
Conducting Gesture Recognition, Analysis and
Performance System

Paul Kolesnik, Dept. of Music Technology, Faculty of Music
McGill University, Montreal

June 19, 2004

A thesis submitted to McGill University in partial fulfillment
of the requirements of the degree of Master of Arts

c©Paul Kolesnik, 2004

Abstract

A number of conducting gesture analysis and performance systems have been

developed over the years. However, most of the previous projects either pri-

marily concentrated on tracking tempo and amplitude indicating gestures,

or implemented individual mapping techniques for expressive gestures that

varied from research to research. There is a clear need for a uniform pro-

cess that could be applied toward analysis of both indicative and expressive

gestures. The proposed system provides a set of tools that contain exten-

sive functionality for identification, classification and performance with con-

ducting gestures. Gesture recognition procedure is designed on the basis of

Hidden Markov Model (HMM) process. A set of HMM tools are developed

for Max/MSP software. Training and recognition procedures are applied to-

ward both right hand beat- and amplitude- indicative gestures, and left hand

expressive gestures. Continuous recognition of right-hand gestures is incor-

porated into a real-time gesture analysis and performance system in Eyesweb

and Max/MSP/Jitter environments.

Un nombre de systèmes d’analyse et d’exécution avec des gestes d’un chef

i

ABSTRACT ii

d’orchestre ont été développés au cours des annes. Pourtant, la plupart de

projets précédents se sont principalement concentrés sur des gestes indiquant

le tempo et l’amplitude, ou ont mis en application des techniques individu-

elles pour les gestes expressifs qui ont changé de la recherche à la recherche. Il

y a un besoin clair d’une procedure uniforme qui pourrait être appliqué vers

l’analyse des gestes indicatifs et expressifs. Le système proposé fournit un en-

semble d’outils qui contiennent la fonctionnalité étendue pour l’identification,

la classification et l’exécution avec des gestes d’un chef d’orchestre. La proce-

dure d’identification de gestes est concu sur la base du processus du Modèle

Caché de Markov (HMM). Un ensemble d’outils de HMM sont développés

pour le logiciel de Max/MSP. Des procédures de formation et d’identification

sont appliqués vers les gestes indicatifs de main droit aussi que vers les gestes

expressifs de main gauche. L’identification continuelle des gestes droits est

incorporée à l’analyse de gestes et à un système d’exécution en temps réel

dans des environnements d’Eyesweb et de Max/MSP/Jitter.

Acknowledgements

I would like to express my gratitude to:

Marcelo Wanderley, the supervisor of the thesis, for his constant support

and encouragement, for guiding the research in the right direction and for

much appreciated advice during the preparation of the thesis.

Philippe Depalle, for providing me with valuable help in some of the

technical aspects of the project.

Teresa Marrin, Declan Murphy and Tommi Ilmonen for allowing me to

include the photographs of their systems in my thesis.

Alain Terriault, for letting me use the office facilities for studying and

research, and for allowing me to have an ideal balance of work and research

during the past two years .

To Madhumita Banerjee and Yuri Filipov for their friendship, support

and for encouraging me to continue with the project.

To my mother, Lana Lysogor, for her belief in me, for contributing her

conducting expertise to the projects, for enduring the long hours of numerous

recordings, and for not giving up on the project during the initial experimen-

tation stages.

To my grandmother Valentyna, my brothers Levko and Christian for al-

ways being there for me and for helping me in every possible way.

iii

ACKNOWLEDGEMENTS iv

To Veronica for being so caring, understanding and patient with me, and

for reminding me of what is truly important in life.

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Expressive Conducting Gestures 2

1.2 Classification of Conducting Gestures 2

1.2.1 Classification by type 3

1.2.2 Classification by localization 4

1.3 Computer-based conducting recognition systems 6

1.4 Thesis Overview . 8

2 Overview of Previous Systems 10

2.1 Early Systems . 10

2.2 MIDI-based systems . 11

2.3 Audio-based systems . 19

2.4 Overview Summary Table . 23

3 Gesture Analysis and Performance 27

3.1 Gesture Analysis . 27

v

CONTENTS vi

3.1.1 Image input . 28

3.1.2 Image Processing with Eyesweb Software 29

3.1.3 OSC network . 29

3.1.4 Positional Data Filtering 30

3.1.5 Recording of Positional Information 31

3.1.6 Beat Transition and Amplitude Extraction 31

3.2 Gesture Performance . 34

3.2.1 Calculation of speed modification 35

3.2.2 Recording of Beat Values 36

3.2.3 Video output . 37

3.2.4 Time Compression/Expansion Using the Phase Vocoder 38

4 Gesture Recognition 41

4.1 Hidden Markov Model –Definition and Overview 42

4.1.1 Introduction to HMM 43

4.2 Three HMM problems . 45

4.2.1 Solution to Problem 1 – Forward-Backward Algorithm 45

4.2.2 Solution to Problem 2 – The Viterbi Algorithm 48

4.2.3 Solution to Problem 3 – Baum-Welch Reestimation . . 49

4.3 Additional Issues Related to HMM Implementation 51

4.3.1 Scaling . 51

4.3.2 Multiple Observation Sequences 55

4.4 HMM Package in Max/MSP 56

4.4.1 HMM External Object in Max 56

4.4.2 Other objects of the HMM Package 60

4.5 Testing the HMM Objects . 61

CONTENTS vii

4.5.1 Symbol Recognition with a Mouse/Wacom Tablet . . . 61

4.5.2 Symbol Recognition with USB Cameras and Eyesweb . 63

5 System Implementation and Results 65

5.1 System Experiments with Conducting Gesture Recognition . . 65

5.1.1 Left hand Expressive Gestures 66

5.1.2 Expressive Styles of Right Hand Beat Indicating Gestures 68

5.1.3 Embedded Right hand Expressive Gestures 70

5.2 Combined Gesture Analysis, Recognition and Performance . . 72

6 Discussion 75

6.1 Evaluation of Results . 75

6.2 Conclusion . 75

6.3 Future Work . 76

Chapter 1

Introduction

The role of gestures in human-computer interaction is a fascinating area

of research, which demonstrates that much of the communicative intent

comes through ancillary movements that either coexist with language (Mc-

Neill 1992), or even replace it completely, as in the case of sign language

(Wachsmuth and Frohlich 1998). In music, the best known and most re-

searched gestural communication mode is conducting.

Conducting can be viewed as a way of controlling high-level aspects of

performance of multiple instruments with one’s physical gestures but with-

out direct contact with the instruments themselves. In a conductor-musician

interactive environment, visual information perceived by musicians serves as

the means of conveying the musical gestures that are created by the conduc-

tors physical gestures.

In its nature, conducting is a highly individualistic form of art that of-

fers a broad range of expressiveness, similarly to and arguably even more

extensive than the expressive possibilities of playing a musical instrument.

A talented conductor uses his or her entire body to convey the directions

1

CHAPTER 1. INTRODUCTION 2

for the orchestra. Whereas it is impossible to identify and classify all of the

individualistic elements responsible for the effect of an expressive conducting

performance, the traditional school of orchestral conducting has developed

a well-defined and structured grammar of basic conducting gestures that is

shared by majority of professional conductors and taught to student con-

ductors. A good description of basic conducting technique can be found in

(Rudolph 1994).

1.1 Expressive Conducting Gestures

The two principal functions of an orchestral conductor are to indicate the

timing information for the beats of the score in order to synchronize the per-

formance of the musical instruments, and to provide the gestures to indicate

his or her artistic interpretation of the performance. The second function

introduces a degree of variation and personal interpretation in the musical

performance, and is represented by a number of gestures with a high de-

gree of expressivity. Those expressive gestures provide an interesting area

for research and are the main topic of this thesis.

1.2 Classification of Conducting Gestures

The technique of traditional conducting provides an excellent classification

of conducting gestures. The proposed classification was derived from several

well-known sources dealing with basic conducting methodology (Long 1971)

(Malko 1950) (Ross 1976) (Rudolph 1994).

CHAPTER 1. INTRODUCTION 3

1.2.1 Classification by type

The most natural way of classification of conducting gestures is to group

them by their intended effect on the performance. The basic grammar of

conducting can be represented through the following hierarchy of elements:

Gesture

- Time-Beating

– Regular beat

- Neutral Legato

- Expressive Legato

- Light Staccato

- Full Staccato

- Marcato

- Tenuto

– Subdivided beat

– Beat Transitions

- Expressive / Artistic

– Dynamics

- Crescendo

- Diminuendo

- Sforzando

– Phrasing

- Sustained notes

CHAPTER 1. INTRODUCTION 4

- Melodic line

– Sound Extraction

- Staccato

- Tenuto

– Cues (Entrances)

– Releases/Cutoffs and Rests

– Syncopation/Accent

– Holds (Fermata)

- Combinations of gestures (consecutive)

- Combinations of gestures (simultaneous)

- Individual/free technique expressive gestures

1.2.2 Classification by localization

The hierarchy of gestures shows that the greatest division of conducting

gestures exists between time-beating gestures, almost always performed ex-

clusively with the right hand, and expressive artistic gestures, many of which

are performed with the left hand. However, the division of gesture execution

between right and left hands is not that straightforward.

Whereas it is a common mistake of inexperienced conductors to use both

hands for time-beating gestures, professional conductors perform tempo indi-

cations exclusively with the right hand—with rare exceptions, such as when a

very large ensemble is conducted, time-beating gestures might be performed

with both arms in parallel, or in an extremely unlikely case when the right

hand is responsible for a very complex expressive indication, the left hand

CHAPTER 1. INTRODUCTION 5

might take over the time-beating for a short period of time. For practical

purposes, it can be assumed that tempo gestures are always performed either

by the right hand, or both hands where the left hand doubles the movements

of the right hand, and therefore right hand following alone is sufficient to

extract the time-beating information at all times.

Whereas time-indicating gestures are essentially of continuous and peri-

odic nature, one gesture following another and transition points indicating

the beat arrivals, expressive gestures can be characterized as possibly periodic

or non-perioodic, with their occurence depending on conductor’s interpreta-

tion and position in the musical score. Left hand is largely responsible for

expressive gestures—however, right hand contributes to their performance as

well.

Very often, combinations of gestures occur in both hands. In one possible

case, two or more expressive gestures performed by the same hand are com-

bined into a sequence of movements, which in itself can be viewed as a complex

expressive gesture—such as a diminuendo-cutoff or sforzando gestures in the

left hand. Another possible combination of gestures takes place when an ex-

pressive gesture is incorporated into another (often a time-beating) gesture,

as in the case of indications of variations in dynamics and expressive styles

that occur simultaneously with tempo indications in the right hand.

Artistic expressive gestures can be conveyed through the movement of

the right hand, left hand, or auxiliary indications, such as head movement,

facial expression, eye direction, breathing and posture. Whereas in many

previous works an effort has been made to track those auxiliary elements and

gestures performed with a baton, the current work is focused on recognition

CHAPTER 1. INTRODUCTION 6

of expressive gestures with right and left hands without a baton. According

to (Rudolph 1994), using or not using a baton for orchestral conducting are

both acceptable practices, and some orchestral conductors (such as Pierre

Boulez, for example) do not use a baton during their performance. Whereas

the use of baton contributes to more clarity and precision in beat-indicating

gestures, not using the baton allows for a more active participation of the

right hand in expressive gesture indications. Since this thesis focuses on

recognition of expressive gestures, and due to technical limitations of input

devices used in the project, it was chosen not to track the baton.

1.3 Computer-based conducting recognition

systems

Over the years, researchers proposed a number of computer-based systems

to understand the characteristics of conducting gestures. However, design of

identification and recognition procedures for a range of expressive gestures

has been one of the main issues in the field of computer-based conducting

gesture recognition. There is a significant gap between the amount of ex-

pressive gestures produced by a conductor to control an orchestra, and the

amount of gestural data identifiable and recognizable by computer systems.

Most of the early designed systems concentrated on extraction of the right

hand or baton-in-right-hand gestures—temporal beat transition points to

control the playback of a prerecorded score and the amplitude of movement

to control the playback volume—while not taking into account a wide range

of expressive gestures produced by the left and right hands which contains

meaningful information for the orchestra. Those of the later systems that did

CHAPTER 1. INTRODUCTION 7

implement identification and recognition procedures based on an extensive

set of expressive articulation parameters used individual mapping techniques

which varied from research to research. A uniform procedure is needed that

would be able to identify and recognize not only beat-tracking and amplitude

gestures, but also both right and left hand expressive gestures using a high

level recognition technique.

Similarly to an orchestral musician who is expected to know the meaning

of conducting gestures in the context of both general technique and idiosyn-

cratic style of the conductor in order to recognize and apply them to a musical

score, any computer gesture recognition system is required to contain some

knowledge of the gestures it is expected to identify. More specifically, such

a system should include three basic elements—a vocabulary of gestures to

be recognized, a procedure to identify transitions between gestures from an

incoming stream of data retrieved from the conductors movements, and a set

of rules that can be used by the system to recognize the gestures.

The main interest of using computer recognition for conducting gestures

involves gaining a better understanding of dynamics of conducting gestures

in terms of general conducting technique, different schools of conducting and

individual conducting styles. Applications of conducting gesture recognition

include development of educational programs for student and professional

conductors, conducting performance systems, and research tools in the area

of analysis and classifications of conducting gestures.

CHAPTER 1. INTRODUCTION 8

1.4 Thesis Overview

This thesis is based on the development of a Conducting Gesture Analy-

sis, Performance and Recognition System. Gesture Analysis refers to the

component of the system that deals with processing of the input informa-

tion in order to track the movement of the right and left hands, extract

their respective positional data streams, and identify elementary right-hand

gesture elements—such as beat transition points and amplitude of the beat-

indicating movements. Gesture Performance refers to the part of the system

that maps the elementary features to changes in output of the prerecorded

audio (and optionally, video) score during a realtime interactive performance

with the system. Gesture Recognition, which is the main area of research

presented in the thesis, is the component of the system that uses high-level

training and recognition procedures to process the positional information ex-

tracted with Gesture Analysis, and provides a set of positional research tools

that are used for recognition of characteristic features of left- and right-hand

expressive conducting gestures.

Chapter 2 of the thesis will provide a chronological overview of up-to-

date research done in the area of conducting recognition and classify the

developed systems in terms of their design and performance characteristics.

Chapter 3 will focus on the implementation of the Gesture Analysis and

Performance components of the system. Chapter 4 will present an overview

of Hidden Markov Model (HMM) and will discuss the application of HMM

in Max/MSP environment that was used as a Gesture Recognition element

of the system. Chapter 5 will describe the research based on recognition

of expressive conducting gestures that was carried out with the described

CHAPTER 1. INTRODUCTION 9

system. Chapter 6 will discuss results of the experiments and will summarize

the advancements presented in the thesis.

Chapter 2

Overview of Previous Systems

Many performance, educational and research systems have been designed

over the years in the areas of computer-based conducting gesture recognition.

Those systems experimented with a number of different approaches towards

conducting gesture analysis, recognition and mapping to music synthesis.

2.1 Early Systems

Groove system

The first system that implemented a user-controlled realtime music synthe-

sis was the GROOVE (General Real-time Output Operations on Voltage-

controlled Equipment) system, designed by Mathews and Moore in 1970

(Mathews and Moore 1970). The system used a 24-note keyboard, four ro-

tary knobs, and 3-D joystick as input devices to control a synthesizer that

generated sounds through an interface for analog devices and 14 DAC con-

vertors. The GROOVE was the first project to introduce the idea of the

expressive control of a user over the performance of a computer music syn-

thesis program, in a way similar to a conductor having a degree of expressive

10

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 11

control over performance of the orchestra.

Conductor Program

In 1976, Mathews implemented a Conductor Program (Mathews 1976). The

application was based on the GROOVE system, and was designed to improve

user control over computer performance, which introduced a higher degree

of expressivity and improvisation in music synthesis. Articulation and other

expressive effects were stored in a score file, and could be applied to music

during realtime performance.

2.2 MIDI-based systems

Microcomputer-based Conducting System

In 1980, Buxton et al. designed a computer-based conductor following per-

formance system (Buxton, Reeves, Fedorkov, Smith, and Baecker 1980). The

system tracked the 2-dimensional position of a cursor (a mouse-type input

device) on a tablet and input from buttons on the cursor, as well as external

switches and sliders. Tracked parameters included pitch shift, tempo, am-

plitude, timbre and articulation parameters. Preprocessed MIDI score was

used to produce the output of the system. Similarly to the Groove and Con-

ductor Program projects, this system was not based on recognition of actual

conducting gestures, but rather worked with simulation of those gestures in

2-dimensional space using a number of input devices (tablet, cursor, switches

and slides).

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 12

Conductor Follower

Following Buxtons research, a Conductor Follower system was designed by

Haflich and Burns in 1983 (Haflich and Burns 1983). The system used Po-

laroid ultrasonic rangefinder units and a wand-shaped device with a corner

reflector on its tip to produce reflections that were analyzed by a computer.

Position of the wand device was tracked in 2D space and used to extract

beat points. The analyzed information was applied to control tempo and dy-

namics of the synthesized sound. The significance of the Conductor Follower

project was that it was the first system to extract and analyze a range of

real conducting gestures (and not their simulations) in space—unlike previ-

ous systems that used such input devices as a joystick and knobs (Mathews

and Moore 1970) or a tablet (Buxton, Reeves, Fedorkov, Smith, and Baecker

1980), this system used a wand-shaped device which was similar to an actual

orchestral conducting baton.

Mechanical Baton and Radio Baton

In 1989, Max Matthews designed a device called Mechanical Baton (Math-

ews 1989). The baton, called a Daton, hit a metal plate which sent positional

information to a PC Intel computer with a Roland 401 MIDI card. The com-

puter made necessary corrections to a prerecorded pitch/duration score and

sent out MIDI information to Yamaha synthesizer. The score variables that

were affected by incoming information were tempo, loudness and balance of

voices. In 1991, Daton was improved into a Radio Baton system, which used

two batons that were moved above a metal plate (Mathews 1991). Positional

input data used by the system was determined by radio frequency signals

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 13

emitted from the batons.

MIDI Baton System

In 1989, a MIDI Baton system was developed by Keane and Gross (Keane

and Gross 1989). The system used a baton controller mechanism and a

footswitch as input devices to control a sequencer that would generate the

sound. The baton contained a metal ball attached to a spring wire inside a

brass tube. Change in acceleration of the baton caused the contact between

the ball and the tube, which in its turn created an electrical signal. Beat

information was extracted directly from electrical signals with some minor

adjustments. The footswitch was used to send start/pause/restart commands

to the sequencer. An important contribution of the project was development

of system control over lead/lag time between the conductor and the system,

degree of response to tempo variations, and minimum time between trigger-

ing messages to the sequencer. Later advancements of the project included

a MIDI Baton II (Keane, Smecca, and Wood 1990) and MIDI Baton III

(Keane and Wood 1991) systems.

Computer Music System and Gesticulation System

Also in 1989, Morita et al. designed a Computer Music System that Follows a

Human Conductor, the first project to use a CCD camera as an input device

(Morita, Otheru, and Hashimoto 1989). Feature extraction hardware used

with the camera followed a white glove or a baton marker of a conductors

right hand. The system allowed for tempo and intensity control of a pre-

recorded MIDI score. In 1990, the baton-motion understanding system was

combined with a gesture recognition system that tracked trajectory, velocity

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 14

and acceleration information of a conductor’s left hand with the Dataglove

input device (Morita, Otheru, and Hashimoto 1990). The collected informa-

tion was mapped to control dynamics and articulation effects in the score.

Another important component of the system was a self-evaluation system

that recorded results for next performance, which was a first attempt to use

a learning algorithm based on collected data in a conductor gesture recogni-

tion device.

Light Baton

Another device that used a CCD camera, called Light Baton, was designed in

1992 by Bertini and Carosi (Bertini and Carosi 1992). The system was pri-

marily intended to be used for synchronization of live musical performances

with prerecorded MIDI scores on a computer, with conductor’s gestures serv-

ing as a connection between the human performer and the computer. A spe-

cial conducting baton with a lamp on its tip was used to send light signals

to the CCD camera. The light position was analyzed by an image acquisi-

tion board, and the playback of the prerecorded score was adjusted through

control of tempo and amplitude.

Adaptive Conductor Follower

A system called Adaptive Conductor Follower was developed in 1992 by Lee

et al. (Lee, Garnett, and Wessel 1992), and was expanded into a Conductor

Follower system by Brecht and Garnett in 1995 (Brecht and Garnett 1995).

The system used Buchla Lightning baton and Mattel Power Glove to collect

positional information, which was then processed by classification and esti-

mation algorithms in Max environment. Three possible evaluation methods

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 15

were implemented at the beat analysis stage—a simple historical updating

algorithm based on previous beat information, a more detailed updating al-

gorithm with 6-point position update for each beat, and an algorithm based

on neural networks which used 6-point position probability evaluation algo-

rithm. Tempo and dynamics of the prerecorded MIDI score were modified

based on the input information. One of the most important achievements of

the system was that it produced the first successful attempt to use Artificial

Neural Networks for recognition purposes.

Ensemble Member and Conducted Computer / Extraction of Con-
ducting Gestures in 3D space

In 1996, Tobey and Fujinaga designed a conductor follower system that

used two Buchla Lightning batons in Max environment (Tobey and Fuji-

naga 1996). The system was based on Tobey’s previous research (Tobey

1995) and was the first system to collect and analyze positional information

in 3D space. Its capabilities included tempo (rubato) control, dynamics con-

trol, beat pattern recognition, beat style recognition, accentuation control

and timbral balances.

Digital Baton

Also in 1996, a Digital Baton system was implemented by Marrin and Par-

adiso (Marrin and Paradiso 1997). The handle of the Digital Baton input

device contained pressure and acceleration sensors, and the tip of the baton

held an infrared LED which was tracked by a camera with a position-sensitive

photodiode. The information was processed by Max patches which adjusted

the tempo, dynamics and articulation effects for the prerecorded score. An

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 16

in-depth analysis of conducting gestures was integrated in the design of the

system.

Figure 2.1: A picture of the Digital Baton device.

Multi-Modal Conducting Simulator

A device called Multi-Modal Conducting Simulator was designed in 1998 by

Usa and Mochida (Usa and Mochida 1998a), (Usa and Mochida 1998b). The

system used two 2D acceleration sensors, an eye camera and a still video

image to collect the ’cue-in‘ information, and a breathing sensor to control

dynamics at beginnings of musical phrases. The Conducting Simulator was

the first system to use Hidden Markov Models, a high-level statistical obser-

vation analysis tool, to determine right hand conducting gesture patterns,

as well as the first system to implement eye tracking as one of the input

indications.

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 17

Conductor’s Jacket

In 1998, Marrin and Picard created the Conductor’s Jacket system that took

on an alternative approach towards the source of gestural input information

(Marrin and Picard 1998), (Marrin 2000). Whereas all of the previous re-

searchers in the field had been mainly concerned with tracking positional

coordinates of the conductor’s hands, Marrin and Pickard constructed a sys-

tem to analyze muscle tension response as the main indication of intended

gestural messages.

Figure 2.2: Keith Lockhart conducting an orchestra with the Conductor’s
Jacket system (photograph by Rich Fletcher).

The Conductor’s Jacket consisted of four muscle tension electromyogram

(EMG) sensors, respiration monitor, heart rate monitor, temperature sensor

and Galvanic skin response sensor. The input information was passed on to

two networked computers analyzing system. The processed MIDI informa-

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 18

tion was then transferred to MIDI-controllable sound production equipment.

The variables that were adjusted by the captured gestural information were

volume, tempo, balance, accents, dynamics and a number of articulation

effects.

Conductor Following with Artificial Neural Networks

In 1999, Ilmonen and Takala used Artificial Neural Networks scheme to cre-

ate a conducting recognition system (Ilmonen and Takala 1999). A data

suit with FastTrack motion tracking devices was used to collect positional

information—which was the 1st time that high-precision 3D motion tracking

device was implemented in a conductor follower system.

Figure 2.3: Tommi Ilmonen conducting with the Virtual Orchestra system

The system was designed based on a modular approach, with three basic

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 19

modules responsible for their corresponding layers: input, analyzing software

and synthesizing software. Tempo and articulation were the main variables

affected by the input information. In addition, the system used a computer-

generated 3D graphical image of an orchestra controlled by the user’s ges-

tures, which was developed on the basis of the Virtual Orchestra system by

DIVA (Digital Virtual Acoustics Group) (Takala 1997).

Virtual Dance and Music

The Virtual Dance and Music system was designed in 2000 by Segen, Ma-

jumder and Gluckman (Segen, Mujumder, and Gluckman 2000). The system

contained three main components: a gesture recognition system which ex-

tracted the tempo information by using two synchronized cameras, a dance

sequencer which adjusted sets of video frames to gestural information, and

a music sequencer which was represented by a MIDI synthesizer with tempo

control. The main accent was put on prediction of tempo factor in the MIDI

score using the polynomials, and output produced by the system consisted

of synchronized dance and music. The Virtual Dance and Music system

was performance-oriented and focused primarily on synchronization of dance

and media through elementary tempo-indicating movement rather than on

recognition and analysis of a wide range of conducting gestures.

2.3 Audio-based systems

Personal Orchestra

In 2002, Borchers et al. designed a system called Personal Orchestra (Borchers,

Samminger, and Muhlhauser 2002). Similarly to earlier designs of conduc-

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 20

tor following devices, the main control variables of the device were tempo,

volume and instrumentation. However, one of the main innovations of the

system was that it used prerecorded audio (and video) material from a real

life performance by Vienna Philarmonic Orchestra, as opposed to a computer-

generated MIDI score used in previous systems. Whereas this contributed

to a more realistic sounding output, it also created a number of problems at

design stage due to complexity of audio compression-expansion in real time.

A solution to the problem included pitch-shifting the audio file at a range of

intervals (plus-minus an octave) prior to the use of the system and playing

the resulting audio files at their corresponding speeds to conserve the pitch

continuity. For example, a file that resulted in transposing the original file

up an octave, or doubled frequency, would be played at half speed to produce

the same pitch components as the original audio file, A dynamic crossfade

between the files was then implemented to produce audio output at desired

speeds. Video time stretching did not produce similar problems since it could

be easily implemented by simply repeating or dropping video frames.

Buchla Lightning sticks were the input device used by the system that

transmitted 2-dimensional coordinates to a movement analysis program (writ-

ten in Java) which interpreted the maximum downward coordinates of the

right hand as beat indicators and vertical coordinates of the left hand as am-

plitude indicators. The program then applied changes to control variables,

and sent audio output to the speakers and video output to a projector. Since

the system was designed for an exhibition in Vienna Music Museum, it also

included a general graphical user interface with a video content intended to

make user-computer interaction process more natural.

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 21

Personal Orchestra Project was not intended for being used by a conductor—

rather, similarly to the Virtual Dance and Music project, it was performance-

oriented and designed as an interactive exhibit for a general user with little

or no conducting experience. Therefore, it did not contain the complexity of

gesture recognition functionality introduced by some of the earlier systems.

However, its audio stretching algorithm was used in later systems which made

a significant contribution to research in conducting gesture recognition.

Conducting Audio Files via Computer Vision

In 2003, Murphy et al. presented a conducting gesture recognition system

which was able to control the tempo of an audio file playback through stan-

dard conducting movements (Murphy, Andersen, and Jensen 2003). The

system incorporated three major components – gesture tracking, audio beat

estimation and audio time scaling.

Gesture tracking was done by using a set of Murphy’s Computer Vision

techniques. A direct view camera (by itself or in combination with a pro-

file view camera) was used to track either the conductor’s baton or his/her

right hand. Baton tracking involved a more complex tracking technique with

seek/track modes whereas hand tracking was done with a more straightfor-

ward Lucas-Kanade feature tracking algorithm (included in the motion cap-

ture library of the Eyesweb software used by the system (Camurri, Coletta,

Peri, Ricchetti, Ricci, Trocca, and Volpe 2000)). Recognition of conductor’s

beat indications was performed based on visual input, and time-stamped

MIDI messages were sent to indicate the points of beat occurances.

Audio beat estimation was done through extracting parameters from a

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 22

Figure 2.4: Declan Murphy with the Computer Vision system

selected audio file. In particular, HFC (high frequency component) parame-

ter, calculated as sum of the high frequency spectral magnitude above 4KHz

weighted by the frequencies squared, was extracted. Since HFC data by itself

was too noisy to be used directly for beat detection, it was passed on to a

beat probability vector algorithm which was modeled based on an assump-

tion that a note onset is more likely to occur at a time interval roughly equal

to the last time interval between previous note onsets (or equal to a multiple

of that interval).

Two alternative methods were implemented for audio time scaling, based

on the choice of the beat coupling method to be used. The first method,

known as the event based approach, worked on the assumption of the low

system latency and attempted to synchronize the beats at highest interval

rates. In that case, audio information was either cut or extended in order

to compensate for the beat interval change. Another method, which was

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 23

designed for conditions of larger latency, is known as a delayed approach. It

attempted to synchronize the audio playback with conductor’s indications

not for the current, but rather for the subsequent beat. This results in a

”lagging“ effect at stages when a conductor attempts to change the tempo,

but also gives more time for tempo adjustments. In that situation, a phase

vocoder was used instead of cutting or repeating audio segments, as in the

Personal Orchestra system. This was the first time real-time audio manip-

ulation using vocoder techniques was implemented in a conducting gesture

recognition system, which resulted in a better sound quality. The time scal-

ing calculation algorithm that was used for the delayed approach was similar

to the one used in the Personal Orchestra system (Borchers, Samminger, and

Muhlhauser 2002).

2.4 Overview Summary Table

This section presents a summarized description of the system described in

this chapter in table format.

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 24

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 25

CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 26

Chapter 3

Gesture Analysis and
Performance

This chapter deals with the overall design of the Gesture Analysis and Perfor-

mance components of the described system. Whereas the Gesture Analysis

part of the system is implemented as a link between the user input and pro-

cessing of extracted positional data stream and is also used together with

Gesture Recognition system, the main purpose of the Performance compo-

nent of the system is mapping of elementary conducting gestures to changes

in prerecorded audio/video output during a realtime interactive performance.

3.1 Gesture Analysis

Gesture Analysis part of the system was developed as a set of tools to be

applied to hand movement tracking, extraction of positional data stream,

and identification of beat-indicating transition points and beat amplitude in

right-hand gestures.

27

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 28

Figure 3.1: Lana Lysogor, a doctoral conducting student, performing with
the Gesture Analysis and Performance components of the system.

3.1.1 Image input

Gesture image tracking is done with two inexpensive Logitech QuickCam

Messenger USB cameras, placed in front and profile view of the user. The

cameras are used to follow the image of the user’s hand movements, with the

user wearing a color glove on the right hand (or/and left hand) to facilitate

the tracking process. Whereas for practical reasons the USB camera input

was chosen as a low-cost solution, the described system is built to also be

compatible with higher precision six-degrees-of-freedom (6DOF) positional

trackers for use in further research.

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 29

3.1.2 Image Processing with Eyesweb Software

The front and profile view images obtained by the cameras are used for fea-

ture extraction by Eyesweb, an image processing software that was developed

at DIST, University of Genoa, Italy (Camurri et al. 2000) and has been used

in numerous interactive multimedia installations, including the Computer

Vision system (Murphy, Andersen, and Jensen 2003). Image acquisition and

processing is handled in the Eyesweb patch using blob colour tracking tech-

niques. At the initialization stage, the intended tracking regions of the color

glove is selected by the user clicking with a mouse on the incoming image

regions. An internal color blob tracking object in Eyesweb, which is the core

of the image processing patch, then extracts two-dimensional positional coor-

dinates of the center of the tracked region and passes their values to Eyesweb

network data transfer objects. As feedback to the user, the patch displays

the full incoming image from the camera as well as the resulting image that

contains the tracked color regions only. The incoming image is also recorded

by the patch in a video file, which could be later used for offline processing

of the user’s gestures.

3.1.3 OSC network

The Eyesweb patch sends out its output stream to Max/MSP software via

Open Sound Control (OSC) network (Wright 1998). The network provides

a connection between the Eyesweb patch installed on a PC computer, and

Max/MSP/Jitter software that is run in a Mac OsX environment. The con-

nection between the two computers is established directly through a crossover

network cable. Four positional streams, two per hand (horizontal and ver-

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 30

tical), are sent out on four separate OSC channels. Eyesweb network OSC

objects are used as servers, and Max/MSP external OSC objects are used as

clients.

3.1.4 Positional Data Filtering

One of the problems associated with the incoming data stream was that the

values were coming into the Max/MSP patch from the Eyesweb environment

at irregular intervals. A pk.resample external object was written to resample

those values into a regular flow data stream, according to a specified resam-

pling rate (no value interpolation was implemented). Another object called

pk.velacc was written to calculate velocity values for horizontal and vertical

movement, as well as vector velocity and acceleration of the movement.

In the course of experimenting with the system, it was also discovered

that the positional information stream received by the Max patch contained

a substantial amount of jitter, caused both by slight errors in hand movement

tracking by Eyesweb objects and slight variations in the natural hand move-

ment that are not perceived by the human eye but are nonetheless present in

human movment. Therefore, some kind of filtering needed to be implemented

in the system. A low pass filtering technique, used for cleaning of the posi-

tional data in Motion Analysis and Mapping to Music project (Bevilacqua,

Ridenour, and Cuccia 2002), was applied to the current problem. The filter,

designed through a set of internal objects in Max/MSP, calculates a running

average using a number of input points, which results in unwanted jitter data

being filtered out of the system. Since the frame rate of the input cameras is

25 fps (40Hz), which is substantially lower than the rate of the Vicon motion

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 31

capture system used in the Motion Analysis and Mapping to Music project,

a 6-point (instead of a 10-point, as in referred project) running average filter

was implemented to avoid excessive filtering and latency in the system. The

filtered data stream is sent to the beat/amplitude extraction subpatch. Both

the filtered and unfiltered data streams are sent as graphic points to four

separate displays in the Max patch, and there a clear visible improvement in

the case of filtered information.

3.1.5 Recording of Positional Information

As an optional feature, a separate Max patch was designed to be responsi-

ble for recording of positional data stream. In the record mode, the data

is stored in a table file and included time stamp information and horizontal

and vertical positional value streams for both hands. In playback mode, the

recorded positional information can be played in order to control the perfor-

mance of the score by itself, without extracting it from the video recordings

in the Eyesweb patch.

3.1.6 Beat Transition and Amplitude Extraction

One of the main responsibilities of the Gesture Analysis component of the

system is to extract beat amplitude and beat transition points from the right-

hand conducting gestures based on maxima and minima of their absolute

positional values. Those values are extracted from the positional coordinate

streams that are received from the Eyesweb patch. Beat transition point

extraction was done by a pk.beatrecognize external object, which detected a

beat every time there was a transition from the downward to the upward

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 32

Figure 3.2: Positional data displays in the Gesture Analysis Max/MSP patch:
front signal raw (upper left) and filtered (lower left), profile signal raw (upper
right) and filtered (lower right).

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 33

vertical movement of the right hand.

In order to avoid false beat detections which would occur due to noise in

positional data stream caused by minor fluctuations in positional values (that

were greatly reduced by the running average filter), a pk.filter object was

implemented. The object accepted an argument which set a minimal time

interval in milliseconds required to occur between consecutive beat detections

in order for the detected beat to pass through the object. The time interval

value 50 ms was found to be appropriate to most situations and was used in

all of the experiments with the system.

At the beginning of the conducting performance, it is natural for a con-

ductor to conduct a subbeat before the music entrance at the first beat. In

order to avoid the frequent problem of the system mistaking the subbeat

for the first beat, another filter was implemented with a set of internal Max

objects. In it, an incoming ‘bang’ message (signifying a beat detected by

the previous objects in the chain) would only be let through if the differ-

ence between the maximum vertical position value that occurred during the

beat and the very first positional value recorded at the beginning of the beat

(which corresponds to the minimum vertical value of the beat) is greater than

the threshold value specified by the user. In order words, the beat is only

detected if the right hand travels in the upward direction before the direction

is changed from downward to upward. This filter successfully eliminates the

first subbeat problem.

Right- and left-hand amplitude extraction was implemented with a set

of internal Max objects. For right-hand beat amplitude, the main control

variable was the vector length of the tracked path of the right hand in space

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 34

that would be recorded between consecutive beats. Since different beats

vary in form, and therefore also in length of the positional path they travel,

each individual beat is only compared to its corresponding beat from the

last measure. Each time a beat occurs, the calculated vector path value

for the new beat is divided by the path value of the previous beat, and

the result is multiplied by the result of the same calculation done for the

previous beat (the original value of the result would be set to 1). However,

one of the requirements for the system to work is that the four beats of the

first conducted measure are be conducted in a uniform fashion in terms of

dynamics, since their values would serve as a reference to the beats in all

of the consecutive measures. Alternatively, the values for the vector path

lengths can be prerecorded prior to the use of the system and be used as

reference values.

Left-hand amplitude level is calculated by direct mapping of the vertical

value of the left hand on the video screen to the amplitude level of the score,

with the option of maximum and minimum volume level values corresponding

to the highest and lowest positions of the hand. The new left-hand amplitude

value is then averaged with the extracted right-hand amplitude, and the

resulting value is sent to the audio output level of the patch.

3.2 Gesture Performance

Gesture Performance element of the system is primarily responsible for map-

ping the identified beat transition points and beat amplitude values to mod-

ifications in playback speed and volume of the audio score that is being

conducted by the user.

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 35

3.2.1 Calculation of speed modification

To compute adjustments between user’s beat indications and audio playback

speed, audio stretching calculation algorithm was used. The developed al-

gorithm was similar to the one first implemented in (Borchers, Samminger,

and Muhlhauser 2002) where it was developed on the basis of techniques that

were originally used to synchronize computer clocks over the network. It can

be summarized in the following procedure:

Step 1. Every time a new beat is detected, calculate the value of the

speed with which the user has conducted the last measure:

v1 =
bs − b

′
s

bu − b′
u

, (3.1)

where bs is the original position of the beat in the score, b
′
s is the original

position of the previous beat, bu is the time of the incoming detected

beat, and b
′
u is the time of the previous detected beat.

Step 2. On the basis of value of v1, calculate the value of adjustment

speed:

v2 =
v1 ·∆t

tu + ∆t− bs
, (3.2)

where ∆t is the user-specified catchup position interval for the actual

score position to become synchronized with the desired score position

in the future and tu is the position until which the score was conducted

by the user.

Step 3. Throughout the execution, a runtime loop computes the value

of tu as:

tu = t′u + vcur · i, (3.3)

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 36

where t′u is the previous value of tu before the actual computation, vcur

is the current speed (initially set to 1) and i is the interval between

the loop executions in ms (in this case, i was equal to 1 ms). If the

condition tbu > ∆t is true (tbu being the position to which the score

was conducted at the current speed since the beginning of the current

beat), then vcur was set to v1, otherwise vcur = v2. This way, if the

synchronization of the position on the score and position of the user’s

beats occurs before the end of the current beat, the current speed is

set to the speed at which the user is conducting, as there is no need for

further adjustments until the next detected beat.

In the described system, the calculations were implemented by the exter-

nal pk.coexcalc object. The object accepted bang messages in its left inlet

and the values of corresponding beat positions on the audio score in the right

inlet. It then calculated the time compression / expansion ration and sent

it continuously out the left outlet. The current calculated position on the

audio score is sent out of the right outlet of the object.

3.2.2 Recording of Beat Values

In order to prepare an audio score for performance with the described system,

a beat recording patch is used at the preprocessing stage. Beat indications are

tapped in by the user during the playback of the audio file, and their relative

time values are recorded in a separate table file. During performance, the

table values are then supplied to the pk.coexcalc object which uses them as

reference beat values for tempo adjustment calculation. One of the much

needed future improvements of the system would be an implementation of a

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 37

realtime beat recognition object.

Object Name Component Stage Function
pk.resample Analysis Input resample the incoming stream

of data according to a user-
specified rate

pk.diff Analysis Data calculate running difference
Analysis between incoming data values

pk.velacc Analysis Data calculate horizontal, vertical and
Analysis vector velocity and acceleration

based on horizontal and vertical
position values

pk.beatrecognize Analysis Beat detect beat transition based on
Tracking direction changes and velocity

of vertical positional data
pk.filterbangs Analysis Data only allow a single occurance of

Filter detected beats through within
a user-specified interval

pk.coexcalc Performance Data calculate the current speed
Mapping required to catch up with position

in the audio file based on incoming
beat transitions

Table 3.1: External objects written for Analysis and Performance system
components.

3.2.3 Video output

As an optional feature, a prerecorded video score can be used as visual

feedback to the user simultaneously with the corresponding audio score.

Video score tempo modification is done by internal Jitter environment ob-

jects. Since video stretching/ compression can be easily done by drop-

ping/repeating the frames without visible artifacts (given that the frame

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 38

rate is high enough), there were no problems associated with its implemen-

tation in the system. A video (and audio) recording of McGill Symphony

orchestra rehearsal1 was used with the system. Since the main goal of the

system is directed towards recognition of expressive gestures, video playback

is not part of the final system implementation. However, it has been devel-

oped to be used as feedback to the user and the audience during interactive

performances with the system—it could be displayed through an overhead

projector or a monitor on the wall in front of the user to simulate the presence

of an orchestra.

3.2.4 Time Compression/Expansion Using the Phase
Vocoder

The resulting time compression/expansion value was sent to audio/video

output patch. For actual audio adjustment, several techniques were tried

out. Initially, an external tap.shift object was used, which was part of the

Tap Tools package developed by Tim Placew for Max/MSP environment.

Whereas the tap.shift object is able to change audio speed in realtime, it

produces audible artifacts caused by speed adjustments that deteriorate the

quality of the output sound. The technique that provides the best per-

formance is an internal object implementation of phase vocoder techniques

in Max/MSP. Due to spectral prebuffering of the audio score used by this

method, the patch is able to make smoother tempo adjustments.

1Recorded in November 2003 at Pollack Hall, McGill Strathcona Music Building.

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 39

Overview of Phase Vocoder Technique

Phase vocoder can be defined as a channelized analysis-resynthesis tool that,

through a number of techniques, measures and stores spectral signal data in

different frequency bands, and then uses those values to modify and recreate

the signal in time domain. Most of the phase vocoder systems use Short Time

Fourier Transfrom (STFT) for analysis and resynthesis of the signal. The

concept of a phase vocoder was introduced in 1939 by Dudley in his “channel

vocoder” system (Dudley 1939) as a voice coding tool, and then extended by

Flanagan and Golden (Flanagan and Golden 1966) and became known by its

current name of “phase vocoder” through their work. A number of further

accomplishments and improvements were made in design and implementation

of phase vocoder technique (eg. (Depalle and Poirot 1991), (Fischman 1997),

(Laroche 1998), (Laroche and Dolson 1997)).

The two most popular applications of a phase vocoder are time scal-

ing (used in the described system) and pitch-scaling. Time scaling refers

to changing the length of a signal while keeping the original frequency,

which is done by interpolating/decimating the signal in the frequency do-

main before resynthesis. Pitch scaling, or changing the signal’s frequency

without affecting its length, is implemented through a combination of over-

sampling/undersampling the signal in time domain prior to analysis stage

and time-scaling the signal to its original length.

Phase Vocoder Implementation in Max/MSP

A phase vocoder system was implemented as a patcher in Max/Msp environ-

ment. The Short Time Fourier Transform (STFT) analysis and resynthesis

CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 40

stages are implemented by using internal MSP pfft˜ object. During the pre-

processing stage of the phase vocoding process, the input signal from the time

buffer is processed by STFT and recorded into a spectral buffer. Windowing

and the overlap ratio are the two important factors which affect the quality

of the signal at the resynthesis stage. During the performance stage, the

signal stored in spectral buffers is readjusted and resynthesized by the pfft˜

object to provide a time-domain output of a different duration. One of the

main drawbacks of using an internal implementation of the Phase Vocoder in

Max/MSP is linked to the realtime nature of the MSP environment: it does

not provide the tools to transform a loaded audio buffer into a spectral buffer

instantaneously—instead, the file has to be played back by the patch from

beginning to end prior to the actual performance in order to be loaded into

the buffer. An alternative solution of storing the spectral buffer in a separate

file itself does not provide good results, due to the fact that the signal loaded

in the spectral buffer is not normalized (which is usually done during the

inverse FFT stage), and gets altered if saved into a file and then reloaded

into the buffer. Another required improvement of the Performance element

of the system would involve implementation of an external Phase Vocoder

object in MSP that would be able to load the signal into the spectral buffer

in non-realtime.

Chapter 4

Gesture Recognition

Recognition of isolated and continuous gestures implemented in the system

is based on Hidden Markov Model procedure. This statistical observation

sequence analysis process, widely known for its use in speech recognition,

has been also used in score following and sign language gesture recognition

systems, and has been applied to right-hand beat conducting recognition

in Multi-Modal Conducting Simulator (Usa and Mochida 1998a), (Usa and

Mochida 1998b).

Whereas there already exist several objects for Max environment that

implement some of the HMM aspects, their functionality is specific to the

goals of the projects they were developed for and does not provide the full

scope of HMM capabilities. The main goal of the current implementation

was to design an object that would provide the full functionality of a discrete

HMM model (training, finding optimal sequence of states and recognition),

and for the object to be general and straightforward enough not to be limited

to this project, but rather be available for general use in Max/MSP software.

The resulting source code of the object could be easily adjusted to be used

41

CHAPTER 4. GESTURE RECOGNITION 42

as a class in a different environment.

This chapter provides a technical overview of the concept and functional-

ity of a Hidden Markov Model 1. It also discusses the details of implementing

the HMM model and its supporting components as a set of external objects

in Max/MSP (known as the HMM Max/MSP Package), which was done us-

ing all of the described HMM techniques. Whereas there exist a number of

alternative methods of calculation of the HMM procedures described in the

chapter, the formulae presented here were collected from different sources as

an optimal set of computations for practical implementation of HMM func-

tionality.

4.1 Hidden Markov Model –Definition and

Overview

Hidden Markov Model(HMM) is a structure that is used to statistically char-

acterize the behavior of sequences of event observations. HMM is an exten-

sion of a model known as Markov Chains. Whereas Markov Chains deals

with observation sequences that are fully accessible, HMM works with rep-

resentation of so called ”hidden” event which cannot be observed directly.

By definition, “An HMM is a double stochastic process with an underlying

stochastic process which is not observable, but can only be observed through

another set of stochastic process that produce the sequence of observed sym-

bols” (Rabiner and Huang 1986). In other words, HMM is applied to an

1A detailed overview of general HMM techniques can be found in (Rabiner and Huang
1986) and (Rabiner 1989). Scaling procedure and other practical issues mentioned in this
chapter are described in (Deller, Hansen, and Proakis 2000), (Huang, Ariki, and Jack
1990) and (Lien 1998).

CHAPTER 4. GESTURE RECOGNITION 43

observable process which has been generated from another “hidden” process

that is the main area of interest. The technique used to obtain an observable

sequence from the hidden sequence is known as vector quantization.

4.1.1 Introduction to HMM

The idea behind HMM is that any observable sequence can be represented as

a sequence of states, with each state corresponding to a grouped portion of

sequence values and containing its characteristic features in statistical form.

HMM keeps track of what state is likely to be assigned the initial portion of

the sequence, of what values are likely to occur in each state, and of what

state-to-state transitions are likely to take place.

HMM Parameters

A Hidden Markov Model can be characterized through the following set of

parameters:

N : number of states (S1, S2, . . . , SN) of the model

M : number of labels (Q1, Q2, . . . , QM) that occur in the observation sequence

(also referred to as codebook size)

Π: an array of initial state probabilities (size of the array is N):

Π = {πi} = (π1, π2, . . . , πN) (4.1)

A: an N ×N matrix of state-to-state transitional probabilities:

A = {aij} =

a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN

 (4.2)

CHAPTER 4. GESTURE RECOGNITION 44

where aij is a probability that a transition from state Si to state Sj will

take place.

B: an N ×M matrix of state output probabilities:

B = {bi(l)} =

b1(1) b1(2) . . . b1(M)
b2(1) b2(2) . . . b2(M)

...
...

. . .
...

bN(1) bN(2) . . . bN(M)

 (4.3)

where bi(l) is a probability that an occurrence of label Qlwill take place

in state Si.

The HMM model is then referred to as:

λ = (Π, A,B) (4.4)

Observation Parameters

An observation sequence used as an input array to HMM can be characterized

by:

T : number of observations (O1, O2, . . . , OT) in the observed sequence O

K: number of multiple observation sequences (O1, O2, . . . , OK)

HMM Types

An HMM model can be of ergodic or left-to-right type. In an ergodic type,

which is a general case of an HMM, the process is allowed to start and finish

in any state, and all possible state-to-state transitions are allowed. In a left-

to-right HMM type, the process is bound to start in the first state and finish

in the last state, and the only transitions allowed at any given point are those

of a state transition to itself or of a state transition to the consequent state.

CHAPTER 4. GESTURE RECOGNITION 45

4.2 Three HMM problems

There are three main problems associated with application of HMM in se-

quence recognition process:

Problem 1: given an observation sequence O and a Hidden Markov

Model λ, calculate P (O|λ) – the probability that the model would pro-

duce this observation sequence. It is also known as an HMM Recogni-

tion problem.

Problem 2: given an observation sequence O and a Hidden Markov

Model λ, calculate the optimal sequence of states (I1, I2, . . . , IT) that

would maximize the likelihood of λ producing the observation. It is

also referred to as HMM Uncovering Problem.

Problem 3: given an observation sequence O (or a set of observation

sequences (O1, O2, . . . , OK)) and a Hidden Markov Model λ, adjust the

model parameters Π, A,B so that probability of the model P (O|λ) is

maximized. This problem is also called HMM Training.

4.2.1 Solution to Problem 1 – Forward-Backward Al-
gorithm

A straightforward approach to the problem would be to go through all pos-

sible state sequences of length T , calculate probability of each sequence and

then compute the result as a product of all of the sequence probabilities. This

procedure would require 2T ∗ NT calculations – which is beyond computa-

tional capacity of any computer even for small values of states and observa-

CHAPTER 4. GESTURE RECOGNITION 46

tion times. A more efficient method used to find a solution to the problem

is known as a Forward-Backward algorithm.

Forward Procedure

The algorithm uses a forward probability variable α that is defined as:

αt(i) = P (O1, O2, ..., Ot | it = i, λ) (4.5)

i.e. the probability that the observation sequence is in state i at observation

time t, given the model and the partial observation sequence O1−Ot. The fol-

lowing procedure is used to compute alphas for every state at all observation

times:

1. For the first observation time t = 1,

α1(i) = πibi(O1), 1 ≤ i ≤ N (4.6)

2. For all other observations 1 < t ≤ T and 1 ≤ i ≤ N ,

αt(i) = [
N∑

j=1

αt−1(i)aji]bi(Ot) (4.7)

3. Probability of the model P (O|λ) is then calculated as:

P (O|λ) =
N∑

i=1

αT (i) (4.8)

This procedure is based on the assumptions of 1st-order HMM that the state

of a model at any observation time t is dependent only on its state at the

previous observation time (t− 1). Therefore, each of the alphas is calculated

only based on information from the current and previous states. Based on

the above equations, it is clear that computational cost of the procedure is

now equal to N2T calculations.

CHAPTER 4. GESTURE RECOGNITION 47

Backward Procedure

Another method of calculating a probability of an HMM model is to use a

backward probability variable β which is defined as:

βt(i) = P (Ot+1, Ot+2, ..., OT | it = i, λ) (4.9)

i.e. the probability of the partial observation sequence Ot − OT that starts

in state i at time t, given the model λ. A similar iterative procedure is used

to calculate betas of all states for every observation time but starting from

the last observation:

1. For the last observation time t = T ,

βT (i) = 1, 1 ≤ i ≤ N (4.10)

2. For all other observations 1 ≤ t < T and 1 ≤ i ≤ N ,

βt(i) =
N∑

j=1

aijbi(Ot+1)βt+1(j) (4.11)

3. Probability of the model P (O|λ) is then calculated as:

P (O|λ) =
N∑

i=1

πibi(O1)β1(i) (4.12)

The complexity of backward probability computation is also equal to N2T

calculations since it uses the same sequential process of going through all

states at each observation time as in case of forward procedure.

CHAPTER 4. GESTURE RECOGNITION 48

4.2.2 Solution to Problem 2 – The Viterbi Algorithm

In order to compute the optimal sequence of states that would maximize

the likelihood of an observation sequence O being produced by a Hidden

Markov Model λ, a procedure known as the Viterbi algorithm is used. An

optimal sequence of states Q = {q1, q2, . . . , qt} is found by computing optimal

state probability values δt(i) for all states at each time step t, recording their

indices as ψt(i), and retrieving the optimal state indices qt(i) through a back-

tracking procedure. The maximum probability value at the final time step

T is equal to the overall model probability—therefore, the Viterbi algorithm

can be used alternatively to the Forward-Backward procedure to calculate

the value of P (O|λ). The Viterbi algorithm can be summarized through the

following sequence of steps:

1. Initialization.

δ1(i) = πibi(O1), 1 ≤ i ≤ N (4.13)

ψ1(i) = 0, 1 ≤ i ≤ N (4.14)

2. Recursion.

δt(j) = max
1≤i≤N

[δt−1(i)aij]bi(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N (4.15)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij], 2 ≤ t ≤ T, 1 ≤ j ≤ N (4.16)

3. Termination.

P (O|λ) = max
1≤i≤N

[δT (i)] (4.17)

qT = arg max
1≤i≤N

[δT (i)] (4.18)

CHAPTER 4. GESTURE RECOGNITION 49

4. State sequence backtracking.

qt = ψt+1(qt+1), t = T − 1, T − 2, . . . , 1. (4.19)

4.2.3 Solution to Problem 3 – Baum-Welch Reestima-
tion

A method known as Baum-Welch reestimation is used to maximize P (O|λ)

of an HMM. It uses probability variables εt(i, j), γi,j and γt(i) to reestimate

π, A, B parameters of the model.

The first variable εt(i, j) is defined as the probability that HMM process

is in state Si at time t and in state Sj at time (t + 1), given the sequence

O1, . . . , Ot. It is calculated as:

εt(i, j) =
P (qt = Si, qt+1 = Sj, O1, . . . , OT)

P (O|λ)
=
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(4.20)

Another variable used by Baum-Welch reestimation procedure is γt(i). It is

defined as the sum of probabilities of transitions from state Si to Sj for all

times t of observation sequence O1, . . . , Ot.

γi,j =
T−1∑
t=1

εt(i, j) =

∑T−1
t=1 αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(4.21)

Probability variable γt(i) is defined as the probability that current observa-

tion label at time t is assigned to state Si of the model.

γt(i) =
N∑

j=1

εt(i, j) =
αt(i)βt(i)

P (O|λ)
(4.22)

Using definitions of εt(i, j), γi,j and γt(i), we can now describe Baum-

Welch reestimation formulae for π, A, B:

CHAPTER 4. GESTURE RECOGNITION 50

1. Initial probability:

π̄i = γ1(i) =
α1(i)β1(i)

P (O|λ)
(4.23)

where 1 ≤ i ≤ N .

2. Transition probability:

āij =
γij∑N

j=1 γij

=

∑T−1
t=1 αt(i)aijbj(Ot+1)βt+1(j)∑T−1

t=1 αt(i)βt(i)
(4.24)

where 1 ≤ i ≤ N and 1 ≤ j ≤ N .

3. Output probability:

b̄i(l) =

∑T
t=1 {t|Ot = vt}γt(i)∑T

t=1 γt(i)
=

∑T
t=1 {t|Ot = vl}αt(i)βt(i)∑T

t=1 αt(i)βt(i)
(4.25)

where 1 ≤ i ≤ N and 1 ≤ l ≤M .

The formulae are simplified so that intermidiate variables εt(i, j), γi,j and

γt(i) do not have to be calculated – nonetheless, they were included in the

presentation to support theoretical explanation of the reestimation proce-

dure.

Baum-Welch training procedure is as follows:

Step 1: create an initial HMM model λ0. For an ergodic model, random

values are assigned to all of the model variables. For a left-to-right

model, equal distribution values are assigned to all allowed initial and

transition parameters as well as to all output parameters.

CHAPTER 4. GESTURE RECOGNITION 51

Step 2: Using formulae 4.23, 4.24 and 4.25, create a new model λ1

from λ0.

Step 3: If P (O|λ1) > P (O|λ0) or/and if the reestimation process has

not yet run the specified number of times, continue. Otherwise, stop.

4.3 Additional Issues Related to HMM Im-

plementation

This section describes the practical issues that were encountered during the

design stage of the HMM object. Computational solutions to the issues are

provided.

4.3.1 Scaling

Forward-Backward algorithm uses a recursive procedure to calculate values

of αt(i) and βt(i) for each observation time t. Because of the recursive nature

of the process, those values will be calculated as a result of many multiplica-

tions including transition and output probability probabilities. Since those

probabilities aij and bil will always be in the range 0 ≤ (aij, bil) ≤ 1, the

values of αt(i) and βt(i) will exponentially get closer and closer to 0 as the

process is going through each observation time t. Therefore, for long obser-

vation sequences there is a danger that some of the αt(i) and βt(i) values

will be beyond computational precision range. A solution to this problem in-

volves scaling all of the forward and backward probability values by a scaling

coefficient which will keep them in the desired range and will cancel out at

the end of the computation of reestimation parameters without interfering

with final results.

CHAPTER 4. GESTURE RECOGNITION 52

Scaled Forward Probabilities

Auxiliary variables α̃t(i) and α̃t(i) have to be defined for the forward scaling

process:

1. For the first observation time t = 1,

α̃1(i) = α1(i) (4.26)

2. For all other observations 1 < t ≤ T and 1 ≤ i ≤ N ,

α̃t(i) =
N∑

j=1

α̂t−1(j)ajibi(Ot) (4.27)

where

α̂t(i) = ctα̃t(i) (4.28)

and scaling coefficient ct is defined as

ct =
1∑N

i=1 α̃t(i)
(4.29)

Scaled Backward Probabilities

In a similar way, auxiliary variables β̃t(i) and β̃t(i) are used for backward

probability calculations:

1. For the last observation time t = T ,

β̂1(i) = βT (i) (4.30)

2. For all other observations 1 ≤ t < T and 1 ≤ i ≤ N ,

β̂t(i) =
N∑

j=1

aijbj(Ot+1)β̃t+1(j) (4.31)

where

β̃t(i) = ctβ̂t(i) (4.32)

CHAPTER 4. GESTURE RECOGNITION 53

Scaling coefficients ct are not recalculated during the backward procedure

– instead, ct coeffeicients from forward algorithm computations are used to

adjust backward probability values.

Probability Calculation

The probability of the model P (O|λ) can now be calculated using scaling

coefficients ct:

P (O|λ) =
N∑

i=1

αT (i) =
1∏T

t=1 ct
(4.33)

However, in practice there will be a possibilty that the resulting probability

value will also be smaller than computational precision range. A solution to

this is to calculate logP (O|λ) instead:

log(P (O|λ)) = −
T∑

t=1

log ct = −
T∑

t=1

log
N∑

i=1

α̃t(i) (4.34)

which produces a negative value in an acceptable range.

Scaled Reestimation Parameters

In Baum-Welch reestimation formulae, forward-backward probabilities αt(i)

and βt(i) are replaced by scaled variables α̂t(i) and β̂t(i):

1. Scaled initial probability

π̄i =
α̂1(i)β̂1(i)∑N

i=1 α̂T (i)
= α̂1(i)β̂1(i)cT (4.35)

2. Scaled transition probability

āij =

∑T−1
t=1 α̂t(i)aijbj(Ot+1)β̂t+1(j)ct+1∑T−1

t=1 α̂t(i)β̂t(i)
(4.36)

CHAPTER 4. GESTURE RECOGNITION 54

3. Scaled output probability

b̄i(l) =

∑T
t=1 {t|Ot = vt}α̂t(i)β̂t(i)∑T

t=1 α̂t(i)β̂t(i)
(4.37)

Since scaling coefficients ct were used during calculation of all of the auxiliary

variables used in the formulae, the results of the reestimation calculations are

not affected, as the scaling coefficients get cancelled out.

Scaled Viterbi Algorithm

In order to simplify the computation by replacing multiplications by addi-

tions, and to avoid number precision issues that were previously described

for Forward-Backward and reestimation algorithms, logs of values are used

in the case of Viterbi algorithm as well. The scaled Viterbi equations are:

1. Initialization.

δ̃1(i) = log(δ1(i)) = log(πi) + log(bi(O1)), 1 ≤ i ≤ N (4.38)

ψ̃1(i) = 0, 1 ≤ i ≤ N (4.39)

2. Recursion

δ̃t(j) = log(δt(j)) = max
1≤i≤N

[δ̃t−1(i)+log(aij)]+log(bi(Ot)), 2 ≤ t ≤ T, 1 ≤ j ≤ N

(4.40)

ψt(j) = arg max
1≤i≤N

[δ̃t−1(i) + aij], 2 ≤ t ≤ T, 1 ≤ j ≤ N (4.41)

3. Termination.

log(P (O|λ)) = max
1≤i≤N

[δ̃T (i)] (4.42)

q̃T = arg max
1≤i≤N

[δ̃T (i)] (4.43)

CHAPTER 4. GESTURE RECOGNITION 55

4. State sequence backtracking.

q̃t = ψ̃t+1(q̃t+1), t = T − 1, T − 2, . . . , 1. (4.44)

4.3.2 Multiple Observation Sequences

In the case where a model is being trained with K observation sequences

instead of a single sequence, the reestimation procedure can be used over all

of the sequences at the same time.

HMM Probability

Probability of the model can be found as a product of individual probabilities

calculated for all of the observation sequences:

P (O|λ) =
K∏

k=1

P (Ok|λ) (4.45)

Reestimation Parameters

Initial probability value is calculated by weighing all of the π̄k
i equally:

π̄i =
1

K

K∑
k=1

γ
(k)
1 (i) =

1

K

K∑
k=1

π̄
(k)
1 (4.46)

The weight of transition probabilities are dependant on the length of each

observation sequence Ok:

āij =

∑K
k=1 γ

(k)
ij∑K

k=1

∑N
j=1 γ

(k)
ij

=

∑K
k=1

1
P (O(k)|λ)

∑Tk−1
t=1 α

(k)
t (i)aijbj(O

(k)
t+1)β

(k)
t+1(j)∑K

k=1
1

P (O(k)|λ)

∑Tk−1
t=1 α

(k)
t (i)β

(k)
t (i)

(4.47)

which is also the case for output probabilities:

b̄i(l) =

∑K
k=1

∑Tk
t=1 {t|Ot = vt}γ(k)

t (i)∑K
k=1

∑Tk
t=1 γ

(k)
t (i)

=

∑K
k=1

1
P (O(k)|λ)

∑Tk
t=1 {t|Ot = vt}α(k)

t (i)β
(k)
t (i)∑K

k=1
1

P (O(k)|λ)

∑Tk
t=1 α

(k)
t (i)β

(k)
t (i)

(4.48)

CHAPTER 4. GESTURE RECOGNITION 56

Scaled Reestimation Parameters

As in the case of a single observation sequence, the reestimation parame-

ters for multiple observation sequences also have to be scaled. The scaled

reestimation formulae are:

1.

π̄i =

∑K
k=1 α̂

(k)
1 (i)β̂

(k)
1 (i)∑K

k=1

∑N
i=1 α̂

(k)
Tk

(i)
=

K∑
k=1

α̂
(k)
1 (i)β̂

(k)
1 (i)c

(k)
Tk

(4.49)

2.

āij =

∑K
k=1

∑Tk−1
t=1 α̂

(k)
t (i)aijbj(O

(k)
t+1)β̂

(k)
t+1(j)c

(k)
t+1∑K

k=1

∑Tk−1
t=1 α̂

(k)
t (i)β̂

(k)
t (i)

(4.50)

3.

b̄i(l) =

∑K
k=1

∑Tk
t=1 {t|Ot = vt}α̂(k)

t (i)β̂
(k)
t (i)∑K

k=1

∑Tk
t=1 α̂

(k)
t (i)β̂

(k)
t (i)

(4.51)

4.4 HMM Package in Max/MSP

Since none of the existing external HMM objects written for Max environ-

ment provided the functionality required for the system, a set of external

HMM objects was implemented in Max.

4.4.1 HMM External Object in Max

The object was written as a representation of a discrete HMM model and

served as an implementation of its three principal features—learning, finding

an optimal sequence of states and recognition.

The number of states, labels and the type of the object (0 for ergodic, 1 for

left-to-right) are specified during its initialization by typing it as arguments

in the object box, in the order they are described here. The fourth argument

CHAPTER 4. GESTURE RECOGNITION 57

accepted by the object box is the maximum number for the array that records

the incoming labels the object can accept at a time. Those characteristics can

only be changed by reinitializing the object by changing its arguments in the

box (or importing another recorded model into the current one), since they

are directly responsible for the amount of memory allocation for the arrays

used by the object. If no arguments are supplied after the object name, it

defaults to a 5-state 10-label ergodic model with 200 as the maximum size

for the internal array of numbers recorded from the incoming stream.

Figure 4.1: A 10-state 20-label left-to-right HMM object in Max/MSP.

The current mode of the object can be changed by sending an input to

its right inlet—0 for training the model, 1 for recognition mode, and 2 for

the Viterbi functionality. By default, the object is initialized in the training

mode.

The object accepts an incoming stream of numbers in its left inlet and

records them in an internal array in the order they are received. When a bang

message is received in the left inlet, the labels stored in the internal array

are passed to one of the object’s algorithms—training, recognition or Viterbi,

based on what mode it is currently in), and the internal array is cleared in

CHAPTER 4. GESTURE RECOGNITION 58

order to be ready to accept the next stream of numbers. For the training

algorithm, multiple scaled reestimation formulae are used to calculate the

new model parameters, and the array of numbers is then stored in the object

so that it can be used during the next training procedure together with

all of the previously recorded and the new incoming training array. For

the recognition algorithm, probability is calculated using scaled forward and

backward probability computations (ref), and the result—which will always

be in the range of −∞ < P (O|λ) ≤ 0, since it is a logarithm of the actual

probability—is passed on to the leftmost outlet of the object. For the Viterbi

algorithm, the scaled Viterbi computations are used to generate the most

probable sequence of states based on the incoming array, which is then passed

as a list to the middle outlet of the object.

A deletelast message to the left inlet of the object deletes the last train-

ing array from its memory, and retrains the model with all of the training

observations that were recorded previously to the one that was deleted.

The object stores the information about the model which can be then

viewed, imported or exported as a list, and written to or read from a file.

The information is stored in the following format:

number number type number of transition state label training
of states of labels trainings matrix output matrix observations

Table 4.1: Storing format of an HMM model.

Number of states, number of labels, type and number of trainings are

each represented by a single integer number. State transition and state label

output matrices are represented as arrays of numbers, with each of the rows

CHAPTER 4. GESTURE RECOGNITION 59

of the matrices placed in left-to-right order. There is no separation needed

between the two matrices, since their dimensions are specified by the ‘number

of states’ and ‘number of labels’ values—for example, a 5-state 10-label model

will have a 5X5 state transition matrix represented by an array of 25 values,

and a 5X10 output matrix represented by an array of 50 values. Training

observations are stored after the two matrices, with each observation being

in the following format:

number of labels observation array -1(to indicate the end
in this observation of the current observation)

Table 4.2: Storing format of an individual training observation.

Double-clicking on the object box opens a text editor which displays

the current model information. A read message to the left inlet of the ob-

ject opens a ‘read file’ dialogue so that a previously recorded model can be

loaded into a current object. A read <filename> message results in reading

the file from the same directory the current Max patch with the object is in.

Similarly, write message opens a write file dialogue, and write <filename>

writes the specified file in the same directory as the Max patch. The model

information can be also imported and exported as a list within the patch—an

export message sends out of the current model data through the rightmost

outlet of the object in a list format, and an import <list> message (where

<list>) is a list containing model information) loads the new model infor-

mation into the object. Therefore, it is possible to pass model information

between several objects in the same patch by sending an export message to

one object, appending the word import to the list that gets generated as the

CHAPTER 4. GESTURE RECOGNITION 60

output, and sending it to another HMM object in the patch, which could be

useful in some applications.

The post 1 and post 0 messages turn on and off the additional information

about the training, recognition and Viterbi computations to be printed in the

Max window.

4.4.2 Other objects of the HMM Package

Two supporting external objects were written in addition to the main HMM

object for the current system. The orient2d is responsible for calculation of

positional orientation—it accepts a relative change in horizontal positional

data in its left input and relative change in vertical positional data in the

right output, calculates the positional orientation based on those values, and

outputs the result from the right output in degrees (in the range of 0-359)

and out the left output in radians (0− 2π).

The code2d object is responsible for the elementary vector quantization

of the positional data stream. It divides the incoming positional data stream

with a larger number of possible values (0-359 in this case) in a number of

sectors, the number being determined by the desired number of labels for the

HMM model object, and assigns that label to each incoming number within

that sector. For example, a code2d object with 20 and 360 as its respective

label size and maximum incoming data size, divides the range of 0-360 in 20

sectors, assigns the labels of 1 to 20 to each respective sector, and outputs a

corresponding label for each incoming orientation value.

For future projects using the HMM object in Max/MSP (such as speech

or music data recognition), or for advancements in the current project that

CHAPTER 4. GESTURE RECOGNITION 61

would require a more complex quantization technique, other external objects

will have to be written to produce the desired label stream that will serve as

the input to HMM external objects.

4.5 Testing the HMM Objects

In order to verify the ability of the designed HMM package objects to cor-

rectly identify input gestures based on HMM training and recognition tech-

niques, several tests were carried out. Left-to-right 5-state 10-label HMM

models were used in all of the testing examples.

4.5.1 Symbol Recognition with a Mouse/Wacom Tablet

Recognition of English Alphabet symbols was the initial task for the system

developed with the external HMM objects in order to test its performance.

Absolute 2-D positional coordinates extracted from the movement of the

mouse or a Wacom tablet were used to calculate the orientation values with

a orient2d object. Resulting data stream was then passed to the code2d

object that mapped the observation stream to a label data stream. Each

of the HMM objects that were implemented in the system represented an

isolated symbol to be recognized. At the learning stage, HMM objects were

individually trained with 10 symbol examples. At the recognition stage, an

observation stream representing a symbol was passed to all of the HMM

objects, and the one producing the highest probability was considered as the

recognized symbol. There were five observation examples of each symbol

provided for recognition, and the system performed with a 92.5% recognition

rate.

CHAPTER 4. GESTURE RECOGNITION 62

Figure 4.2: HMM symbol patch with a Wacom tablet input—recognition
process.

CHAPTER 4. GESTURE RECOGNITION 63

4.5.2 Symbol Recognition with USB Cameras and Eye-
sweb

The procedure used by the symbol recognition system was then replicated

using a single webcam to capture a 2-D positional user input. Gesture Anal-

ysis component of the system was used to extract and transfer the positional

information from the video input to the recognition patch. Five English al-

phabet symbols (A,B,C,D,E) were used for training and recognition. As in

the previous experiment, there were 10 training and 5 recognition sets per

gesture.

Resulting recognition rates were lower than those obtained in the previous

experiment. In particular, the capital symbol ‘D’ was repeatedly mistaken

for a ‘B’, whereas all of the other symbols (that did not share positional

similarities, as in the case of those two symbols) were correctly identified.

This can be explained by the fact that Eyesweb has a faster recognition

rate than the one used by the mouse tracking object, and the visual gesture

symbolizing the symbol was performed during a longer period of time than

writing it in with a mouse. Therefore, the left-to-right object did not contain

enough states to represent all of the positional transitions, and considered the

symbol ‘D’ as the upper part of the symbol ’B‘,whereas it did not contain

enough available states to represent the lower part. On the basis of this

observation, it was decided to use 10-state models for all of the HMM models

during the actual conducting gesture recognition experiments.

CHAPTER 4. GESTURE RECOGNITION 64

Figure 4.3: HMM symbol patch with Eyesweb input—training process.

Chapter 5

System Implementation and
Results

This chapter describes a set of experiments conducted with the final system

that was designed based on implementation of its individual components—

analysis, performance and recognition—discussed in detail in previous chap-

ters.

5.1 System Experiments with Conducting Ges-

ture Recognition

All of the conducting gestures used for positional recordings were performed

by a doctoral conducting student at the Music Faculty of McGill University.

All of the conducting gesture recordings were done by the Gesture Analysis

component of the system using the Eyesweb software with two USB cameras

that were placed in front and profile view of the conductor. The recorded

session files were later edited using the Adobe Premiere 6.5 software in order

to prepare them for use with the recognition patches in Max/MSP (editing

involved deleting unnecessary beginnings/endings of the files, and splitting

65

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 66

larger session files into training and recognition parts). For positional data

retrieval and transfer, Gesture Analysis provided the required functionality,

as in the case of the Analysis and Performance system. The HMM objects

that were used in Max for all of the gesture recognition experiments were

based on a 10-state 20-label left-to-right model. The choice of the model

type was based on the fact that the left-to-right model is known to perform

well in situations when the length of the incoming data stream for the same

gesture may greatly vary from example to example, which is likely to occur

in the case of conducting gestures.

5.1.1 Left hand Expressive Gestures

Five left-hand isolated expressive gestures were selected to be recognized—

crescendo-cutoff, diminuendo-cutoff, fermata-click gesture, accent indication

and expansion gesture. The set of gestures was intentionally chosen to con-

tain both simple (accent, expansion) and complex(crescendo+cutoff, diminu-

endo+cutoff and fermata+click) gestures in order to test the system’s ability

to cope with both kinds of gestures simultaneously.

For each of the five gestures, 20 training sets and 10 recognition sets were

recorded as two synchronized movie files for front and profile views, and

then split into 30 individual file pairs using video editing software. In the

recognition component of the system, five HMM object pairs were assigned

to correspond to the gestures. Each HMM object pair was then individually

trained with the 20 training video segments. Upon completion of the training

process, 50 examples (10 examples per gesture) were presented for recogni-

tion to the entire set of the HMM objects. The recognition scores of the

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 67

Figure 5.1: Front and profile camera view of the user training the recognition
system with a left-hand crescendo-cutoff expressive gesture.

pairs of HMMs were combined (through simple addition of the logarithms of

probabilities), and compared to find the maximum logarithm value, which

indicated the gesture that was considered as the most likely to correspond

to the incoming positional data stream.

Table 5.1 presents the results of the recognition experiment:

Gesture Training (no.) Recognition (no.) Rate
Crescendo+Cutoff 20 10 100%
Diminuendo+Cutoff 20 10 100%
Fermata+Click 20 10 90%
Accent 20 10 100%
Expansion 20 10 100%

Total 100 50 98%

Table 5.1: Left-hand expressive gesture recognition.

From the table, it can be seen that the gestures were recognized with a

high degree of accuracy. In fact, those gestures presented a real challenge to

the HMM models, since they shared many of the positional characteristics.

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 68

For example, the complex fermata-click gesture (which is described in detail

in (Rudolph 1994)) is a combination of a fermata indication, followed a

short ‘click’ or ‘breath’, followed by an entrance indication. The positional

information received from the middle part of the fermata-click gesture is

very similar to the simple accent gesture. Nonetheless, the HMM objects

were able to distinguish the differences between the gestures. In the only

incorrect recognition case, where a fermata-click gesture was identified as

an accent, it actually looked more similar to an accent, and could be easily

mistaken for an accent by an actual musician with knowledge of conducting

gestures.

5.1.2 Expressive Styles of Right Hand Beat Indicating
Gestures

For right-hand beat indicating gestures, three sets of beat patterns were

chosen—the first set containing a four-beat expressive legato and four-beat

light staccato patterns, the second with a three-beat expressive legato and

three-beat light staccato, and the third set with a two-beat legato, two-beat

marcato and two-beat staccato patterns. A separate HMM object pair was

used to represent each beat gesture of the described patterns—so there were

four HMM pairs for each pattern of the first set, three for each pattern of

the second set, and two for the third set. For each beat pattern, 20 measures

of continuous conducting was recorded for gesture training purposes and

10 measure of contunuous conducting for gesture recognition. In this case,

instead of manually splitting the video files into individual segments for each

beat of each pattern, the temporal segmentation process was performed by

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 69

using the beat identification part of the gesture analysis component of the

system. A loop was performed during the execution where every time a beat

was detected, the incoming positional data stream was rerouted to the HMM

pair representing the next beat, and when the last beat of the beat pattern

was reached, the first beat HMM pair was chosen for the next training stage.

Gesture Pattern Beat Training Recognition Rate Rate
(no.) (no.) (Individual) (Set)

4-beat expressive 1st 20 10 100% 100%
legato 2nd 20 10 100% 100%

3rd 20 10 100% 100%
4th 20 10 100% 90%

light 1st 20 10 100% 100%
staccato 2nd 20 10 100% 100%

3rd 20 10 100% 100%
4th 20 10 100% 100%

3-beat expressive 1st 20 10 100% 100%
legato 2nd 20 10 100% 100%

3rd 20 10 100% 100%
light 1st 20 10 100% 100%
staccato 2nd 20 10 100% 100%

3rd 20 10 100% 100%

2-beat neutral 1st 20 10 100% 100%
legato 2nd 20 10 100% 100%
marcato 1st 20 10 100% 100%

2nd 20 10 100% 100%
light 1st 20 10 100% 100%
staccato 2nd 20 10 100% 100%

Total 7 20 400 200 100 99.5%

Table 5.2: Recognition of Expressive Styles of Right-hand Beat-Indicating
Gestures.

After all of the three sets of beat patterns (representing 7 different beat

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 70

patterns and 20 different beat model pairs) were trained, 10 measures for

each beat pattern were presented to the system for gesture recognition. The

recognition for each beat pattern was done twice—at first, by comparing the

scores of the HMM pairs corresponding to different beats of the current beat

pattern only, and then by comparing the scores of the models representing

the beats of the entire set.

It is clear from the Table 5.1.2 that the system provided a robust recog-

nition of right hand beat-indicating gestures, both in terms of correctly iden-

tifying the individual beat information within a single beat pattern, and

distinguishing between different styles of conducting using the same meter

value. Although the recognition system does provide an option of comparing

the scores of HMMs for all of the sets and beat patterns, this comparison was

not included as part of the experiment, since from the general knowledge of

conducting it is obvious that there is not enough difference between the beats

of the same conducting style (legato, light staccato) but different meter to

differentiate between them. For example, the third beat of a 3-beat legato

and the 4th beat of a 4-beat legato are visually and positionally indistin-

guishable. If such a functionality would be desired in the system, it would

have to include information about the previous detected beat into the coding

process for label assignment for the HMMs.

5.1.3 Embedded Right hand Expressive Gestures

Since the right hand is known to be mainly responsible for time-beating

indications throughout the performance, the right hand expressive gestures

have to be incorporated into the beating gestures—unlike the left hand that

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 71

has more freedom of movement and is not constrained with the baton (if it

is being used). Therefore, in order to extract right hand expressive gestures,

either transitions from one type of beat to another or different forms of the

same basic type of beat should be analyzed.

The gestures were studied on examples of gradual crescendo and diminu-

endo indicated through gradual increase/decrease in the amplitude of individ-

ual beat indicating gestures. Three different cases were studied—a gradual

crescendo (one measure span) on a four-beat legato, a gradual diminuendo

(one measure span) on a four-beat legato, and no dynamics on a four-beat

legato. In this case, each of the HMM model pairs represented the entire

measure and not an individual beat in the measure as in the previous exper-

iment, so that it would be possible to track changes in beat amplitude over

the four beats. Therefore, this system variation contained three HMM pairs,

one per beat pattern.

The gradual crescendo and gradual diminuendo patterns were not recorded

as isolated gestures—rather, they were conducted in a continuous manner,

in spans of 20 measures for training and 10 measures for recognition. Al-

though in real-life performance, those gestures would indicate a transition

from one dynamic level to another and would not occur in the repeated

manner that they were recorded in, this way of recording the gestures al-

lowed for automatic temporal segmentation and training with the gesture

analysis component of the system. In this case, no rerouting of the input

signal in realtime was needed (as it was done in the continuous right-hand

gesture experiment), and a new training would occur every new measure (at

the end of every fourth beat), and not at the end of every beat as in the

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 72

previous experiment.

Gesture Training Recognition Recognition
(no.) (no.) Rate

Gradual Crescendo (4-beat legato) 20 10 100%
Gradual Diminuendo (4-beat legato) 20 10 100%
No Dynamics (4-beat legato) 20 10 100%

Total 60 30 100 %

Table 5.3: Right hand expressive gesture recognition.

Since in this case only three long patterns were analyzed, and their posi-

tional relative paths were clearly different by comparison to each other, it is

not surprising that the system was able to distinguish the gesture transition

patterns with a perfect recognition rate.

5.2 Combined Gesture Analysis, Recognition

and Performance

All of the three components of the system were combined in order to test

gesture recognition with realtime performance. An audio file of the 2nd

movement of Mozart’s 12th symphony was conducted by the user, and the

HMM models that were trained as described in section 5.1.2. Initially, the

results were incosistent and did not provide the recognition rates expected

based on the previous experiments. Upon examination of the situation, it

became clear that the main difference between gesture recognition based on

prerecorded video files and realtime video inputs was that the positional data

rate generated by the Eysweb positional tracking object was much lower

in the latter case, due to the load of processing multiple video inputs in

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 73

realtime. Another factor that contributed to the problem was that whereas

the HMM models were trained with the positional data filtered through a

6-point averaging low-pass system, the data was not filtered in the case of

realtime performance to avoid latency issues, which were already present in

the performance system—therefore, the data characteristics received by the

HMM models during the recognition process was different from the positional

streams that the models were trained with. A solution to this problem was

tried where the 6-point averaging filter was added to the system and sent

its information to HMM models, whereas the beat recognition process was

operating on a separate path with the direct unfiltered data. Since there

was a time difference between the beat identification and gesture recognition

data due to the averaging filter, the detected beats were delayed by 240 ms

(equivalent to 5 frames of positional data) before being sent to the recognition

models to identify the beginning of the recognition process.

Whereas the input processing part of the patch was often unstable due to

software/hardware limitations, the HMMs were able to recognize the incom-

ing gesture data with a high degree of accuracy during those cases when an

acceptable number of positional frames was received—the system performed

with a 94.6% recognition rate over the 73 measures (and 294 beats of data),

with comparison being done between the four possible gestures in the 4-beat

legato pattern.

Those issues identified the fact that for realtime HMM recognition pur-

poses, a higher-rate lower-latency input processing system is needed. Nonethe-

less, the experiment demostrated that HMMs can provide a high recognition

rate during a realtime conducting performance.

CHAPTER 5. SYSTEM IMPLEMENTATION AND RESULTS 74

Figure 5.2: Schematic representation of the gesture analysis, recognition and
performance system.

Chapter 6

Discussion

6.1 Evaluation of Results

One of the main drawbacks of the project was the inability of the camera

input devices to provide information at the sufficient rate and resolution in

order for the system to perform with a high level of precision. Using 6DOF

magnetic sensors instead of cameras will resolve the issue in the future, and

will enable the use of some additional features—such as tracking the move-

ment of the conducting baton. Nonetheless, through experiments described

in the previous chapter it was proven that HMM techniques can be success-

fully used for recognition of both time-beating and expressive gestures.

6.2 Conclusion

The purpose of the work was to develop a set of practical tools to be applied

for future work and to test them to make sure they are appropriate for gesture

recognition, rather than providing an in-depth study into classification of

conducting gestures.

75

CHAPTER 6. DISCUSSION 76

The main achievement of the work is development of an HMM-based

procedure that can be applied to analysis and classification of expressive

conducting gestures. In particular, HMM training and recognition processes

were applied to analysis of both right hand beat indicator gestures and left

hand expressive articulation gestures. This brings an improvement over ex-

isting systems, since whereas right hand movements had been analyzed with

HMM and Artificial Neural Net techniques in the past, there has been no pre-

vious research involving high-level recognition and classification techniques

applied to left hand expressive gestures.

The designed HMM package, which is available for free distribution online

(http://www.music.mcgill.ca/˜pkoles/download.html), is intended for use as

a general tool in Max/MSP environment. It could be applied not only to-

wards positional data classification but also towards any other process that

involves pattern recognition—such as speech recognition, timbre recognition

or score following. The resulting set of analysis, HMM-based recognition and

performance tools will be directed towards future research in development of

standardized classification of conducting gestures.

6.3 Future Work

One of the future goals of the project is to design a gesture recognition process

that can be implemented in a continuous conducting movement environment

in combination with the developed gesture analysis and performance sys-

tem. Whereas the issue of temporal segmentation of a continuous gesture

observation stream can be easily solved for right-hand beat indicating ges-

tures through the use of information extracted by another process (such as

CHAPTER 6. DISCUSSION 77

tracking positional maxima and minima of the gestures), there is no sim-

ple way of using a similar technique for expressive gestures, since there is

no clear uniform indication of positional transitions between them. A solu-

tion to this problem lies in the capability of HMM process to automatically

segment an entire observation stream into isolated gesture states. This tech-

nique involves training HMM models separately with isolated gestures, and

then chaining the trained models together into a single network of states.

The Viterbi algorithm can then be used on the entire observation stream, so

that the temporal segmentation problem is simplified to computing the most

probable path through the network.

Upon completion of the continuous process of gesture recognition, the

eventual goal of the work will be to develop a classification library of con-

ductors gestures for computer conducting gesture recognition systems. This

part of the project will address the need for development of a uniform set of

conducting gesture definitions in terms of their positional information and

mappings to the music score. The proposed library will be based on the ex-

isting well-developed grammar of traditional conducting technique, and will

be introduced as a standardized set of gesture definitions to be used for fu-

ture research in the field of conducting gesture recognition. Positional 3-D

recording of the library gestures will be done with Vicon 460 Motion Capture

and Polhemus Liberty systems now available at McGill Input Devices and

Music Interaction Laboratory.

List of Figures

2.1 A picture of the Digital Baton device. 16

2.2 Keith Lockhart conducting an orchestra with the Conductor’s

Jacket system (photograph by Rich Fletcher). 17

2.3 Tommi Ilmonen conducting with the Virtual Orchestra system 18

2.4 Declan Murphy with the Computer Vision system 22

3.1 Lana Lysogor, a doctoral conducting student, performing with

the Gesture Analysis and Performance components of the sys-

tem. 28

3.2 Positional data displays in the Gesture Analysis Max/MSP

patch: front signal raw (upper left) and filtered (lower left),

profile signal raw (upper right) and filtered (lower right). . . . 32

4.1 A 10-state 20-label left-to-right HMM object in Max/MSP. . . 57

4.2 HMM symbol patch with a Wacom tablet input—recognition

process. 62

4.3 HMM symbol patch with Eyesweb input—training process. . . 64

5.1 Front and profile camera view of the user training the recogni-

tion system with a left-hand crescendo-cutoff expressive gesture. 67

78

LIST OF FIGURES 79

5.2 Schematic representation of the gesture analysis, recognition

and performance system. 74

List of Tables

3.1 External objects written for Analysis and Performance system

components. 37

4.1 Storing format of an HMM model. 58

4.2 Storing format of an individual training observation. 59

5.1 Left-hand expressive gesture recognition. 67

5.2 Recognition of Expressive Styles of Right-hand Beat-Indicating

Gestures. 69

5.3 Right hand expressive gesture recognition. 72

80

Bibliography

Bertini, G. and P. Carosi (1992). Light Baton: A system for conducting com-
puter music performance. In Proceedings of the International Computer Mu-
sic Conference, pp. 73–76. International Computer Music Association.

Bevilacqua, F., J. Ridenour, and D. Cuccia (2002). 3D motion capture data:
Motion analysis and mapping to music. In Proceedings of the Work-
shop/Symposium on Sensing and Input for Media-centric Systems.

Borchers, J., W. Samminger, and M. Muhlhauser (2002). Engineering a re-
alistic real-time conducting system for the audio/video rendering of a real
orchestra. In Proceedings of the 4th International Symposium on Multimedia
Software Engineering, pp. 352–362.

Brecht, B. and G. Garnett (1995). Conductor Follower. In Proceedings of the
International Computer Music Conference, pp. 185–186. International Com-
puter Music Association.

Buxton, W., W. Reeves, G. Fedorkov, K. C. Smith, and R. Baecker (1980).
A microprocessor-based conducting system. Computer Music Journal 4 (1),
8–21.

Camurri, A., P. Coletta, M. Peri, M. Ricchetti, A. Ricci, R. Trocca, and G. Volpe
(2000). A real-time platform for interactive performance. In Proceedings of
the International Computer Music Conference. International Computer Mu-
sic Association.

Deller, J. R., J. H. Hansen, and J. G. Proakis (2000). Discrete-time Processing
of Speech Signals. New York: IEEE Press.

Depalle, P. and G. Poirot (1991). SVP: A modular system for analysis, pro-
cessing and synthesis of sound signals. In Proceedings of the International
Computer Music Conference. International Computer Music Association.

Dudley, H. (1939). The Vocoder. Reprinted in Schafer, R. and J. Markel (1979).
Speech Analysis. IEEE Press.

81

BIBLIOGRAPHY 82

Fischman, R. (1997). The phase vocoder: Theory and practice. Organized
SOund 2 (2), 127–145.

Flanagan, J. L. and R. M. Golden (1966). Phase Vocoder. Reprinted in Schafer,
R. and J. Markel (1979). Speech Analysis. IEEE Press.

Haflich, F. and M. Burns (1983). Following a conductor: The engineering of an
input device. In Proceedings of the International Computer Music Confer-
ence. International Computer Music Association.

Huang, X. D., Y. Ariki, and M. Jack (1990). Hidden Markov Models for Speech
Recognition. New York: Columbia University Press.

Ilmonen, T. and T. Takala (1999). Conductor following with Artificial Neural
Networks. In Proceedings of the International Computer Music Conference,
pp. 367–370. International Computer Music Association.

Keane, D. and P. Gross (1989). The MIDI BATON. In Proceedings of the Inter-
national Computer Music Conference, pp. 151–154. International Computer
Music Association.

Keane, D., G. Smecca, and K. Wood (1990). The MIDI Baton II. In Proceedings
of the International Computer Music Conference, pp. 151–154. International
Computer Music Association.

Keane, D. and K. Wood (1991). The MIDI Baton III. In Proceedings of the Inter-
national Computer Music Conference, pp. 541–544. International Computer
Music Association.

Laroche, J. (1998). Time and Pitch Scale Modifications of Audio Signals. Kahrs,
M. and K. Brandenburg, eds. Applications of Digital Signal Processing to
Audio and Acoustics. Kluwer Academic Publishers.

Laroche, J. and M. Dolson (1997). About this phasiness business. In Proceedings
of the International Computer Music Conference. International Computer
Music Association.

Lee, M., G. Garnett, and D. Wessel (1992). An adaptive conductor follower. In
Proceedings of the International Computer Music Conference, pp. 454–455.
International Computer Music Association.

Lien, J. J. (1998). Automatic Recognition of Facial Expressions Using Hidden
Markov Models and Estimation of Expression Intensity. Ph. D. thesis, The
Robotics Institute, Carnegie Mellon University.

Long, R. G. (1971). The Conductor’s Workshop: A Workgroup on Instrumental
Conducting. Dubuque, Iowa: Wm. C. Brown Company Publishers.

BIBLIOGRAPHY 83

Malko, N. (1950). The Conductor and His Baton. Denmark: Wilhelm Hansen,
Copenhagen.

Marrin, T. (2000). Inside the Conductors Jacket: Analysis, Interpretation and
Musical Synthesis of Expressive Gesture. Ph. D. thesis, Massachusetts Insti-
tute of Technology.

Marrin, T. and J. Paradiso (1997). The Digital Baton: A versatile performance
instrument. In Proceedings of the International Computer Music Conference,
pp. 313–316. International Computer Music Association.

Marrin, T. and R. Picard (1998). The Conductors Jacket: A device for recording
expressive musical gestures. In Proceedings of the International Computer
Music Conference, pp. 215–219. International Computer Music Association.

Mathews, M. (1989). Current Directions in Computer Music Research. MIT
Press.

Mathews, M. and F. Moore (1970). GROOVE—a program to compose, store
and edit functions of time. Communications of the ACM 13 (12), 715–721.

Mathews, M. V. (1976). The Conductor program. In Proceedings of the Inter-
national Computer Music Conference, Cambridge, Massachusetts.

Mathews, M. V. (1991). The Radio Baton and the Conductor Program, or:
Pitch—the most important and least expressive part of music. Computer
Music Journal 15 (4), 37–46.

McNeill, D. (1992). Hand and Mind: What Gestures Reveal About Thought.
University of Chicago Press.

Morita, H., S. Otheru, and S. Hashimoto (1989). Computer music system that
follows a human conductor. In Proceedings of the International Computer
Music Conference, pp. 207–210. International Computer Music Association.

Morita, H., S. Otheru, and S. Hashimoto (1990). Knowledge information pro-
cessing in conducting computer music performance. In Proceedings of the
International Computer Music Conference, pp. 332–334. International Com-
puter Music Association.

Murphy, D., T. H. Andersen, and K. Jensen (2003). Conducting audio files via
Computer Vision. In Proceedings of the 2003 International Gesture Work-
shop, Genoa, Italy.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition. Proceedings of IEEE 77 (2), 257–285.

Rabiner, L. R. and B. H. Huang (1986). An introduction to Hidden Markov
Models. IEEE Acoustics, Speech and Signal Processing Magazine 3 (1), 4–
16.

BIBLIOGRAPHY 84

Ross, A. A. (1976). Techniques for Beginning Conductors. Belmont, California:
Wadsworth Publishing Company.

Rudolph, M. (1994). The Grammar of Conducting: A comprehensive guide to
baton technique and interpretation. Toronto: Maxwell Macmillan Canada.

Segen, J., A. Mujumder, and J. Gluckman (2000). Virtual dance and music
conducted by a human conductor. Eurographics 19 (3).

Takala, T. (1997). Virtual Orchestra Performance. In ACM SIGGRAPH 97
Visual Proceedings, pp. 81. International Conference on Computer Graphics
and Interactive Technologies.

Tobey, F. (1995). The ensemble member and the conducted computer. In Pro-
ceedings of the International Computer Music Conference, pp. 529–530. In-
ternational Computer Music Association.

Tobey, F. and I. Fujinaga (1996). Extraction of conducting gestures in 3d space.
In Proceedings of the International Computer Music Conference, pp. 305–
307. International Computer Music Association.

Usa, S. and Y. Mochida (1998a). A conducting recognition system on the model
of musicians process. Journal of Acoustical Society of Japan 19 (4), 275–287.

Usa, S. and Y. Mochida (1998b). A multi-modal conducting simulator. In Pro-
ceedings of the International Computer Music Conference, pp. 25–32. Inter-
national Computer Music Association.

Wachsmuth, I. and M. Frohlich (Eds.) (1998). Gesture and Sign Language
in Human-Computer Interaction: Proceedings of the International Gesture
Workshop, Bielefeld, Germany, September 1997). Springer-Verlag.

Wright (1998). Implementation and performance issues with OpenSound Con-
trol. In Proceedings of the International Computer Music Conference, pp.
224–227. International Computer Music Association.

