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ABSTRACT

In this paper we present an approach for the indirect acqui-
sition of specific fingerings that produce harmonic notes
on the flute. We analyse both temporal and spectral char-
acteristics of the attack of harmonic notes produced by
specific control gestures involving fingering and poten-
tially overblowing. We then show that it is possible to
acquire this effect through signal analysis using a princi-
pal component analysis on spectral data. An 8-fold cross-
validation showed this approach to be successful for a sin-
gle performer playing isolated notes with mf dynamics.

1. INTRODUCTION

In order to create interactive music systems, it is necessary
to acquire control information from a performer’s actions
(for example, fingering on the flute). One possibility is
the use of augmented instruments constructed by attach-
ing sensors to traditional instruments. For the flute, four
examples can be found in the literature: the Hyper-Flute
[1], the McGill air jet sensor [2], the LMA Flute [3] and
the MIDI Flute [4]. Tab. 1, adapted from [5], compares
these systems in terms of the variables they extract and, as
is the concern of this paper, their ability to detect specific
harmonic notes. This particular technique allows a flutist
to play notes with the same pitch using different fingerings
by changing the properties of the air jet [6].

For instance, a D6 1 can be obtained using D6 finger-
ing as well as D5 and D4 fingerings by overblowing. Mu-
sicians usually refer to these cases as D6, 1st harmonic
note of D5 and 3rd harmonic note of D4 respectively (cf.
Tab. 2), while physicists would identify them as harmonic
series of the 1st harmonic of D6, harmonic series of the
2nd harmonic of D5 (plus some sub-harmonics and par-
tials) and harmonic series of the 4th harmonic of D4 (plus
some sub-harmonics and partials). The score notation for
these three configurations is given in Fig. 1.

None of the systems in Tab. 1 can detect this perfor-
mance parameter even though it is of common use for
flutists playing contemporary music, jazz and improvised
music. One could combine the McGill air jet pressure sen-
sor [2] with the LMA Flute [3] to detect both fingering and

1 We choose the convention where A4 corresponds to 440 Hz.

overblowing. The intrusive nature of the pressure sensor,
however, motivates the use of alternative methods. Herein
lies the interest of an approach relying mainly on an anal-
ysis of the sound. This type of approach, known as indi-
rect acquisition [7], has many benefits, the main one be-
ing that no alterations to the instrument are required (apart
from the need of a microphone). On the other hand, this
method requires complex algorithms which can be com-
putationally intensive.

Device Variables Fing. Air jet Over.
MIDI flute [4] all key pos. (on/ off) all — —
LMA flute [3] all key pos. (cont.),

sound amplitude
all — —

Hyper-flute [1] 2 key pos. (cont.),
inclination,
flute rotation,
distance to computer

2 — —

McGill Air-Jet
Sensor [2]

total air pressure
around mouthpiece,
flute weight around
thumb

— pressure —

Table 1. Comparison of various augmented flutes accord-
ing to the variables they extract, the possibility to detect
fingerings, air jet and overblowing.

Figure 1. Score for three fingering configurations for D6.
A diamond denotes the required fingering and a note with
a circle above denotes the required pitch.

Viewpoint Config. 1 Config. 2 Config. 3
Fingering D6 D5 D4

Air Jet Pressure normal overblow overblow
Score D6 1st harmonic 3rd harmonic

F0 fD6 2 fD5 ≈ fD6 4 fD4 ≈ fD6

Table 2. Naming convention for configurations in Fig. 1.
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2. METHODOLOGY

We first present the data set we collected for indirect ac-
quisition of fingerings of harmonic notes on the flute, and
then discuss the choice of appropriate sound descriptors
for future realtime analysis.

2.1. Data Collection

We recorded 20 isolated samples of each fingering (nor-
mal plus one or two harmonic notes) listed in Tab. 3, all
with a normal attack and a mf dynamic. Thus a total of
18× 20 = 360 samples were recorded. Depending on the
point of view, the three configurations illustrated in Fig. 1
can be expressed with a different lexicon (cf. Tab. 2). In
this paper, we refer to configurations 1, 2 and 3 as D6
with normal fingering, D6 with D5 fingering and D6 with
D4 fingering. We focused on fingerings corresponding to
pitches one or two octaves below the performed pitch (see
[8] for diagrams of the different fingerings). All of our
recordings came from a single performer and were made
using an EarthWorks SR 77 microphone (positioned ap-
proximately 10 cm above the flute mouthpiece) and an
Apogee Rosetta 800 sound card (16-bit, 44.1kHz) on a
Mac G5.

Grp Note Fingerings Grp Note Fing.
1 D#5 D#5, D#4 5 F6 F6, F5
2 D6 D6, D5, D4 6 F#6 F#6, F#5
3 D#6 D#6, D#5, D#4 7 G6 G6, G5
4 E6 E6, E5 8 G#6 G#6, G#5

Table 3. Experimental data set: note and fingerings used
to play this note for each of the 8 groups.

2.2. Strategy for Analysing Fingerings of Harmonic
Notes

When a flutist plays a harmonic note using a given finger-
ing and overblowing, several changes appear in the sound.
For example, the fundamental frequency is not exactly the
same as with the normal fingering (cf. Tab. 2). Also,
differences arise in the spectral envelope of both the har-
monic and residual components of the sound, as well as
in the temporal and spectral structures of the attack. We
did not use the slight difference in fundamental frequency
since experienced flutists can correct it, for instance, by
adjusting the air flow and tilting the flute 2 . Additionally,
detecting changes in the spectral envelope of the harmo-
nics and residual noise requires non-realtime analysis 3 .
We decided to focus on the temporal and spectral struc-
tures of the attack which seem to allow for realtime de-
tection of fingerings of harmonic notes; the temporal and
spectral analyses are explained in the next two sections.

2 “[T]he player must be sensitive to the subtleties of each fingering
and must compensate appropriately for any inherent defects in intona-
tion, dynamics, or tone quality”, [9] p. 143.

3 Audioscuplt 2.8β has some capabilities for realtime envelope and
noise estimation, meaning this approach might be feasible.

3. TEMPORAL ANALYSIS OF THE ATTACK

3.1. Observations

We examined the evolution of the short-time energy of the
signal during the attack via the RMS profile. The RMS
was computed using Hann windows 4 times the length of
the period of the lowest possible pitch (C4), with a hop
size of 20 samples. In Fig. 2, we display the average and
standard deviation of the RMS profiles computed for the
fingering configurations of D6 presented in Fig. 1.

Figure 2. Mean and standard deviation of the RMS profile
for three different fingerings of D6.

We noticed that the RMS profile increased faster for
normal fingerings than for alternate fingerings. Also, the
RMS rises faster for configuration 2 (D6 with D5 finger-
ing) than for configuration 3 (D6 with D4 fingering).

3.2. Results

In order to quantify the previous observations, we col-
lected the inflexion point of the attack profiles for all the
sounds in our data set. Fig. 3 represents the inflexion
points corresponding to three different fingerings for D6,
together with the mean and standard deviation of the in-
flexion point for each fingering. The x-axis represents the
time at which the inflexion occurs with respect to the on-
set. The y-axis represents the value of the slope at the
inflexion point, the maximum slope of the RMS profile.
It appears that, on average, the RMS profiles of the dif-
ferent fingerings tend to cluster in different regions of this
2-dimensional representation. Nevertheless, we observe a
lot of overlap between the different fingerings. Therefore
it appears that, while the RMS profile may not be perfectly
suited for the identification of harmonic note fingerings, it
still provides information about the attack (which could
be useful in combination with spectral analyses for other
applications such as attack type detection).

4. SPECTRAL ANALYSIS OF THE ATTACK

4.1. Observations

We carried out a spectral analysis on the attack portion of
our recordings using Audiosculpt [10]. Fig. 4 shows three
spectrograms of the note D6 played with alternate finger-
ings. As the fingering changes from D6 to D5 and then to
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Figure 3. Slope vs. time of the inflexion point for D6.

D4, we notice the presence of energy at frequencies that
are not in the harmonic series of D6. Moreover we see
that these additional peaks emerge at different frequencies
for each fingering. Quite logically, these secondary peaks
correspond to the minima of the acoustic impedance [8].
In the case of D6 with D4 fingering these peaks seem to
correspond to sub-harmonics of the fundamental. In the
other two configurations we can see a combination of sub-
harmonics and partials.
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Figure 4. Spectrograms for the three configurations.

4.2. Feature Extraction

Based on these observations we decided to develop a clas-
sification scheme for fingerings of harmonic notes by us-
ing the power in frequency bands centered on sub-harm-
onic intervals. To simplify the feature extraction we as-
sumed a priori knowledge of the pitch and onset time of
each note. For a monophonic instrument like the flute,
these parameters would be relatively easy to extract in re-
altime. We performed an FFT on each flute recording us-
ing a 2048-point Hamming window and 1024-point hop
size. Using a priori pitch information, we extracted the
maximum magnitude peaks in frequency bands of width
f0/8, centered on k · f0/4 where k is the rank of the sub-
harmonic in the series (k = [1, 2, . . . 6]). The power of
these 6 peaks was then averaged in time over a small num-

ber of windows (typically 15, representing around 370 ms
at 44.1 kHz) starting from the onset of the note.

4.3. Principal Component Analysis

We applied a principal component analysis to the 6-dimen-
sional feature vector just described in order to isolate the
elements responsible for the greatest variance.

The principal component analysis (PCA) technique de-
composes a data set onto the eigenvectors 4 of its covari-
ance matrix [11]. A reduction in dimensionality can often
be achieved using PCA since the first few eigenvectors
(principal components) usually account for a high per-
centage of variance in the analysed data (in which case
non-principal components may be discarded with mini-
mal information loss). PCA can aid in the interpretation of
data because it concentrates information previously spread
across several interrelated variables (see [12] for its use in
the analysis of guitar timbres). Since separating the di-
mensions of a data set according to variance will often
cause clustering in the eigenspace, PCA can also be used
as a classifier. Here we used it to classify harmonic notes
fingerings similarly to how the embouchure pressure and
attack types were identified on the clarinet in [13].

4.4. PCA Results

We performed a separate PCA on each configuration in
our data set and, to verify our results, we performed an 8-
fold cross-validation. Cross-validation is the most widely
used method for obtaining unbiased estimates of model
performance in machine learning applications [14].

Thus, for each group listed in Tab. 3 we generated 8
subsets, each with 14 training samples, and 2 test sam-
ples (generated using a random permutation). The 8-fold
cross-validation lends confidence to our results since each
test is performed 8 times using different training/test sets
(instead of just a single time).

al

al

Figure 5. First two principal components for 3 configura-
tions of D6 (gray: training data; black: test data).

Fig. 5 and 6 show typical results of the PCA. In each
figure the gray shading represents training data and the
black shading represents testing data. The first two princi-
pal components were found to account for over 90% of the

4 These eigenvectors define a linear transformation between the orig-
inal feature space and an eigenspace.
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Figure 6. First two principal components for 2 configura-
tions of E6 (gray: training data; black: test data).

variance in each group. Referring back to the figures, no-
tice that each configuration forms a distinct cluster in the
eigenspace. We used a Euclidean distance measure in or-
der to classify the harmonic note fingerings used on each
test sample. In other words, the squared distance between
each test sample and the center of gravity of each training
cluster was measured, and used to classify the test sam-
ples. We found that all of the test samples from our data
set were correctly classified using this metric. After train-
ing the system off-line, the system was used in realtime
(with a priori onset detection and pitch estimation).

5. CONCLUSION AND FUTURE WORK

This work has examined techniques for indirect acquisi-
tion of fingerings of harmonic notes on the flute 5 . Al-
though the RMS profile is very useful for other analy-
ses such as attack type classification, it was not sufficient
for classification purposes. On the other hand, we have
demonstrated that it is possible to identify which finger-
ing was used to produce a given harmonic note by apply-
ing a PCA to the energy in frequency bands centered on
sub-harmonic intervals. The results for a single performer
were very robust, giving 100% correct classification on
eight different notes, using an 8-fold cross-validation.

A natural next step would be to extend this study to
multiple performers. Indeed, it remains to be seen whether
a performer invariant system would be possible, or whether
a PCA calibration would be required on a performer by
performer basis. Another logical step would be to allow
for truly realtime indirect acquisition, by combining real-
time attack detection and pitch estimation, as well as by
reducing the analysis window length. We would also like
to test the performance of this technique in more realistic
musical conditions, for example, on a series of articulated
notes, as well as notes with variations in dynamics.
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Ministry of Economic Development (PSIIRI grant), and
CIRMMT (Centre for Interdisciplinary Research on Mu-
sic, Media and Technology).

7. REFERENCES

[1] C. Palacio-Quintin, “The hyper flute,” in Proc. Int.
Conf. on New Interfaces for Musical Expression,
Montreal, Qc, Canada, May 2003, pp. 206–7.

[2] A. D. Silva, M. M. Wanderley, and G. Scavone, “On
the use of flute air jet as a musical control variable,”
in Proc. Int. Conf. on New Interfaces for Musical Ex-
pression, 2005.

[3] S. Ystad and T. Voinier, “A virtually real flute,” Com-
puter Music Journal, vol. 25, no. 2, pp. 13–24, 2001.

[4] D. Pousset, “La flute-midi, l’historique & quelques
applications,” Master’s thesis, Université de Paris-
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