
Implementation of the Discrete Hidden Markov Model in Max / MSP Environment

Paul Kolesnik and Marcelo M. Wanderley
Sound Processing and Control Lab,

Centre for Interdisciplinary Research in Music Media and Technology,
McGill University

pkoles@music.mcgill.ca

Abstract

A set of discrete Hidden Markov Model (HMM) objects have
been developed for Max/MSP software as part of the project
that deals with the analysis of expressive movements of a
conductor. The objects were tested with recognition of En-
glish alphabet symbols, and were applied toward analysis
of isolated conducting gestures. Training and recognition
procedures were applied toward both right hand beat- and
amplitude- indicative gestures (beat and tempo indications),
and left hand expressive gestures (articulation indications).
Recognition of right-hand gestures was incorporated into a
real-time gesture analysis and performance system that was
implemented in Eyesweb and Max/MSP/Jitter environments.

Introduction
Analysis of expressive conducting gestures has been a topic
of interest to researchers. Conducting can be viewed as a
crucial link in the path that expressive information travels
during a musical performance—where articulation encoded
on a musical score is conveyed by the conductor’s gestures,
and then perceived and transformed by musical performers
into expressive sound, which is perceived by the audience
and interpreted as feedback by the conductor.

First successful attempts to analyze conducting gestures
with the help of a computer were made as early as 1980
with A Microcomputer-based Conducting System(Buxton
et al. 1980) that was based on previous research in music
synthesis carried out by Moore, Matthews and collabora-
tors inGrooveproject andThe Conductor Program(Math-
ews 1976). Following these works, a number of conducting
systems have been developed (see (Kolesnik & Wanderley
2004) for a list of related references). Those systems exper-
imented with a number of approaches towards beat tracking
and conducting gesture analysis.

Design of identification and recognition procedures for
expressive gestures has been one of the main issues in
the field of computer-based conducting gesture recognition.
One of the main goals of the described project was to de-
velop and test a set of recognition tools that would provide
such functionality. Discrete Hidden Markov Model (HMM)
techniques had been successfully used in analysis of right-
hand beat-indicating conducting gestures (Usa & Mochida

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1998), as well as in other related gesture analysis areas, such
as sign language recognition (Vogler & Metaxas 1999) and
facial expression recognition (Lien 1998).

Structure and Functionality of the HMM
Package Objects

The HMM gesture recognition functionality was desired for
a Gesture Analysis, Recognition and Performance system
(Kolesnik & Wanderley 2004), which was implemented in
Max/MSP sound processing environment. Preliminary tests
carried out with already existing external HMM objects for
Max/MSP showed that the objects were goal-specific and
did not provide the functionality required for this project.
Therefore, it was decided to implement a set of new external
HMM objects based on previous implementations and theo-
retical materials (Rabiner & Huang 1986), (Rabiner 1989).

Main HMM Package Object - dishmm

The maindishmmobject was written as an implementation
of the three principal features of a discrete HMM model—
training, optimal sequence of states and recognition.

Figure 1: A 10-state 20-label left-to-right HMM object.

The number of states, labels and the type of the object (0
for ergodic,1 for left-to-right) are specified as arguments to
the object during the initialization stage in their respective
order. The fourth argument accepted by the object box is the
maximum number for the array that records the incoming
labels the object can accept at a time. Those characteristics,
which are directly responsible for the amount of memory al-
location for the arrays used by the object, can be changed by
reinitializing the object with new arguments, or by import-
ing another recorded model into the current object using the
import feature. If no arguments are supplied after the object
name, it defaults to a 5-state 10-label ergodic model with
200 as the maximum size for the internal array of numbers
recorded from the incoming stream.

The current mode of the object can be changed by sending
an input to its right inlet—0 for training the model,1 for
recognition mode, and2 for the Viterbi functionality. By
default, the object is initialized in the training mode.

The object accepts an incoming stream of numbers in its
left inlet and records them in an internal array in the or-
der they are received. When abang message is received
in the left inlet, the labels stored in the internal array are
passed to one of the object’s algorithms—training, recog-
nition or Viterbi, depending on what mode it is currently
in, and the internal array is cleared in order to be ready to
accept the subsequent stream of numbers. For the training
algorithm, multiple scaled reestimation formulae are used
to calculate the new model parameters, and the array of
numbers is then stored in the object so that it can be used
during the next training procedure together with all of the
previously recorded and the new incoming observation ar-
rays. For the recognition algorithm, probability is calcu-
lated using scaled forward and backward probability com-
putations, and the result—which will always be in the range
of −∞ < logP (O|λ) ≤ 0 (whereP (O|λ) is the calculated
probability of the model), since it is a logarithm of the ac-
tual probability—is passed on to the leftmost outlet of the
object. For the Viterbi algorithm, the scaled Viterbi compu-
tations are used to generate the most probable sequence of
states based on the incoming array, which is then passed as
a list to the middle outlet of the object.

A deletelastmessage to the left inlet of the object deletes
the most recent observation array from its memory, and re-
trains the model with all of the training observations that
were recorded previously to the one that was deleted.

The object stores all of the model parameters which can
be then viewed, imported or exported as a list, and written to
or read from a text file. The information is stored as an array
of values that follows the structure presented in Table 1.

Number of states, number of labels, type and number of
trainings are represented by single integer values. State tran-
sition and state label output matrices are represented as ar-
rays of floats, with each of the rows of the matrices placed
in left-to-right order. There is no separation needed between
the two matrices, since their dimensions are specified by the
‘number of states’ and ‘number of labels’ values—for exam-
ple, a 5-state 10-label model will have a 5X5 state transition
matrix represented by an array of 25 values, and a 5X10
output matrix represented by an array of 50 values. Train-

Definition Length
Number of states 1
Number of labels 1
Type 1
Number of trainings 1
Initial probability array N
Transition matrix N x N
State label output matrix N x M
Training observation(s) length of observation

+ 1 (per observation)

Table 1: Storing format of an HMM model (N is the number
of states, andM is the number of output labels in the model).

ing observations are stored after the two matrices, with each
observation being in the format presented in Table 2.

Double-clicking on the object box opens a text editor
which displays the current model information. Areadmes-
sage to the left inlet of the object opens a ‘read file’ dialogue
so that a previously recorded model can be loaded into a cur-
rent object. Aread<filename> message results in reading
the file from the same directory the current Max patch with
the object is in. Similarly,write message opens awrite file
dialogue, andwrite <filename> writes the specified file in
the same directory as the Max patch. The model informa-
tion can be also imported and exported as a list within the
patch—anexport message sends out of the current model
data through the rightmost outlet of the object in a list for-
mat, and animport <list> message (where<list>) is a list
containing model information) loads the new model infor-
mation into the object. Therefore, it is possible to exchange
model information between several objects in the same patch
by sending anexportmessage to one object, appending the
word import to the list that gets generated as the output, and
sending it to another HMM object in the patch, which could
be useful in some applications.

Number of labels in current observation
Array of observation output labels
-1(to indicate the end of the current observation)

Table 2: Storing format of an individual training observa-
tion.

Thepost 1andpost 0messages turn on and off the addi-
tional information about the training, recognition and Viterbi
computations to be printed in the Max window.

Appendix A provides an additional overview of the
specifics of implementing thedishmmobject in Max/MSP.

Other objects of the HMM Package
Two supporting external objects were written in addition to
the main HMM object for the current system. Theorient2d
is responsible for calculation of positional orientation—it
accepts a relative change in horizontal positional data in its
left input and relative change in vertical positional data in
the right output, calculates the positional orientation based

on those values, and outputs the result from the right output
in degrees (in the range of 0-359) and out the left output in
radians (0− 2π).

Thecode2dobject is responsible for the elementary vec-
tor quantization of the positional data stream. It divides the
incoming positional data stream with a larger number of pos-
sible values (0-359 in this case) in a number of sectors, the
number being determined by the desired number of labels
for the HMM model object, and assigns that label to each
incoming number within that sector. For example, acode2d
object with 20 and 360 as its respective label size and max-
imum incoming data size, divides the range of 0-360 in 20
sectors, assigns the labels of 1 to 20 to each respective sector,
and outputs a corresponding label for each incoming orien-
tation value.

For future projects using the HMM object in Max/MSP
(such as audio data recognition), or for advancements in the
current project that would require a more complex quantiza-
tion technique, other external objects will have to be written
to produce the desired label stream that will serve as the in-
put to HMM external objects.

Preliminary Tests with the HMM Objects
In order to verify the ability of the designed HMM pack-
age objects to correctly identify input gestures based on
HMM training and recognition techniques, several prelim-
inary tests were carried out. Left-to-right 5-state 10-label
HMM models were used in all of the testing examples.

Symbol Recognition with a Mouse/Wacom Tablet
Recognition of English Alphabet symbols was the initial
task for the system developed with the external HMM ob-
jects in order to test its performance. Absolute 2-D po-
sitional coordinates extracted from the movement of the
mouse or a Wacom tablet were used to calculate the orienta-
tion values with aorient2dobject. Resulting data stream was
then passed to thecode2dobject that mapped the observa-
tion stream to a label data stream. Each of the HMM objects
that were implemented in the system represented an isolated
symbol to be recognized. At the learning stage, HMM ob-
jects were individually trained with 10 symbol examples. At
the recognition stage, an observation stream representing a
symbol was passed to all of the HMM objects, and the one
producing the highest probability was considered as the rec-
ognized symbol. There were five observation examples of
each symbol provided for recognition, and the system per-
formed with a92.5% recognition rate.

Symbol Recognition with USB Cameras and
Eyesweb
The procedure used by the symbol recognition system was
then replicated using a single webcam to capture a 2-D po-
sitional user input. Eyesweb video processing software (Ca-
murri et al. 2000) was used to extract the positional informa-
tion from the video input, and OSC network objects (Wright
1998) were used to transfer the positional information to the
recognition patch in Max/MSP. Five English alphabet sym-
bols (A,B,C,D,E) were used for training and recognition.

Figure 2: HMM symbol patch with a Wacom tablet input—
recognition process.

As in the previous experiment, there were 10 training and
5 recognition sets per gesture.

The resulting recognition rates were lower than those ob-
tained in the previous experiment. In particular, the capital
symbol ‘D’ was repeatedly mistaken for a ‘B’, whereas all of
the other symbols (that did not share positional similarities,
as in the case of those two symbols) were correctly identi-
fied. This can be explained by the fact that Eyesweb has a
faster recognition rate than the one used by the mouse track-
ing object, and the visual gesture symbolizing the symbol
was performed during a longer period of time than writing
it in with a mouse. Therefore, the left-to-right object did not
contain enough states to represent all of the positional tran-
sitions, and considered the symbol ‘D’ as the upper part of
the symbol ’B‘,whereas it did not contain enough available
states to represent the lower part. On the basis of this obser-
vation, it was decided to use 10-state models for all of the
HMM models during the actual conducting gesture recogni-
tion experiments.

Figure 3: HMM symbol patch with Eyesweb input—
training process.

Testing the HMM Objects with Conducting
Gesture Recognition

A number of tests with conducting gestures were carried
out using the HMM objects. All of the conducting gestures
were performed by a doctoral conducting student at the Mu-
sic Faculty of McGill University. The conducting gesture
recordings were done using the Eyesweb software with two
USB cameras that were placed in front and profile view of
the conductor. The recorded session video files were later
edited in order to prepare them for use with the recognition
patches in Max/MSP (editing involved deleting unnecessary
beginnings/endings of the files, and splitting larger session
files into training and recognition parts). The HMM ob-
jects that were used in Max for all of the gesture recognition
experiments were based on a 10-state 20-label left-to-right
model.

Left hand Expressive Gestures

Five left-hand isolated expressive gestures were selected to
be recognized—crescendo-cutoff, diminuendo-cutoff, fer-
mata-click gesture,accentindication and expansion gesture.
The set of gestures was intentionally chosen to contain both
simple (accent, expansion) and complex(crescendo+cutoff,
diminuendo+cutoff and fermata+click) gestures in order to
test the system’s ability to cope with both kinds of gestures
simultaneously.

Figure 4: Front and profile camera view of the user train-
ing the recognition system with a left-handcrescendo-cutoff
expressive gesture.

For each of the five gestures, 20 training sets and 10
recognition sets were recorded as two synchronized movie
files for front and profile views, and then split into 30 indi-
vidual file pairs using video editing software. In the recogni-
tion component of the system, five HMM object pairs were
assigned to correspond to the gestures. Each HMM object
pair was then individually trained with the 20 training video
segments. Upon completion of the training process, 50 ex-
amples (10 examples per gesture) were presented for recog-
nition to the entire set of the HMM objects. The recognition
scores of the pairs of HMMs were combined and compared
to find the maximum logarithm value, which indicated the
gesture that was considered as the most likely to correspond
to the incoming positional data stream.

The gestures were recognized with a 98% degree of ac-
curacy. In fact, those gestures presented a real challenge to
the HMM models, since they shared many of the positional

characteristics. For example, the complexfermata-click ges-
ture (which is described in detail in (Rudolph 1994)) is a
combination of afermataindication, followed a short ‘click’
or ‘breath’, followed by an entrance indication. The posi-
tional information received from the middle part of thefer-
mata-click gesture is very similar to the simple accent ges-
ture. Nonetheless, the HMM objects were able to distinguish
the differences between the gestures.

Expressive Styles of Right Hand Beat Indicating
Gestures
For right-hand beat indicating gestures, three sets of beat
patterns were chosen—the first set containing a four-beat ex-
pressive legato and four-beat light staccato patterns, the sec-
ond with a three-beat expressive legato and three-beat light
staccato, and the third set with a two-beat legato, two-beat
marcato and two-beat staccato patterns. A separate HMM
object pair was used to represent each beat gesture of the de-
scribed patterns. For each beat pattern, 20 measures of con-
tinuous conducting was recorded for gesture training pur-
poses and 10 measure of contunuous conducting for gesture
recognition. In this case, instead of manually splitting the
video files into individual segments for each beat of each
pattern, the temporal segmentation process was performed
by the beat identification component of the system. A loop
was performed during the execution where every time a
beat was detected, the incoming positional data stream was
rerouted to the HMM pair representing the next beat, and
when the last beat of the beat pattern was reached, the first
beat HMM pair was chosen for the next training stage.

After all of the three sets of beat patterns (representing
7 different beat patterns and 20 different beat model pairs)
were trained, 10 measures for each beat pattern were pre-
sented to the system for gesture recognition. The recognition
for each beat pattern was done twice—at first, by comparing
the scores of the HMM pairs corresponding to different beats
of the current beat pattern only, and then by comparing the
scores of the models representing the beats of the entire set.

The system provided a robust recognition of right hand
beat-indicating gestures, both in terms of correctly identi-
fying the individual beat information within a single beat
pattern, and distinguishing between different styles of con-
ducting using the same meter value. The overall recognition
rate was equal to99.5% for the gestures that were performed
consecutively by the same conductor.

Embedded Right hand Expressive Gestures
Since the right hand is known to be mainly responsible for
time-beating indications throughout the performance, the
right hand expressive gestures have to be incorporated into
the beating gestures—unlike the left hand that has more free-
dom of movement and is not constrained with the baton (if
it is being used). Therefore, in order to extract right hand
expressive gestures, either transitions from one type of beat
to another or different forms of the same basic type of beat
should be analyzed.

The gestures were studied on examples of gradual
crescendoand diminuendoindicated through gradual in-

crease/decrease in the amplitude of individual beat indicat-
ing gestures. Three different cases were studied—a gradual
crescendo (one measure span) on a four-beat legato, a grad-
ual diminuendo (one measure span) on a four-beat legato,
and no dynamics on a four-beat legato. In this case, each
of the HMM model pairs represented the entire measure and
not an individual beat in the measure as in the previous ex-
periment, so that it would be possible to track changes in
beat amplitude over the four beats. Therefore, this system
variation contained three HMM pairs, one per beat pattern.

Since in this case only three long patterns produced by the
same conductor were analyzed, and their positional relative
paths were clearly different by comparison to each other, the
system was able to distinguish the gesture transition patterns
with a perfect recognition rate.

Combined Gesture Analysis, Recognition and
Performance System

Recognition of right-hand beat-indicating gestures was used
as one of the components of the Gesture Analysis, Recogni-
tion and Performance system (Kolesnik 2004), (Kolesnik &
Wanderley 2004) during a realtime conducting performance.
The system included realtime gesture analysis, recognition
and performance of a prerecorded audio score using phase
vocoder audio stretching techniques. Detection of conduct-
ing beats and calculation of audio stretching amount re-
quired to synchronize the conductor and the audio playback
was done on the basis of previous works in the related field
(Borchers, Samminger, & Muhlhauser 2002), (Murphy, An-
dersen, & Jensen 2003).

Figure 5: Schematic representation of the Gesture Analysis,
Recognition and Performance system.

Whereas the input processing part of the patch was often
unstable due to software/hardware limitations of processing
several simultaneous video streams received from USB cam-
eras, the HMMs were able to recognize the incoming gesture
data with a high degree of accuracy during the cases when
an acceptable number of positional frames was received—
the system performed with a 94.6% recognition rate over

the 73 measures, with comparison being done between the
four possible gestures in the 4-beat legato pattern.

Analysis of Results
Through a set of isolated gesture recognition experiments,
the preliminary results showed that the Hidden Markov
Model package provides an efficient tool for recognition and
analysis of both isolated indicative and expressive conduct-
ing gestures in Max/MSP environment. Very high or perfect
recognition rates resulted from the fact that the compared
gestures were produced by the same conductor in a uniform
environment. Further research is needed on how the system
would react to gestures produced by different conductors.

Conclusion and Future Work
The main achievement of the project was the development
of a set of objects that were used for recognition of isolated
conducting gestures in Max/MSP environment. This brings
an improvement over existing systems, since whereas right
hand movements had been analyzed with HMM (Usa &
Mochida 1998) and Artificial Neural Net (Ilmonen & Takala
1999) (Garnettet al. 2001) techniques in the past, there has
been no previous research involving high-level recognition
and classification techniques applied to left hand expressive
gestures.

The current system is able to provide recognition of iso-
lated gestures—however, one of the future goals of the
project is to design a gesture recognition process that can
be implemented in a continuous conducting movement envi-
ronment in combination with the developed gesture analysis
and performance system.

Whereas the described experiments used low-cost USB
cameras for gesure tracking, further research on conducting
gestures that is currently carried out is using Vicon Motion
Capture and Polhemus Motion Capture systems now avail-
able at the Sound Processing and Control Lab at McGill Uni-
versity.

The objects are available for free distribution and further
research on positional gestures, audio content recognition or
any other data stream recognition in Max/MSP environment.

References
Borchers, J.; Samminger, W.; and Muhlhauser, M. 2002. En-
gineering a realistic real-time conducting system for the au-
dio/video rendering of a real orchestra. InProceedings of the 4th
International Symposium on Multimedia Software Engineering,
352–362.

Buxton, W.; Reeves, W.; Fedorkov, G.; Smith, K. C.; and
Baecker, R. 1980. A microprocessor-based conducting system.
Computer Music Journal4(1):8–21.

Camurri, A.; Coletta, P.; Peri, M.; Ricchetti, M.; Ricci, A.;
Trocca, R.; and Volpe, G. 2000. A real-time platform for interac-
tive performance. InProceedings of the International Computer
Music Conference. International Computer Music Association.

Garnett, G. E.; Jonnalagadda, M.; Elezovic, I.; Johnson, T.; and
Small, K. 2001. Technological advances for conducting a virtual
ensemble. InProceedings of the International Computer Music
Conference, 167–169. International Computer Music Associa-
tion.

Ilmonen, T., and Takala, T. 1999. Conductor following with
Artificial Neural Networks. InProceedings of the International
Computer Music Conference, 367–370. International Computer
Music Association.

Kolesnik, P., and Wanderley, M. 2004. Recognition, analysis and
performance with expressive conducting gestures. InProceed-
ings of the International Computer Music Conference, (in print).
International Computer Music Association.

Kolesnik, P. 2004. Conducting gesture recognition, analysis and
performance system. Master’s thesis, McGill University.

Lien, J. J. 1998.Automatic Recognition of Facial Expressions Us-
ing Hidden Markov Models and Estimation of Expression Inten-
sity. Ph.D. Dissertation, The Robotics Institute, Carnegie Mellon
University.

Mathews, M. V. 1976. The Conductor program. InProceedings
of the International Computer Music Conference.

Murphy, D.; Andersen, T. H.; and Jensen, K. 2003. Conduct-
ing audio files via Computer Vision. InProceedings of the 2003
International Gesture Workshop.

Rabiner, L. R., and Huang, B. H. 1986. An introduction to Hidden
Markov Models. IEEE Acoustics, Speech and Signal Processing
Magazine3(1):4–16.

Rabiner, L. R. 1989. A tutorial on Hidden Markov Models and
selected applications in speech recognition.Proceedings of IEEE
77(2):257–285.

Rudolph, M. 1994. The Grammar of Conducting: A compre-
hensive guide to baton technique and interpretation. Toronto:
Maxwell Macmillan Canada.

Usa, S., and Mochida, Y. 1998. A multi-modal conducting sim-
ulator. InProceedings of the International Computer Music Con-
ference, 25–32. International Computer Music Association.

Vogler, C., and Metaxas, D. 1999. Parallel Hidden Markov Mod-
els for american sign language recognition. InIn Proceedings of
the International Conference on Computer Vision, 116–122.

Wright. 1998. Implementation and performance issues with
OpenSound Control. InProceedings of the International Com-
puter Music Conference, 224–227. International Computer Music
Association.

Appendix A. Specifics of thedishmmObject
Implementation

This section provides a brief overview of thedishmm ob-
ject’s implementation in Max/MSP. A complete set of for-
mulae used by the object procedures is available (Kolesnik
2004). The formulae, together with additional description of
the object and sample Max/MSP patches, are also available at
http://www.music.mcgill.ca/˜pkoles/download.html.

Initialization
During the initialization process, the object allocates memory for a
number of internal arrays that are used for storing of intermediate
and final values during the three main procedures. In order to avoid
a situation where the model is given an observation label during the
recognition process that it did not get during the training process,
the initial model setting, which has random (for ergodic models) or
equal (for left-to-right models) distribution of parameter weights, is
considered as one of the settings derived from model observations.
As the model gets more training, the initial observation gets less
and less weight assigned to it.

Training Process
The training procedure retrains the initial probability, transition and
output array values, according to the traditional HMM reestimation
procedure (Rabiner & Huang 1986). However, to avoid computa-
tion range errors during the calculations, scaled forward and back-
ward probabilities are used in the calculations. The scaled forward
and backward probabilities are calculated on the basis of the orig-
inal forward and backward probability arrays in combination with
a scaling coefficientct.

By default, 50 reestimation procedures are done for each for
each of the three model parameter arrays (i.e. initial probability
array, transition matrix and label output matrix), using temporary
storage arrays to store the intermediate reestimation parameter val-
ues. After the completion of the reestimation process, the parame-
ters are recorded in the main model arrays.

Viterbi Process
Similarly to the reestimation process, the Viterbi process follows
the traditional recursive routine for finding the optimal sequence of
states with state sequence backtracking (Rabiner & Huang 1986),
but scales the array values by taking logarithms of the originalδ̃t(i)
values. The optimal state probability values are stored by the object
in a δ̃ array.

Recognition process
Probability of the model can be found as a product of individual
probabilities calculated for all of the observation sequences. The
probability of each individual sequenceP (O|λ) is calculated us-
ing scaling coefficientsct. However, in practice there will be a
possibilty that the resulting probability value will also be smaller
than computational precision range. A solution to this is to cal-
culatelog P (O|λ) instead, which produces a negative value in an
acceptable range.

The calculation of observation/model probability process uses
the same forward and backward probability calculation that are
used in the training process, but applies them directly to the model
parameter arrays without using temporary array space, and only
goes through the process once.

Additional Functions
Normalize Normalize function is used to normalize the arrays
following the completion of the training process in order to avoid
problems caused by precision errors during the calculation of inter-
mediate probability values. It is also used in conjunction with the
randomize functions.

Randomize Functions A set of randomize functions is imple-
mented in order to provide initial values to the model’s initial array,
transition matrix and output label matrix values, in case the dishmm
object is initialized as an ergodic HMM model. Random values in
the range of 0 to 100 are given to the array and matrices, and they
are then normalized to correspond to general HMM requirements.
The random values are not used if the object is initialized as a left-
to-right HMM model, since equal energy distribution in the arrays
and matrices are an acceptable option in this case.

Observations The HMM object records all of the observation
data as a part of its internal structure. When adeletelastmessage is
received by the object, it drops the data of the last observation and
retrains itself with all of the previous observations.

Input/Output The object allows to import and export its infor-
mation internally in Max/MSP as a list or externally by writing to
a text file. Double-clicking on the object box allows to view its
current contents in a separate text window.

