
Laptop Performance: Techniques, Tools, and a New Interface Design

Mark Zadel and Gary Scavone
Music Technology Area, Schulich School of Music, McGill University

Montreal, Quebec, Canada
{zadel,gary}@music.mcgill.ca

Abstract

While personal computers have been used for over twenty
years in live music contexts, the proliferation of powerfuland
affordable portable systems (laptops) has spurred the emer-
gence of new music creation styles and venues outside of ac-
ademia. Laptop performance is the practice of live computer
music using software tools exclusively. This paper surveys
the current state of laptop performance practice, discussing
the styles of music that are typically performed in this way,
and the techniques and tools used. This discussion serves as
a context for a new software system for laptop performance.
The system’s design is motivated by some of the problems en-
countered in this style of live use. The system supports the
real-time definition and modification of generative musical
patterns via a novel freehand drawing interface, allowing a
solo performer to create multi-layered works on-stage.

1 Introduction

In recent years, there has been an astonishing increase in
the computational capacity of computer systems. It has be-
come possible to do real-time DSP on consumer-grade sys-
tems, and the emphasis in music-making tools has gone from
hardware to software. It is now feasible for the public to make
music on their home computers, and these software tools are
exceedingly prominent in contemporary music production.
This increase in capacity has also made portable computers
very common in live performance.

While computer music has been performed in academic
research and composition communities for many years, the
availability of accessible software music tools has given rise
to a computer music culture outside of those circles. Many
exciting kinds of music are being made by non-academic ar-
tists and producers in home studios all over the world (Her-
mes 2002).

From this scene, alaptop performancesubculture has
emerged. This term refers less to the fact that laptops are
being used in live computer music, and more tohowthey are

used. Laptop performance can be defined as live computer
music using general-purpose computers, very often without
the use of specialized hardware controllers. Its defining char-
acteristic is an emphasis on the live use of software tools.
Laptop performers generally sit on-stage in front of a com-
puter, controlling software to play computer music.

The first part of this paper provides a brief survey of the
development of computer music performance techniques, fol-
lowed by a deeper exploration of laptop performance prac-
tice. Common software tools are presented, along with how
they are typically used in a live setting. Some of the issues
present in this style of computer music performance are also
discussed.

As laptop performance has become more commonplace,
audiences have started to become dissatisfied by its lack of
perceivable, causal gestures. The mechanisms by which the
music is made are often all but invisible to the audience. The
second part of this paper describes the design of a new soft-
ware interface for laptop performance and improvisation that
aims to address this issue. The interface allows the live, graph-
ical creation and modification of generative patterns that drive
sound synthesis. It de-emphasizes the use of pre-programmed
control sequences and moves toward creating all of the music
live, on-stage.

2 Live Computer Performance

This section surveys the evolution of computer music per-
formance techniques, and goes on to explore the contempo-
rary laptop performance phenomenon in depth. Its tools, their
use, and some of the issues encountered in laptop perfor-
mance are discussed.

2.1 History

Computer music was first explored in academic and re-
search settings in the 1950s. In that era, it was not possi-
ble to render audio in real-time with the available hardware.
In concert, these compositions were necessarily performed



as tape pieces. Audience support eventually started to sub-
side because of the lack of any visible, human component to
these performances. Composers began to create pieces for
tape and live instrumental musicians in order to make these
performances more engaging (Chadabe 1997, p. 68). This
strategy proved more satisfying for audiences, and it is still
common in today’s computer music.

With the emergence of MIDI, it became possible to create
interactive computer music that could be controlled during
runtime. The use of prerecorded tape in performance poses
certain problems for human accompanists since its timing is
fixed and rigid. With MIDI, the computer could be made
to synchronize with the musicians, making the pieces more
flexible and potentially easier to play alongside. Bruce Pen-
nycook’sPraescioseries serves as a good example of this
practice (Pennycook 1991). It eventually became possible to
create works that could process live audio input from instru-
mentalists in real-time (Lippe 1993), allowing a new level of
flexibility and interactivity in computer music.

Computer music has now been embraced outside of aca-
demia due to the availability of powerful and affordable gen-
eral-purpose computers. The practice of laptop performance
has evolved from this trend.

2.2 Laptop Performance

The on-stage use of laptops in non-academic computer
music became common over the last decade. While there is
now a wide breadth of music being made with these tools, the
styles were originally firmly rooted in electronic dance mu-
sic. Over time, however, many producers drifted away from
these influences, developing a new “post-digital” aesthetic.
This music showcases the sounds of uniquely digital pro-
cesses, focusing on errors and failure (Cascone 2000). Traces
of dance styles are still evident, however. “[T]he post-digital
aesthetic finds itself situated between the popular forms of
electronic dance music and the modernist forms of the classi-
cal academy” (Turner 2003, p. 81).

A variety of software applications are used for laptop per-
formance, but they generally share several traits. Performance
software almost always features a modular paradigm for han-
dling DSP, where sounds are created and treated by chains
of individual signal processing modules. The designs differ,
however, in the way they handle sequencing and control data.
The software can be roughly divided into linear, timeline-
oriented solutions and procedurally-oriented solutions,cor-
responding to the data-flow/control-flow distinction proposed
by Duignan et al. (2005).

Figure 1:Ableton Live’s session view

2.3 Timeline-oriented Performance Control

Timeline-oriented performance software designs focus on
linear pieces of audio and control data, such as sound clips
or MIDI sequences. These are positioned in time, processed
and overlaid to create entire pieces of music, as in standard
sequencing software. The difference is that in a performance
context, certain elements of the music are left to be controlled
at runtime. Such parameters include, for example, selection
and ordering of clips and sequences to be played, as well as
signal processing and effects controls. There is an underlying
focus on triggering, where the performer explicitly signals
when particular parts of the songs should start or stop, and
which parts those should be.

The canonical example of this style of performance soft-
ware isAbleton Live(2006). Live’s “session view,” seen in
Figure 1, is the mode used for performance. The basic unit in
Live is the audio clip, and the session view lays out a collec-
tion of clips as a grid. Each column corresponds to a mixer
track (i.e., DSP chain), and each row serves as a grouping of
clips. Cells, rows and columns feature start and stop buttons
for triggering the audio. When a clip is triggered, it can start
immediately or on the beat, depending on its configuration.

The typical way this software is used in performance is
to prepare clips, their groupings, and DSP chains before ever
going on-stage.Live’s use in performance can amount to sim-
ply triggering groups of clips and presets. The computer han-
dles most of the details automatically, and it is hard for a per-
former to sound bad or make an obvious mistake.

Another popular timeline-oriented performance tool is
Reason(Propellerhead Software 2006).Reason’s visual de-
sign mimics studio hardware units for synthesizing and pro-
cessing sound, as seen in Figure 2. As such, its use focuses on



Figure 2: A typical interface configuration inReason

patching processing units together to create particular sounds
and effects. It supports performance sequencing through its
analogue-style step sequencer and drum machine units.

The sequencing modules can hold banks of bar-long se-
quences. These sequences are programmed into each of the
units using their on-screen interfaces. In playback, a per-
former can trigger and loop each of the different sequences,
and they come in on the beat. Performance often consists of
running these preset sequences and perturbing effects param-
eters.

Reasonfeatures a container device called the “Combi-
nator” that holds prepared sets of processing units and se-
quencers. It is meant to be used live to hold songs and patches
for performance execution. This makes it easy to switch be-
tween or mix different songs and setups on-stage.

2.4 Procedural Performance Control

The other class of popular software performance instru-
ments is dominated by procedural designs. That is, their in-
terfaces concentrate on allowing the user to define procedures
that generate and shape the output sequences and sound. These
can take the form of visual dataflow interfaces, as inPure
Data andMax/MSP(Puckette 2002), or that of textual lan-
guages, as inSuperCollider(McCartney 1998) andChucK
(Wang and Cook 2004). These applications tend to be used by
more academically-inclined performers since some amount
of technical proficiency and understanding is required to pro-
gram them.

In the case of visual dataflow languages, a patch is pre-
pared before the performance. The patch contains combined
sound processing and control machinery. Live performance
consists of running the patch, sending control signals and

changing its parameters via the on-screen interface as it runs.
The contents of the patch can obviously be assembled ar-
bitrarily, leading to a great variety of possible mechanisms.
The patch itself is seldom programmed on the spot in perfor-
mance since it takes a significant amount of effort to assemble
a given configuration. However, this is sometimes attempted
by more adventurous performers.

Textual audio languages are becoming more popular for
live use. In particular, the TOPLAP group (2006) advocates
the practice oflive coding,where audio programs are written
and modified on-stage as performance (Collins et al. 2003).
This is typically done in a high-level audio-oriented program-
ming language such asSuperCollideror ChucK, though it
is sometimes done using custom setups in generic languages
such asPerl (McLean 2004). A very interesting notion in live
coding is the view that the creation of the procedure itselfis
performance. The algorithms run and generate music while
they are being modified, instead of being run after they have
been completed.

2.5 Performance Issues

The typical image associated with laptop performance is
that of a solo performer staring into the glow of a laptop’s
LCD screen, executing barely perceivable motions. There is
often no visible, causal connection between the performer’s
actions and the resulting music. The absence of physical
gesture and the hidden mechanisms are challenging for audi-
ences, and can hinder their enjoyment of laptop performance.

Another factor that impedes perceivable causality is the
fact that laptop performers typically have to resort to pre-
programming much of their control sequences and patch set-
ups before ever going on-stage. Their music is often created
from many layers of audio, which can prove very difficult to
manage live. Automating much of the music production can
make multi-layered pieces possible for a solo performer. The
drawback is that it detracts from the live experience by hiding
much of the performance mechanics.

Performance software interface designs also tend to im-
pede the flow of control between the musician and the com-
puter. They are typically organized as dense control panels,
featuring on-screen widgets that are used to individually ma-
nipulate system parameters (Levin 2000, p. 38). A performer
can only access one or two values at a time using a mouse,
compromising live control.

2.6 Recent Trends in Laptop Performance

With the maturing of laptop performance practice, laptops
can now be seen as taking a less prominent role on-stage.
Instead of being the sole focus, they are being used in con-
junction with live musicians and other elements in a bid to



engender a more compelling live experience. The live instru-
mentalists play over otherwise computer-based audio, which
is itself typically controlled by a given performer. For exam-
ple, artists such as Caribou, Vitaminsforyou and the Books
perform in this way. Laptop musicians also often use video
projections to further augment the visual component of their
performances.

Sometimes a performer will process live audio input to
create sound textures. The aforementioned software tools can
be used for this, as well as dedicated software packages such
asGuitar Rig(Native Instruments 2006). We see in these de-
velopments a move toward performance techniques that have
been popular in the research community for some time.

2.7 Summary

In summary, the laptop performance subculture has be-
come prominent over the last ten years in the wake of pow-
erful software instruments. It is distinguished by a focus on
software itself as the primary performance tool, and does not
typically employ novel hardware controllers.

Laptop performance software can be divided into two cat-
egories, depending on its dominant control paradigm. In time-
line-oriented interfaces, linear clips of audio and control se-
quences are looped, triggered and mixed on-stage to create
music. In procedurally-oriented interfaces, music is created
from generative control processes that are manipulated live.
These programs feature modular DSP architectures, and usu-
ally control panel interface designs.

Laptop performance often lacks a sense of active creation
since the mechanisms to make the music are largely imper-
ceptible. This has led to the inclusion of instrumental musi-
cians and other elements in an attempt to make laptop perfor-
mance more compelling.

3 Performance Software Design

A new software system for laptop performance and im-
provisation was implemented that responds to the performance
issues outlined above. It has been presented elsewhere (Zadel
2006; Zadel and Scavone 2006), so here we focus on the ideas
underlying its design and how they relate to the above discus-
sion.

3.1 Motivation

The project was motivated by the issues in laptop per-
formance described in Section 2.5. In particular, the design
aimed to address the tendency in laptop performance toward
simply “piloting” prepared software patches, and to move to-
ward a more active kind of performance that emphasized on-

Figure 3: A screenshot of the interface

stage action and decision making. This kind of live use could
lead to a more engaging experience for the performer, and for
audiences as well if the action could be suitably conveyed.

The system was intended to fit in with the laptop per-
former’s typical toolset. Thus, the interface was not to nec-
essarily require non-standard hardware components in order
to be useful. Note that this means that the system does not
necessarily attempt to get away from having the performer
on-stage sitting at a computer; the aim was to provide in-
teresting performance possibilitieswithin the constraints of
screen-based software interfaces.

3.2 System Description

The system resembles a freehand drawing interface. On-
screen strokes are assembled to create animated figures whose
motion drives sample playback. Small, white “particles” travel
along the user’s strokes, flowing between them at stroke in-
tersections. Samples are mapped to strokes when they are
drawn; as a particle moves over a stroke, its associated sam-
ple is played back according to the particle’s movement. The
system is pictured in Figure 3.

The main idea behind the system design was to create a
novel, efficient way of defining generative control patternsin
a performance setting. The goal was to allow a musician to
generate the structures on the fly, on-stage. The system does
not allow a performer to create piecesentirely from scratch,
however, as a small set of samples must be chosen before-
hand.

3.3 Design Concepts

This section presents some of design ideas behind the in-
terface and demonstrates how they respond to the above is-
sues in laptop performance practice.



Designing a graphical interface for the computer screen
meant that a two-dimensional spatial metaphor could be used.
The core idea of the system was to design it as a set of active
objects that interacted locally to create temporal behaviours.
The user would place and manipulate these objects to create
temporal patterns that could be used to drive audio. This had
the advantage of being potentially visually self-evident,as
well as allowing the computer to manage some of the sound
production.

The tool was meant to reduce the reliance on prepared
control material, but still allow the performance of multilay-
ered pieces. That meant that the control patterns had to be
able to be specified quickly and efficiently, and that the com-
puter would have to be responsible for playing back some of
the material once it had been defined. This corresponds to
the common form of laptop pieces as multiple tracks of loop-
ing audio. Figures can run independently in different parts
of the canvas, allowing the artist to layer temporal patterns in
multiple voices.

The spatio-temporal representation used by the interface
is intended to provide the performer with an intuitive, “phys-
ical” way to interact with the system. A nice side effect of
this is that it also provides an intuitive way for the audience
to understand the system as well. If the screen display is pro-
jected, it can serve as a visual manifestation of the perfor-
mance mechanics that the audience can appreciate, acting as
an amplification of the user’s gestures.

Some design heuristics were employed to help influence
the flavour of the system design. These were not strictly nec-
essary to respond to the above problems in laptop perfor-
mance, but rather served to colour the interface’s look and
feel.

First, the design was to be conceptually minimal, but still
allow rich sets of behaviours. Instead of offering functionality
that had obvious intended uses, the strategy was to provide a
small set of atoms that could be combined in oblique, creative
ways. This is in contrast to other laptop performance tools,
which typically offer a large number of specific controls and
features.

Second, the system was to be based on active objects that
interacted only as a function of spatial proximity. This mim-
ics objects in real space, which can usually only interact
through physical contact. This is also inspired by systems
with complex emergent behaviour, like John Conway’sGame
of Life (Dewdney 1988, p. 136), which only allow local inter-
actions. The reacTable* (Jordà et al. 2005) and Small Fish
(Fujihata et al. 2000) projects are other examples of inter-
faces where active objects interact through physical proxim-
ity or contact.

Third, the system should try to establish a perceptual con-
nection between the musician’s gestures, the system graphics

and the output audio. This helps reduce the user’s cognitive
dissonance and should make for a more usable system (Levin
2000, p. 100). This also aids in visualization as the sound is
closely correlated with the on-screen activity.

The system’s basis in freehand drawing came later in the
design process, and was seen as an elegant way to realize the
above design ideas. It also suggested the possibility of using
pointer gestures as an extra source of user control and infor-
mation, though this has not yet been formally investigated.
The use of freehand gestures can also help the audience un-
derstand what the performer is doing: people are generally
very familiar with such gestures, and there is a direct, obvi-
ous correspondence between the artist’s physical action and
the on-screen display.

4 Conclusions

This paper presented a survey of computer music per-
formance techniques, focusing on laptop performance. In
the canonical style of laptop performance, where a solo per-
former uses only software to make music, two control para-
digms were identified: timeline-oriented control, where the
interface is designed around linear audio clips and controlse-
quences; and procedural control, where the software is de-
signed around the procedural generation of music.

The use of software instruments as the main focus in per-
formance seems to have started to wane in popularity as it
can be uninteresting for audiences. Laptop performance does
not necessarily provide a visible connection between the per-
former’s actions and the resultant music. The way laptops are
used in performance has changed in light of this, and they are
now often integrated with other instruments to foster a more
engaging live experience.

The design of a new software system for laptop perfor-
mance and improvisation was described. The system aims to
bring a sense of active creation to laptop performance. The
system attempts to make laptop performance more engaging
by giving the performer a more active on-stage role, and by
making her actions potentially visible and meaningful to the
audience. The system allows the creation of pieces on the
fly from a small set of samples, and its visual representation
helps establish a connection between the performer’s actions
and the resultant music.

5 Acknowledgements

Thanks to Elliot Sinyor for a discussion of contemporary
laptop performance practice that helped structure the above
survey.



References
Ableton AG (2006). Homepage.<http://www.ableton.

com/>, 18 February 2006.

Cascone, K. (2000). The aesthetics of failure: “post-digital” ten-
dencies in contemporary computer music.Computer Music
Journal 24(4), 12–18.

Chadabe, J. (1997).Electric Sound: The Past and Promise of
Electronic Music. Upper Saddle River, New Jersey: Prentice
Hall.

Collins, N., A. McLean, J. Rohrhuber, and A. Ward (2003). Live
coding in laptop performance.Organised Sound 8(3), 321–
330.

Dewdney, A. K. (1988).The Armchair Universe: an Exploration
of Computer Worlds. New York: W. H. Freeman.

Duignan, M., J. Noble, and R. Biddle (2005). A taxonomy of se-
quencer user-interfaces. InProceedings of the International
Computer Music Conference, Barcelona, Spain, pp. 725–
728.

Fujihata, M., K. Furukawa, and W. Münch (2000). Notes on small
fish. InArs Electronica 2000 Festival Catalog, pp. 306–309.
Vienna, Austria: Springer.

Hermes, W. (2002). Laptop music.All Things Considered.
National Public Radio. <http://www.npr.org/
programs/atc/books_music/2002/feb/>, 10
July 2006.

Jordà, S., M. Kaltenbrunner, G. Geiger, and R. Bencina (2005).
The reacTable*. InProceedings of the International Com-
puter Music Conference, Barcelona, Spain.

Levin, G. (2000). Painterly interfaces for audiovisual perfor-
mance. Master’s thesis, Massachusetts Institute of Technol-
ogy.

Lippe, C. (1993). A composition for clarinet and real-time sig-
nal processing: Using Max on the IRCAM signal processing
workstation. InProceedings of the 10th Italian Colloquium
on Computer Music, Milan, Italy, pp. 428–432.

McCartney, J. (1998). Continued evolution of the SuperCollider
real time synthesis environment. InProceedings of the Inter-
national Computer Music Conference, Ann Arbor, MI, pp.
133–136.

McLean, A. (2004). Hacking Perl in nightclubs.
<http://www.perl.com/pub/a/2004/08/31/
livecode.html>, 11 March 2006.

Native Instruments (2006). Guitar Rig 2 product page.
<http://www.native-instruments.com/
index.php?id=guitarrig2_us>, 11 March 2006.

Pennycook, B. (1991). Machine songs II: The PRAESCIO
series—composition-driven interactive software.Computer
Music Journal 15(3), 16–26.

Propellerhead Software (2006). Reason product page.<http:
//www.propellerheads.se/reason/>, 11 March
2006.

Puckette, M. (2002). Max at seventeen.Computer Music Jour-
nal 26(4), 31–43.

TOPLAP (2006). Homepage.<http://www.toplap.
org/>, 11 March 2006.

Turner, T. (2003). The resonance of the cubicle: Laptop per-
formance in post-digital musics.Contemporary Music Re-
view 22(4), 81–92.

Wang, G. and P. R. Cook (2004). On-the-fly programming: Using
code as an expressive musical instrument. InProceedings of
the Conference on New Interfaces for Musical Expression,
Hamamatsu, Japan, pp. 138–143.

Zadel, M. (2006). A software system for laptop performance and
improvisation. Master’s thesis, McGill University.

Zadel, M. and G. Scavone (2006). Different strokes: a prototype
software system for laptop performance and improvisation.
In Proceedings of the Conference on New Interfaces for Mu-
sical Expression, Paris, France, pp. 168–171.


