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ABSTRACT

This paper presents an implementation of the phase vocoder within
a Gaussian state-space framework. Rather than formulate the prob-
lem as a deterministic evolution of frequencies centered around
a given bin, this evolution is treated stochastically by introduc-
ing noise into the dynamics matrix of the recursive state equation.
This produces effects on the roughness of the input sound, which
vary depending on the position within the matrix where the noise
is added, how it is propagated throughout the matrix and further
by the variance of the noise input.

1. INTRODUCTION

The phase vocoder is a widely used tool for the analysis, transfor-
mation and synthesis of audio signals. It began as a way to effi-
ciently code and transmit voice signals using filterbanks [1], was
later represented by the Short-Time Fourier Transform (STFT) [2]
and then began to find use in musical applications [3],[4]. The
most common effects generated by the use of the phase vocoder
are pitch shifting and time scaling, which are achieved through al-
tering the time/frequency block increment size between the analy-
sis and synthesis step and then interpolating. If the step increment
for both analysis and synthesis is subjected to certain constraints
based on the type of windowing function used in the STFT, then
the input signal is perfectly reconstructed upon re-synthesis. How-
ever the phase vocoder becomes musically interesting when the
signal is distorted by transformations such as the aforementioned
pitch/time scaling or others in which the amplitude and phase of
each frequency bin are modified over time. As the representation
itself is purely deterministic and able to capture the signal entirely,
these distortions are externally applied to the spectral data in an
intermediate (i.e. between analysis and synthesis) step. While this
technique is very powerful and is the basis for most spectral pro-
cessing used in computer music compositions, we have found that
some interesting effects can be had by embedding a stochastic
representation within the phase vocoder itself. This is achieved
through the use of a state-space representation.

2. STOCHASTIC STATE-SPACE VOCODER

Rather than model a signal as an Autoregressive-Moving Average
(ARMA) process, a stochastic process x[n] that is governed by a
linear dynamical system can be expressed by the state-space equa-
tions

s[n + 1] = As[n] + w[n] (1)

and
x[n] = Bs[n] + v[n] (2)

where the sequence s[n] is the state of process x at time n, and
Equation (1) represents the internal dynamics of the process as
governed by dynamics matrix A. Equation (2) transfers the state
vector, which may be hidden, into a vector of observable output
variables. Both w and v are Gaussian white-noise processes. The
first affects the progression of the state while the second is additive
noise present in the output process x. This latter use of noise in the
modeling of an audio signal can be found in the Spectral Modeling
Synthesis (SMS) approach [5]. Our interest here is in the effect of
including noise in the state process equation of a representation
based on the the phase vocoder. In particular, we include noise in
the state matrix rather than simply in the state vector as is done
in equation (1). Therefore, we may re-write the state equation as
follows

s[n + 1] = (A + Wn)s[n] (3)

where Wn is a time-varying matrix of Gaussian random variables.
This matrix will be described in more detail in section 2.2.

2.1. Related work

A state-space approach to analysis/synthesis was presented in [6]
in which the real and imaginary components of p sinusoidal par-
tials, tracked over time, were represented in the state vector. The
observation matrix summed across the real components of the par-
tials, and the addition of observation noise generated a sinusoid-
+noise re-synthesis. Thus, this model represents a hybrid state-
space / sinusoidal model.

Similarly, a recursive state-space formulation is presented in
[7] in which the state is comprised of the real and imaginary com-
ponents for N evenly spaced frequency bins. Thus, this imple-
mentation maintains all of the data from the phase vocoder while
the aforementioned work tracks only partials and is closer to a
sinusoidal model. The motivation differs in this latter work as
well, with the goal being the interpolation of missing audio sam-
ples whereas the former research was concerned with building an
analysis/synthesis scheme for audio transformations. This current
work is situated between these two in the sense that our motivation
is towards musical transformations, yet we work on the lower-level
representation of the phase vocoder’s spectral frames. However
our state-space representation differs from [7] in reflection of the
differing motivations: the desire to track time-domain signals and
interpolate missing values lead to a stochastic representation as in
equation (1), in order to build uncertainty into the time-varying
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signal. We add noise to the dynamics matrix in order to perturb
the structure of the system itself in order to explore the complex
couplings that result.

Each of these approaches are based on a recursive description
of the Discrete Fourier Transform. That is, the complex exponen-
tials of the DFT can be expressed as

ejnθ = ejθej(n−1)θ (4)

for time n and frequency θ. Thus the DFT matrix and its inverse
can be expressed as a first-order recursion, a necessity in order to
work within the state-space framework.

2.1.1. A Note on “Roughness"

The term “roughness" has taken on a specific meaning in the psy-
choacoustics literature [8]. Its introduction in this context can be
dated back to Helmholtz in the late 19th century where it was
linked to the subjective notion of dissonance. While this latter
term has somewhat changed itself with musical periods, psychoa-
coustical roughness relates to dissonance in the classical sense of
beating/modulating sounds such as those that result from certain
pitch ratios (e.g. a minor second). In this sense it has been shown
to change as a function of the depth and frequency of modulation
of a sound in both amplitude and frequency. In this work, we do
no use the word in this strict sense, and yet our results relate qual-
itatively to those sounds that would be considered psychoacousti-
cally “rough". Certain results could as easily be labeled as “noisy"
or “textural."

2.2. Current Implementation

Again, our state-space phase vocoder is built from a state vector
comprised of the real and imaginary components of the audio sig-
nal. The nature and size of said state varies depending on whether
the analysis or synthesis step is being performed. For the analy-
sis step, given an input block of real signal x = {x1, ..., xN}, the
state vector is thus

s = [x1, 0, ..., xN , 0]T (5)

which represents the initial state vector for the current block of N
samples. The state is re-initialized with a new input block at each
signal boundary (each N samples), and during the state recursion
s is propagated by the dynamics matrix

A = DIAG(R(θ0), ..., R(θN−1)) (6)

where DIAG represents a block diagonal matrix and

R(θk) =

„
cos( 2πk

N
) sin( 2πk

N
)

− sin( 2πk
N

) cos( 2πk
N

)

«
. (7)

The observation matrix

B =

„
1 0 ... 1 0
0 1 ... 0 1

«
(8)

produces an output vector1

ŝ = (s0,r, s1,r, s1,i, ..., s N
2 −1,r, s N

2 −1,i, s N
2 ,r) (9)

1Strictly speaking, the analysis step produces a 2 × N matrix. These
values are then rearranged and the trivial imaginary values at θ0, θ N

2
dis-

carded in order to form ŝ.

which is comprised of the real and imaginary components of the
spectrum of input block x. We assume that x is real, and so only
the first N

2
frequency bins are generated by the analysis state equa-

tions.
Now, the observed process ŝ becomes the state vector for the

synthesis step, where the synthesis dynamics matrix is defined by

Â = DIAG(1, R−1(θ1), ..., R
−1(θ N

2 −1), 1). (10)

The new observation matrix

B̂ =
`

1 1 0 1 0 ... 1 0 1
´

(11)

produces output signal x̂. In the absence of noise added to the
state or observation equations for analysis and synthesis, this two-
step recursion provides a perfect reconstruction. However, the
addition of noise into the state equations at various points in the
analysis/synthesis process and in various ways can introduce dif-
ferent roughness qualities into the input sound that can then be
controlled.

2.2.1. Introduction of Process Noise

In the standard state-space formulation the noise that is added into
the state and/or observation equation is a vector wn whose dimen-
sion is the same as that of the state. In our implementation we
introduce an M × M matrix of Gaussian noise, where M is the
size of the state. In particular the matrix is decomposed as follows:

Wn = αW d
n + βW r

n (12)

where W d
n is the block diagonal that corresponds to the non-zero

values of the dynamics matrix A and W r
n provides the Gaussian

values for the remaining upper and lower triangular parts of the
matrix. α and β are free parameters that allows one to tune the
contribution of these two parts of the matrix. We do not include
an observation noise vector as this simply adds white noise to the
output. Rather, the above matrix is added to the state dynamics as
in equation (3), which can produce interesting frequency effects.

In particular, the matrix W d
n is added to the sinusoidal compo-

nents of the dynamic rotation matrix, causing an uncorrelated and
random fluctuation of amplitude and/or phase in each element of
the state. This effect can be very precise and localized in certain
cases. For example, if the same noise values N̂ are added to a
sub-block along the diagonal of the synthesis-step state matrix Â
as follows

R−1(θk)+N̂ =

„
cos( 2πk

N
) + n1 − sin( 2πk

N
) + n2

sin( 2πk
N

) + n1 cos( 2πk
N

) + n2

«
(13)

then there will be a random modulation in the amplitude of par-
tial k while the phase remains unchanged. The amplitude or phase
of a given frequency can also be modified by converting the corre-
sponding members of the state vector into polar form, acting on the
appropriate values and then converting back to rectangular form
before re-inserting them into the state equation. In this way one
can e.g. introduce concurrent random modulations between par-
tials that can affects a given sound’s “texture" [9].

Now, the matrix W r
n causes a random fluctuation which be-

haves quite differently. Random values added in this part of the
matrix introduce a non-linear distortion, and noise can be added at
specific matrix locations in order to introduce a coupling between
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Figure 1: Log FFT plot for stochastic state-space processed sinu-
soid. Gaussian noise added to analysis dynamics matrix in outer
triangular portion (a) and to diagonal (b).

two frequencies. This can be non-physical — such as if the fre-
quency at bin i is coupled to bin j but j is not coupled to i — or it
can maintain a physical meaning if frequencies remain coupled in
a bi-directional manner. We experimented with different process
noise behaviors towards the end of creating musically interesting
roughness effects.

3. RESULTS

Different roughness effects are observed depending on several fac-
tors: where in the dynamics matrix noise was introduced, if and
how it was propagated in time through the matrix, and whether it
was added during the analysis or synthesis step. Some results are
summarized below.

3.1. Noise in Analysis Step

Given an input sinusoid at frequency f , and when noise was added
to the outer triangular regions of the matrix only — that is, when2

Wk = βW r
k — a nearly white noise component was added to the

2We use index k here to underscore the fact that the state recursion in
the analysis step is a function of frequency rather than time.
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Figure 2: Spectrogram of sinusoid affected by noise propagated
through analysis state matrix at one column alone (a) and coupled
between a column/row pair (b). Sampling frequency = 11.025 kHz.

entire signal, with a slight increase in energy at higher frequen-
cies. In contrast, when noise was added to the matrix diagonal and
Wk = αW d

k , a band of noise was introduced whose energy was
concentrated around frequency f and fell off at higher frequencies.
This difference is illustrated in Figure 1.

In order to create more interesting roughness qualities, we
propagated noise through various parts of the matrix to create a
time-varying effect. In particular, noise was propagated through a
given column or row of the matrix. When noise was propagated
down a single row or column, a beating noise with several small
peaks was introduced. The rate of the beating can be controlled by
the speed at which the Gaussian scalar noise value is sent through
the given row/column. This modulating behavior can be seen in
Figure 2b.

While this time-varying single perturbation produced a more
musical result, it was not physically accurate: the noise value
caused an interaction between the frequency located at the given
column where the propagation occurred and each other frequency
bin at the instant that the noise was swept past it in the matrix.
However, this was not truly a coupling between frequencies as it
did not occur in both directions. Thus, to make the effect more
physical, we sent the same noise value down both column and row.
Therefore, at time t if the input noise value was added to matrix
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Figure 3: Spectrogram of sinusoid at 300 Hz affected by noise
propagated through synthesis state matrix. Sampling frequency =
8.5 kHz.

value A(i, j), it was further added to the value at A(j, i). This
coupled time-varying effect proved to create a much more sophis-
ticated stochastic component to the sound — one that possessed
more “texture" and resembled the sound of fire. For input sinusoid
with frequency f , this effect was most prominent when it occurred
at the column/row associated with the highest-energy frequency
bin, namely k = N∗f

Fs
where Fs is sampling frequency and N

is the size of the input signal block. The difference between the
“abstract" and physical roughness effects can be seen in Figure 2.
Beyond having more high frequency content, the coupled exam-
ple of Figure 2a possesses a spectral fine-structure that is present
throughout the spectrum and which likely contributes to the overall
textural quality.

3.2. Noise in Synthesis Step

It is important to remember that the state vector is not the same
between analysis and synthesis steps. During analysis, the state is
initialized with real and imaginary components of an input signal
block of size N . At the synthesis stage, the state vector is initial-
ized with the real and imaginary spectral values that are generated
by the first N/2 iterations (assuming a real-valued input) of the
recursive analysis process. Therefore, the addition of noise to the
state matrix affects the dynamics of either the complex modulation
or demodulation process associated with the DFT/iDFT and there
is no reason to assume that the addition of the Gaussian noise vec-
tor would produce the same sonic result at each stage. Indeed,
the addition of noise values in the synthesis state matrix — of cou-
pled noise propagated down a column/row pair — produce a strong
modulation effect not present in the previous examples. While the
others produced fluctuations and a beating effect, this synthesis-
step noise introduces a spectrotemporal modulation illustrated by
the spectrogram of figure 3. In this representation one can see a
quasi-periodic emergence of strong spectral peaks which modu-
late throughout the spectrum.

4. CONCLUSION AND FUTURE WORK

We have introduced a phase vocoder in which a stochastic element
has been built into the representation via a state-space framework.
Through the embedding of noise within the system representation
itself (rather than as input to the state or observation equations)
a sound can be re-synthesized with an added “roughness" quality.
Preliminary results illustrate the potential of using this approach to
generate interesting effects. With this simple linear systems frame-
work, musically useful nonlinear distortions can be introduced and
different effects can be created and controlled by altering the Gaus-
sian noise matrix over time. One simple physically-inspired effect
was suggested. We intend to explore more complex processes by
exploiting the interaction between the analysis and synthesis state
vectors, by introducing harmonic distortion via couplings between
harmonically related frequency components and by consrtucting
more elaborate time-based control curves for the noise parameters.
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