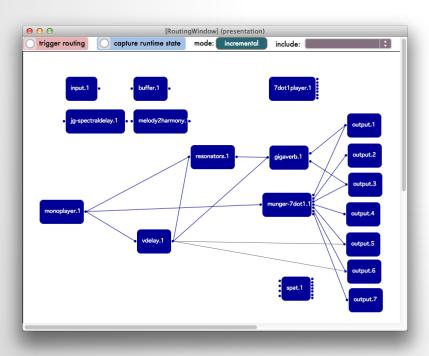
- MODULES (Audio, Video, MIDI, ...)
 - Native Max/MSP/Jitter, VST~ or AU~ modules
 - Connected in a MxN global routing matrix
 - Model-View-Controller (MVC) pattern
 - Auto-generated (generic) or Dedicated UIs
 - All parameters accessible via OSC and pattr

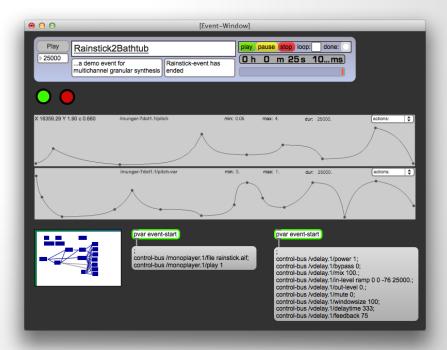
CLEF: System components (Score data)

- Hierarchically structured into CUEs and EVENTs
 - CUE
 - triggers execution of events
 - overlapping/simultaneous events possible
 - cyclic/acyclic graphs possible
 - EVENT
 - routing of audio signals (dsp-graph)
 - discrete triggers & continuous control parameters
 - arbitrary algorithms (events are small programs)

CLEF: System components (GUI)

Performance view


000


CLEF: System components (GUI)

Event view

signal routing

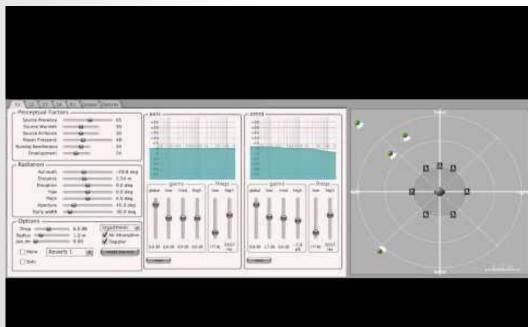
triggers, breakpoint functions

The Problem: Feedback in Live-Electronics systems

- A common problem in live-electronics performance is the lack of feedback to the performer about the state of the system;
- This results in a sort of "limbo" in which the performer may have no primary feedback about the live-processing;
- Possible solutions include the use of visual and/or auditory feedback, but this is often distracting for the performer;
- An assistant can be in charge of interacting with the liveelectronics system, but this makes the performer's interactions almost obsolete.

The Objective: Primary Feedback in CLEF

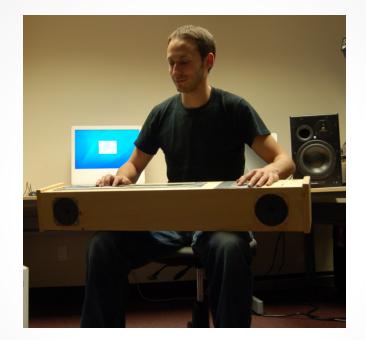
- CUEs and Events are often triggered by performers on-stage (e.g. via foot pedals)
- no primary feedback about result of action / state of system



The Objective: Primary Feedback in CLEF

 Certain types of processings difficult to monitor via secondary feedback (audio)

Example: Spatialization



Tactile Feedback in Music Performance

- Haptic feedback has been proven to be fundamental in the process of "embodiment" of a musical instrument;
- Tactile feedback in particular is the only one fast enough to convey information about timing and articulation [Puckette, 1993];
- Previous work at the IDMIL [Birnbaum, 2007; Marshall, 2008; Giordano 2011] has focused on the use of tactile feedback for enhancing music performance;
- Various synthesizers of tactile events have been developed, together with prototypes that make use of vibrating actuators.

Tactile Feedback in Music Performance

000		FA-SA	0
FA/S	A vibrotactile feedback synthesizer		p help
p playbuffer s	tart with the sound b xdown		ROCESSING
breakflute.analy	zer	sound	feature extraction
onset 1	orightness	loudness	noisiness
	CROSS-MO	DAL MAPPIN	IG
trigger	pitch	loudness	brightness
breakflute.pulse	125	generat	e vibrotactile event
POST-P breakflute.flatte	ROCESSING		f vibrotactile range s contour flattening
breakflute.comp	ress	re	duce dynamic nange
T			
breakflute.rollot	f roll off	frequencies out of vibr	otactile range again
p breakflute.vib	out	bo buffer per pi	
			10

FA/SA, a tactile translation environment [Birnbaum, 2007]

The Viblotar, a tactileenhanced DMI [Marshall, 2008] A whole-body tactile display for novice guitar players [Giordano, 2011]

Tactile Feedback in CLEF

- Our approach is to explore the possibilities given by tactile feedback:
 - Previous work has showed that tactile feedback can be proficiently used in a performance using liveelectronics [Michailidis, 2011];
 - A synthesizer of tactile events will be built (in Max/ MSP or Pure-data) to convey specific information about internal variables in CLEF;
 - Vibrating actuators will display these tactile events onto the skin of the performer;
 - We believe that this approach can be transparent to the performer, both in terms of physical obtrusiveness and cognitive load.

Tactile Feedback in CLEF:

- Several options could be considered to map CLEF internal variables to the parameters of the Tactile Synthesizer:
 - Direct mapping of existing variables to tactile synthesis parameters. E.g. by simply re-routing OSC-addresses
 - Explicit control tactile synthesis parameters. E.g. to display abstract/symbolic parameters, such as tempo and/or contextual information

Tactile Feedback in CLEF: Research Questions

- Can tactile feedback become part of a rehearsal/ performance routine?;
- Evaluate the appropriateness of each tactile event, according to the represented internal variable in CLEF (i.e. tactile impulses for discrete events vs. rhythmic patterns for more complex events);
- Evaluate different types of vibrating actuators in terms of displaying-capabilities, obtrusiveness and impact on performers' attention;
- Find the best positioning strategies for the actuators;

```
• .
```