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Abstract

This thesis investigates the possibility of exploiting haptic force-feedback technology for

interacting with virtual musical instruments. A survey of current software solutions for

creating haptic virtual environments is provided, with a discussion on the need to integrate

such a platform with currently accepted solutions for audio research.

A system was developed to combine a haptic programming library with a physical dy-

namics engine and to expose its functionality through the Open Sound Control (OSC)

protocol, an increasingly accepted standard for communication within the audio software

and hardware domain. Using OSC messaging, simple 3D objects can be instantiated and

constraints on their movement can be specified, allowing the description of physically dy-

namic mechanisms. Collision events as well as properties of the objects can be transmitted

to the audio system continually to be used for modulating audio synthesis parameters.

Some examples of simple virtual musical instruments created with the aid of this system

are provided.
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Resumé

Ce rapport de thèse examine la possibilité d’utiliser la technologie haptique basée sur

le retour d’effort dans l’intéraction avec des instruments de musique virtuels. La revue

des logiciels courants pour la création d’environnements de réalité virtuelle incluant des

sensations haptiques a montré un manque de prise en compte fonctionnalités audio. Il

est discuté le besoin de faire un lien avec les logiciels utilisés couramment en recherche

acoustique.

Un système a été créé pour combiner les fonctions d’un logiciel d’haptique et d’un mo-

teur physique, en exposant leurs fonctionnalités à l’aide du protocole Open Sound Control

(OSC), un standard de plus en plus utilisé pour la communication entres systèmes d’audio

logiciels ainsi que matériels. Des objects simples en trois dimensions peuvent ansi être

créés et soumis à des contraintes de déplacement, permettant la description de mécanismes

physiques. Les propriétés de ces objects peuvent êtres manipulés sur une base d’évènements

ou d’actions continuelles, et être utilisés pour controller les paramètres de synthèse sonore.

Quelques exemples d’instruments musicaux virtuels sont implémentés à l’aide de ce système

à titre d’illustration.
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Chapter 1

Introduction

1.1 The Haptic Sense

It has been known for some time that the feel of a instrument plays an important role in

a musician’s ability to learn and to play it [71]. Indeed, our ability to feel the surrounding

environment, our tactual, or haptic sense, is used constantly in our daily interactions with

the world. The sense of touch can be roughly divided into two general categories: the tactile

or cutaneous sense, which allows us to feel textures, vibrations, and temperature differentials ;

and the kinesthetic sense, also called force feedback, which allows us to internally feel the

positions of our limbs through feedback from our muscles, as well as to externally feel the

resistance that an object exerts on our muscles [10].

The synthesis of haptic feedback in the digital domain, what Gillespie [33] described

as “computer mediated emulation of mechanical impedance,” is of growing interest to

researchers in virtual reality. Visual and auditory feedback have seen much attention in

the last few decades; despite having had some attention as early as the late 1970’s [13],

comparatively speaking, haptics is still a young field. This is largely due to, though certainly

not restricted to, the mechanical and computational demands of haptic display. However,

the results are worthwhile: the combination of haptics with audio and visual feedback, a

so-called multi-modal display, provides a far more immersive virtual experience for a user

than a display providing only one or two sensory modes [10]. Additionally, the haptic

channel can provide a means of communicating state information to the user of a device

without relying on or interrupting visual or auditory streams [39].
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1.2 Gestural Controllers and Virtual Musical Instruments

Ever since the introduction of electronics into the musical domain, musicians and re-

searchers have struggled to find convenient ways to provide control for electronics that

are more intuitive than the traditional knobs, sliders, mice and keyboards that have be-

come ubiquitous in the digital era. It has been recognized that the instrumental gesture

is key to the expressive production of sound. Cadoz [11] claimed that the instrumental

gesture is inseparable from the sound, and that it in fact defines the sound.

Correspondingly, an impressive number of controllers have been built in the last few

decades that all make an attempt to extract gestural information for use in sound synthesis.

Mulder [63] summarized these into categories such as “touch controllers”, “expanded range

controllers”, and “immersive controllers”. Other terms have been used such as “hands-free”

[62] or “open-air” [80] controllers. All of these use some form of sensing to transduce human

movement into digital signals which can control sound synthesis algorithms. Wanderley and

Depalle [94] considered that the combination of a gestural controller and a sound synthesis,

two processes that traditionally have an inherent relationship for acoustic instruments, can

be thought of as a single unit termed a digital musical instrument (DMI).

While gestural controllers have been able to help restore a relationship between in-

strumental gesture and sound synthesis, this relationship is arbitrated by a mapping layer

between controller output parameters and synthesis inputs. Development of this mapping

layer is not necessarily trivial, and is an important part of the DMI [42]. The task of

creating and perfecting it can be a long process consisting of constant feedback between

performer, instrument, and designer [53].

Citing the difficulty of adapting physically-based gestural controllers to the needs of

different performers, Mulder [61] proposed that the DMI should be abstracted by one

more level. He suggested that a virtual musical instrument (VMI)—a gestural controller

defined in software—would be the most flexible controller possible, and would allow gestural

access to “all possible audible sounds”. While somewhat understating the difficulties of

implementing a generalized software-based controller paradigm that would allow unlimited

access to an arbitrary parameter space, the idea that Mulder was proposing was quite

sound: the introduction of a new mapping layer from the physical controller to a virtual

controller, which would in turn have outputs mapped to a sound synthesis engine. In

particular for “hands free” controllers, like the datagloves used by Mulder for the control of
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Fig. 1.1 Axel Mulder demonstrating glove-based interaction with a virtual
musical instrument, developed with Sidney Fels and Kenji Mase, at Kansei—
The Technology of Emotion Workshop in 1997, Genova, Italy [64], from Trends
in Gestural Control of Music [63]. A close-up of the “rubber sheet” object is
seen on the right-hand side, from [61]. Both images are reproduced here with
permission.

his VMI, the extra abstraction layer enabled a performer to use metaphor to help visualize

the control surface of an instrument that he could not actually touch. (See Figure 1.1 for a

picture of Mulder playing a virtual instruments.) This created a meaningful and concrete

mapping between hands-free gestures in three dimensions to a virtual space which could

allow fewer or more degrees of freedom than the physical controller could actually provide.

In other words, the VMI helped to provide a semantic grounding to an otherwise arbitrary

many-to-many relationship between controller and sound.

1.3 Force-Feedback Displays as the VMI Physical Layer

I will now review some applications of haptic display, and discuss how similar ideas might

be applied to musical purposes. Salisbury [82] proposed several uses for force-feedback hap-

tics: seismic modeling, virtual prototyping, shape sculpting (for 3D modeling), molecular

docking, and surgical simulation and training. Many of these ends have since been pur-

sued. To date, force-feedback has found its way into gaming devices, rehabilitation for the

visually impaired, desktop user interfaces, visual art (painting and 3D modeling,) surgical

simulation and telesurgery, and virtual prototyping of CAD designs [46]. It has also been
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used in music research [13, 29, 66, 72, 90], which will be discussed in depth in the next

chapter.

Generally speaking, force-feedback haptics sees many uses in areas involving virtual

reality. This is because force feedback requires direct user interaction for display. In order

to “display” something, the end effector of a haptic device must be moved by the user so

that it can be repelled. As the user explores by probing with the end effector, consistancy

in the “force field” can give an idea of a solid object. The implication is that in order

to provide force feedback, some idea of what is being displayed is usually modeled by the

computer—a virtual environment.

Thinking back to gestural interfaces, a controller is simply an object to be manipu-

lated by a user, so that instrumental gestures can be transformed into sound. As Mulder

showed, the controller itself can be virtualized in a similar way that a CAD design can be

manipulated on the computer before being built, or your left knee can be simulated for

surgical training. With force feedback getting so much attention in these applications, it

seems natural to think about how it could be similarly applied to create a more immersive

VMI experience.

Mulder stated repeatedly in his dissertation that his VMI unfortunately lacked tactual

feedback [62]. He used a pair of input devices called datagloves which could sense the

position of each hand in space as well as the bend of each finger. Using deformable physical

models computed in Max/FTS, users could use their hands to push and pull on the VMI

shapes, which changed corresponding sound parameters in real time. At the time, no glove-

based haptic devices were available, so datagloves could only provide sensing capabilities.

Consequently, users depended entirely on a visual display and the auditory feedback to

orient themselves in the virtual environment and accurately perceive the metaphor they

were manipulating.

Today, it is possible to purchase datagloves that allow some form of force feedback.1

However, the problems of actuating the many degrees of freedom in the human hand in a

comfortable manner make such devices heavy and prohibitively expensive. Instead, another

class of haptic displays, so-called “pen-based displays,” have seen a much wider adoption by

the commercial market. Pen-based force-feedback hand controllers ranging in capabilities

are now developed and sold by at least 5 different manufacturers [28, 32, 60, 67, 84].

Examples of interaction with a pen-based display can be seen in the figures in Chapter 4.

1The CyberGrasp from Immersion, for example.
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This market competition has reduced the price of force-reflecting 3D manipulators to levels

that are becoming more affordable. Thus, although they are mostly limited to interaction

with a single point in space, pen-based displays are an excellent starting point for exploiting

force-feedback haptics in VMI interaction.

1.4 Motivation and Requirements for a Haptic VMI

Implementation

Mulder’s main reason for developing the VMI concept was to create infinitely adaptable

musical interfaces, but in fact the uses of VMI’s, and particularly haptic VMI’s, are actually

more numerous. From the perspective of musical research, we are interested in exploring

what kind of a role the kinesthetic and tactile sense plays in musical interaction. By

virtualising the gestural control, it becomes possible to adjust various aspects of haptic

feedback in ways that would be impossible with a “real” interface, or even to turn it off

completely. With the “feel” of an instrument being variable, we can approach the problem

of musical kinesthetics in a properly scientific manner. For instance, haptic parameters such

as stiffness, texture, friction, and latency can be modified. A VMI could be played with

and without haptic or visual feedback to examine how the presence of a particular sensory

mode affects learning and playability. In addition, several haptic “effects” developed in HCI

research can be exploited [68]: gravity wells, constrained movement, and vibrotactile cues

can be created. Simulations of traditional musical interactions can be achieved, such as

bowing, tapping, and plucking. Using physical dynamics, musical instruments that exploit

object interaction and movement could be created.

From an industry perspective, there is a need for methods for evaluating and comparing

haptic devices. Performance measures for haptic devices are currently known [38], but

designing common tests for these measures is an ongoing task. In particular, determining

how the needs of haptics for music may differ from, say, surgical applications may help

to find VMI that are suitable for testing certain aspects of new haptic devices. Finding

expert musicians willing to participate in such experiments should prove more convenient

than surgeons, making comparison testing easier.

With these purposes in mind, it can be specified what sort of features to look for in

a good VMI implementation. Firstly, since several audio environments are available for

real-time sound synthesis, easy integration with these programs is desirable. Secondly, for
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the purposes of constructing experiments it is important to offer a wide variety of haptic

effects with variable parameters. To establish a virtual controller metaphor, these haptic

effects must be associated with objects in a virtual environment, which can be manipulated

by some input device. Thirdly, the availability of a physical dynamics engine is desirable

for creating mechanisms which can react realistically to user input.

1.5 Summary

This chapter has discussed the background, motivation, and requirements for creating a

haptically-enabled virtual reality environment which can communicate with an audio sys-

tem in order to design virtual musical instruments which can be touched and manipulated

by a user. The remainder of this thesis will discuss the implementation of such an en-

vironment in more details. Chapter 2 discusses previous work in audio-enabled virtual

environments with and without haptic feedback, as well as previous research in the use of

haptics for studying musical interaction. Chapter 3 contains a survey of software currently

available for the development of haptics and virtual environments. Chapter 4 provides

details of DIMPLE, a tool for the creation of VMI’s controllable from within existing audio

software, and describes some examples of instruments that have been created with it to

date. Chapter 5 gives some conclusions and ideas for future work with the system.
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Chapter 2

Background

This chapter discusses several previous works on force-feedback in musical interaction and

on the development of virtual musical instruments. As we will see, a large amount of

attention has particularly been given to the simulation of the bowing gesture. The feel of

the piano action has also been extensively investigated. In general, significant focus has

been put on creating physically accurate simulations of particular real-world instrumental

interactions.

2.1 Previous work on force-feedback haptics in gestural control

of music

2.1.1 ACROE

As we have discussed, Cadoz [11] proposed that instrumental gestures are accompanied

by inherent haptic feedback. When a musician blows a horn, bows, or plucks a string, he

feels the tension and release of pressure in the instrument, and feels the vibration of the

resonating body in his limbs and torso. This feedback helps him to control the instrument

accurately, and consequently its sound. Cadoz, Florens and colleagues at ACROE set

out to create a computer-controlled device that could recreate the feel and sound of an

instrument. Called a Transducteur Gestuel Rétroactif, or Retroactive Gestural Transducer

system (TGR), this project involved the design of special motors, dedicated processors, and

a modular mechnical system that eventually resulted in the Modular Feedback Keyboard

(MFK) [13], now commercialized as the ERGOS device [28]. The modularity of the design
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Fig. 2.1 A gestural interaction with the TGR. The user manipulates the
circle and can feel the object inside when it collides with the sides. The
vibrations of the object give rise to audio feedback. From Trends in Gestural
Control of Music [12], reproduced here with permission.

allows the mechanical coupling of motors and the interchange of end effectors to create a

haptic display with configurable grips and variable degrees of freedom (DOF). In addition

to functioning as an actuated keyboard, motions such as bowing and squeezing can be

achieved, as well as general 3- or 6-DOF point manipulation. See Figure 2.1 for a picture

of the TGR in action.

Some models created with the device include a virtual violin [30], and a child’s rattle

[31]. These two models were expressed using the CORDIS-ANIMA formalism for physical

modeling [14]. This language allows the description of a physical system, which can then

be used to interact haptically, generate sound, and be viewed graphically.

In the violin model, the gesture interface, a 3-DOF “horizontal joystick” extended from

the MFK keys controls the exciter portion of the model. The exciter is connected to a non-

linear links block which represents the bow-string interaction, and this in turn is connected

to a mass-spring model of a string, which can also be replaced by a modal string model. The

CORDIS-ANIMA language allows a minimal and exact description of the physical system.

It is discussed further in Section 3.1.8. Florens reports that the model has a narrower

“space” than a real violin, referring to “the pitch space, the bowing space and the dynamic
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of the possible and pertinent bow pressure variations,” but that within the playable region

the similarity to the real interaction is “striking”. By playing with the physical parameters,

especially the gesture coupling scale factors, he found that the most comfortable situation

corresponds to, “‘light’ strings that provide a tiny but non-null friction force.”

2.1.2 The Touchback Keyboard

Gillespie [33] used a force-feedback system to emulate the action of a grand piano. Com-

monly, pianists found that the system of weights and dashpots incorporated into electronic

pianos were not similar enough to the feel of a traditional piano. While pianists can tech-

nically only control the timing and hammer velocity resulting from a key hit, they can

produce a range of timbral effects by finely manipulating these parameters. To achieve

such control, they place high importance on the “touch” of a piano key, which includes not

only the weight, but also a sensation of the underlying mechanism, including the sudden

release or “let-off” of the hammer. Gillespie’s solution was to simulate the haptic feedback

in a piano using digital motor-control algorithms based on a physical model of the piano

action. He created the Touchback Keyboard as a result, an 8-key actuated keyboard.1 His

work encompassed a proposed solution to guarantee passivity in the rendering of a virtual

wall, a problem which has application across the entire domain of digital haptic display.

Oboe and Poli [69] later created MIKEY, the multi-instrument active keyboard, an

attempt to improve Gillespie’s simplification of the grand piano action, as well as to emulate

the action of a harpsichord and a Hammond organ. They made use of low-cost electronics

to show that it is possible to create such an instrument in a cost-effective manner.

2.1.3 Bowing the Moose

O’Modhrain [71] set out to discover whether haptic feedback was critical to musical per-

formance, and if so, whether it is ingrained in a player’s internal representation of the

instrument. It was observed that a Theremin, an early “hands free” instrument using

electric field sensing to allow hand proximity to control pitch, seemed to be easier to play

when the player’s hand was attached to the antenna with an elastic band. Seeing that

the presence of a position-dependent force could help in performance, she proceeded to

1It should be noted that he credits Max Mathews as drawing the first sketch of a solenoid-driven actuated
key in 1988.
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perform several studies on the playability of a Theremin-like sound under various force

feedback conditions. The device they used was a 2-DOF force-feedback controller called

the Moose, developed by Gillespie and O’Modhrain [34]. It was originally intended as an

interface to allow blind persons access to two-dimensional graphical user interfaces. The

study tested several linear mappings between pitch and force. Included conditions were: no

force, positive and negative constant force, positive and negative spring force, and viscous

force. (The last is a change in force related to velocity.)

They found that playing accuracy was better in all force conditions than without force.

Additionally, they found, marginally, that the best playing accuracy was in the positive

spring condition, where force linearly increased according to pitch. Next they performed

another study, this time allowing subjects to practice the melody several times. The intent

was to discover whether force only helped in the learning stages of playing an instrument,

or if it had a lasting effect. Their results showed that players became accustomed to the

force condition, and tended to overestimate their movements if the force was subsequently

removed.

The second phase of experiments was to study the bowing gesture. The violin is an

instrument shown to provide vibrational feedback through the left hand, which fingers

the strings, through the neck and upper body, which are in contact with the instrument’s

resonating body, and through the right hand, which holds the bow. They implemented

a friction model for the tactile response of the bow hand based on research by Hayward

and Armstrong [37], excited by lateral movement of the end effector against a virtual wall,

which attempted to simulate the stick-slip motion of bow-string interaction. Excitation

was accompanied by a physically modeled string sound. In the experiment, subjects were

asked to try and reproduce pre-recorded bow strokes. Results were compared analytically

as well as by expert judges.

Strangely, they found that novice players performed the same with and without friction,

while expert performers performed worse in the presence of friction, despite the fact that all

subjects reported preference for the friction condition. The conclusion was that the friction

model was not similar enough to the real bow-string interaction, so that it confused players.

Another conclusion one might draw is that perhaps friction plays less of a critical part

in the interaction than simply the perpendicular resistance to bow pressure. If the feeling

of pressing against a virtual wall was enough to inform players of their instrumental effort,

it is possible that lateral vibrations only serve to make the gesture more satisfying, but do
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not add any extra information to the interaction. It may be interesting to perform further

comparisons under different types of friction conditions. Additionally, the 2-DOF device

did not allow investigation of the role of torque, as discussed in Section 2.4.4, which is likely

an important component of the bowing gesture.

Relevant to this thesis are some comments in O’Modhrain’s conclusion: firstly, she

discusses some problems with attempting to control audio and haptic responses with a single

process, stating her reasons for choosing parallel processes that communicate information

over a MIDI connection. This is relevant to similar design decisions made for our system,

discussed in Section 4.4. Secondly, she remarks on the need for a hierarchical control

protocol for transmitting gestural information. Again, this relates directly to our decision

to use the Open Sound Control protocol for communication with virtual environments.

Lastly, she mentions the need for a “development environment for haptic feedback,” which

would allow for substitution of hardware components and easy access to haptic primitives

such as springs, dampers, and friction effects. This has precisely been the goal of the work

discussed in Chapter 4, through the use of objects, properties, and constraints.

2.1.4 Nichols’ vBow

Inspired by personal musical needs, as well as by the work of O’Modhrain described above,

Nichols [66] created the vBow, a motorized bowing machine used to simulate the stick-slip

friction of a bowed instrument. The first version of the vBow featured only one lateral

degree of freedom. A wire along the “bow”, representing the hair, was attached to a single

motor and encoder, so that motion along this length could be detected and opposing force

could be applied. Subsequent versions supported the addition of rotational, vertical, and

longitudinal motion, essentially turning it into a serial robotic arm.

The vBow controls a bowed string physical model designed by Serafin et al. [86]. Citing

a large body of work on mathematical modeling of the physical interaction between bow

and string, it was made clear that this complex and subtle interface would be difficult to

simulate with perfect accuracy. The model used had previously been tested with a Wacom

pen tablet input device [85].

An accompanying haptic model is also controlled by the software. Haptic feedback

includes “friction and vibration for the lateral motion, detents for the rotational motion,

elasticity for the vertical motion, and friction for the longitudinal motion.” The vibration
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felt through the lateral servomotor is simply a scaled-down copy of the sound synthesis

output. On both lateral and longitudinal motions, friction is also felt which is a random-

ized function that emulates interactions with micro-imperfections in the hair, resulting in

a feeling of “non-periodic roughness.” The “detent” simulation—the simulation of the bow

rolling across the violin strings—is accomplished by providing force feedback in the rota-

tional direction as the cable passes over the location of the simulated strings. A series

of “slices”, non-linear divisions of the rotational dimension, are used to simulate rolling

over each of the 4 strings. Finally, the combined elasticity of the string and bow hair is

simulated by a linear spring model in the vertical direction. This model allows the player

to feel the tension in the string.

Nichols describes several potential uses for the vBow, including the “bowing” of other

types of sound synthesis models, and experimentation with different types of haptic feed-

back. Simulating different hair and string materials and unusual configurations of strings

is suggested.

2.2 Other studies of synthetic tactual feedback for control of

sound

2.2.1 Vibrotactile feedback

Chafe [15] showed that introducing vibrotactile feedback into a gestural controller can help

in maintaining accurate control over the playing of an “unpredictable” physical modelling

synthesis. The term vibrotactile feedback can refer to any oscillation felt by the player’s

body as he plays an instrument. In the gestural controller literature, it is most often used

to refer to the playback of the audio signal through a vibrating actuator attached to the

body of the controller. In Chafe’s case, he attached a voice coil actuator and a strain gauge

to a metal bar, which was used to control a wind instrument physical model. The chosen

physical model had a “lip tension” parameter, which was mapped to the strain gauge, and

consequently to the deformation of the metal. In a traditional wind instrument, the player

uses lip tension to control a sound, but also senses the instrument’s vibration through his

lips. Correspondingly, it was found that when players could feel the sound through the

voice coil, they found it easier to play the instrument: specifically, they could more easily

determine when the physical model was about to become “unpredictable”, and temper their
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playing accordingly. Interestingly, Chafe discussed how the pitches of notes were entirely

above the frequency range of the human tactile sense. However, on transitions between

notes, a brief period of overlap caused subharmonics which could be felt.

Further efforts to explore vibrotactile feedback in gestural controllers include Bongers

[9], who described several uses for tactile display in music, and Rovan and Hayward [80],

who explored the use of tactile feedback to deliver cues for open-air controllers. The Touch

Flute [8]and the Viblotar and Vibloslide [55] are some examples of controllers built at

McGill for exploring vibrotactile feedback. Marshall and Wanderley [55] also give a good

overview of the effectiveness of various types of actuators for vibration, with reference to

the frequency ranges of the human tactile sense.

2.2.2 Force feedback

DiFilippo and Pai [26] created “AHI”: an audio-haptic interface using a modified version

of the Pantograph device based on a design by Ramstein and Hayward [76] at McGill,

and used a dedicated microcontroller to simulate physical collisions with very low latency

between audio and haptic responses. The device was a 3-DOF input device, with two linear

directions and one rotational direction. (The original Pantograph lacked the rotational

direction.) It could be used for simulating non-centered or multi-point contact with two

dimensional bodies in a planar environment; however, the authors did not make use of

the rotational DOF—the study was strictly on single-point contact with a virtual wall.

Audio responses consisted of a convolution-based modal synthesis. Because, similar to

ACROE’s approach, they used a single dedicated DSP for synthesizing haptic and audio

feedback, they were able to create latency below 1 ms. Unlike Adelstein et al. [2], they

aimed not to determine the JND of audio-haptic latency, but rather to verify that a positive

or negative 2 ms delay would be a valid lower bound for human perceptual tolerance of

synchronization latency. By varying the delay between haptic and audio responses they

were able to determine that this is indeed the case. Specifically, they verified that there

was no perceptual difference betwen 0.5 and 2 ms of delay, though the rate of decay of the

sound had an effect on this perception. See Section 4.3 for a discussion on the topic of

audio-haptic latency.

Feasel [29] did an unpublished but well-documented class project for Prof. Ming C.

Lin involving a 3-DOF SensAble PHANTOM Omni device for plucking physically modeled
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strings. He performed an analysis of guitar pick-string interaction and implemented a

simplified model of it using the SensAble GHOST SDK. He reported that the interface is

playable, though it takes some practice. The main problems he encountered were some

difficulty in computing the device’s handle orientation and the lack of rotational force

feedback. The need for device torque is discussed further in Section 2.4.4.

FoleyAutomatic, created by van den Doel et al. [90], is a physically modeled audio-

visual simulation of typical interactions used in the creation of sound effects. In particular,

the authors modeled not only impact sounds, but also rolling and sliding interactions.

The approach was to use modal resonance models for synthesis, and stimulate them using

stochastic models of fine-grained interaction. They modeled a rock in a wok, which is a

typical set-up for foley artists, as well as a screwdriver-bell interaction. The focus was on

producing convincing sound effects by utilizing physically modeled environments, but there

was little discussion on the importance of intuitive gestural control for such a system. There

was, however, a brief mention of using a PHANTOM device to control the screwdriver, so

that the edges of the bell could be felt.

Howard et al. [41] created Cymatic, another approach to physical modeling, partly

inspired by CORDIS-ANIMA. A Cymatic instrument is constructed of masses and springs.

A library of components is available, which are objects in 1, 2, 3, or more dimensions, and

thus instruments that could not exist in reality can be constructed. As with CORDIS-

ANIMA, virtual microphones can be placed on Cymatic masses so that the movement of

a mass is turned into an audio signal. Tactile and force feedback can be provided through

actuated joystick and mouse interfaces. Such an interface can be used to bow a Cymatic

element. Alternatively, microphone input can be used to excite a mass, causing incident

vibrations in connected masses.

2.2.3 Various musical haptic devices

Verplank et al. [91] created the Plank, a haptic controller specifically designed for scanned

synthesis [93]. The idea behind scanned synthesis is to manipulate a two-dimensional curve

representing a string at a slow rate, termed the “haptic rate” by Verplank, referring to the

speed of human muscles. The curve is simultaneously played as the kernel of a wavetable

synthesis at the audio rate. The Plank was built from an old hard drive motor, featured

a Hall-effect sensor for position, and used a force-sensing resistor for determining pressure.
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The user could hold the “plank” with his hand and move it left and right. Applying

pressure to the FSR would create indentations or otherwise perturb the string model,

creating changes in timbre. The motor could resist the left-right movement so as to create

the impression of feeling bumps in the surface of the wave.2

Later, Verplank [92] enumerated a set of simple haptic musical gestures such as pluck,

ring, rub, bang, strike and squeeze. He suggests that some of these can easily be achieve with

only one degree of freedom. He used a 1-DOF device called the Force Stick to model them.

It consisted simply of a short stick attached to a motor, which is capped with a force-sensing

resistor. Data from the FSR is read by an Atmel microcontroller, which then changes a

control voltage for the motor. Data is also sent from the microcontroller to a computer,

where PureData is used for audio synthesis. Specifically, the effects he implemented are

hitting a virtual wall, traversing a bumpy surface, plucking, friction, swinging a pendulum

against a bell, and spinning a virtual wheel. He writes, “the surprise is that the ‘best’

haptics (precise, stable) may not be the most ‘musical’.” Additionally, he claims, “some

sounds are impossible without the active force interaction.”

Bennett et al. [7] examined the use of an electronically-controlled brake. As rotational

movement of the apparatus controlled play head movement through a sound file, they used

the audio output to modulate the brake. The effect was of being able to feel the resistance

of the sound wave as it played. Interestingly, this experiment has some characteristics of

force feedback, since it uses braking torque to resist user movement, but uses techniques

usually exploited by vibrotactile feedback—that is, playback of the audio signal through

an actuator. In an earlier study, Bennett [6] used the brake to simulate the hitting of a

virtual drum kit.

2.2.4 Extending sonification of data through haptics

Hermann et al. [40] created the “audio-haptic ball” for sonic manipulation, a sort of “vi-

brating potato” which can be shaken, squeezed, hammered, moved and rotated to create

different parametric changes. The intension was to use this device for navigating and con-

trolling sonification of large amounts of data, to help “experience” the data in order to

more easily find patterns and relationships within it. It is interesting in our context be-

cause the idea behind the ball was a deliberate attempt to avoid mapping data directly to

2Since the Plank involved a model of a touchable object, it could certainly be considered as a two-
dimensional VMI.
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sound parameters, but instead use the data as the model for a virtual object which is then

interacted with via the device’s sensors and vibrating actuator.

This sort of data representation is reminiscent of another use of the Moose proposed

much earlier by Chafe and O’Modhrain [16] where the device was used to create a haptic

representation of the similarity between different performances of the same piece of music.

It showed that haptics can have a role not only in musical performance, but also in analysis

and editing of musical representations.

2.2.5 Non-musical artistic uses for haptics

Baxter and Lin [5] created a haptically-enabled visual painting environment in which brush

strokes and fluid viscosity are simulated accurately, and showed that such a system could

be used to create actual artistic works.

There has been considerable interest in the use of 3D modeling for computer graphics

[57]. For instance, SensAble [83] now offers two software products which utilize their haptic

controllers to perform “clay-like” deformations of 3D models with force-feedback.3

Haptics have even been incorporated into a virtual hair styling salon [49, 96].

2.3 Non-tactual virtual instruments

For our purposes, non-tactual VMI may include any digital sound interface, usually repre-

sented with 3D graphics, which can be interacted with using an input device, and departs

from the knobs and sliders often seen in the WIMP4 screen-based interface paradigm.

In an early attempt to create musical instruments in virtual reality, Ng [65] extended the

AVIARY virtual reality system to enable communication with an audio system. He created

a 3D virtual recorder (woodwind instrument) that could be played by moving cubes over

the finger holes. He envisioned a distributed virtual space in which musical performances

could take place, with accurate spatialization of sound sources. He programmed AVIARY

to use MIDI for triggering sound events on external synthesizer hardware. Mentioned also

was the need for tactile stimulus, though haptic hardware was not available at that time. He

unfortunately also did not have access to motion tracking hardware, and so his environment

3A full discussion of 3D “clay” modeling with haptics represents a large body of research and is out of
the scope of this thesis.

4Windows, Icons, Menus, Pointers
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was limited in practice to playback of pre-recorded files. Similarly, computer hardware at

the time was not capable of producing high quality spacialization.

Choi et al. [17] created a “manifold interface” for exploring the parameters of an un-

predictable audio circuit simulation. An image of the system is given in [4]. The manifold,

representing continous transformations of circuit parameters mapped to the axes of a cube,

is visually represented in three dimensions. The user can trace paths on the manifold which

are then retraced to produce sound sequences. The interface is unique in that it presents

a control space simultaneously with the phase space of the circuit being represented [4].

As mentioned in the previous chapter, Mulder [63] created two VMI simulations that

used datagloves for input. They were the rubber sheet and the balloon. The user could

push on the surfaces of these objects to create deformations, which created corresponding

changes in sound characteristics. The simulations could also have certain nodes of the

objects be connected to the positions of the thumb and index finger, so that the object could

be stretched and twisted directly. The objects were modeled using spring-mass systems,

which were constructed by fitting mathematical structures. For example, the curvature of

the hand, computed from the positions of each finger relative to the angle of the palm,

was applied to the balloon’s ellipsoid curvature. An attempt was made to sonify the shape

changes with associated sound qualities. The roundness of the balloon was mapped to the

frequency modulation index, which provided a change in timbre. It is interesting to note

Mulder’s comments on user manipulation difficulties [63]:

Touching the virtual object to move, rotate or shape the virtual object, required

effective feedback of the contact between the hands and the virtual object. As

no tactile feedback or force feedback was available, the performer had to rely on

the visual feedback generated from the hand movements affecting the virtual

object or the performer had to rely on changes in the sound. This method

proved not so effective, probably because of a lack of suitable depth cues and

because the absolute location of the virtual object had to be kinesthetically

remembered (instead of being able to rely on tactile feedback when collision of

the hand with object occurred) each time the hands moved without affecting

the virtual object surface.

It is clear from this description that manipulation of a virtual object should be far more

practical if a user has a tactual impression of its presence. It also shows that there may
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be a need for stereoscopic viewing of the 3D scenario. However, it remains to be seen

what effect the graphical display has on the VMI experience if there is an adequate haptic

representation available.

Karjalainen and Mäki-Patola [45] created a virtual reality environment for musical in-

teraction called EVE. Similar to Mulder’s work, they used datagloves for input, with the

addition of a stereoscopic display. They discuss the lack of tactual feedback, and suggest

introducing real objects into the interface. Some examples of instruments they created

using EVE are a virtual air guitar, in which the distance between the hands determines

the pitch of a distorted Karplus-Strong guitar model; and a virtual xylophone, in which

a user holds virtual mallets which can be used to hit virtual metal plates located in the

air around the user. They report that users actually prefer to hold a real mallet for the

same interaction, and that it seems to actually improve temporal accuracy. One might

argue here that the use of real objects for controlling virtual interfaces begins to somewhat

resemble the idea of tangible computing, such as the reacTable [44], for example.

Another consideration is that there is continuing interest in screen-based interfaces

for music that depend on non-WIMP interaction and which incorporate manipulation of

virtual objects in two dimensions. There is, for instance, currently a lot of interest in

the intuitive gestural interfaces enabled by multi-touch display technology [22]. However,

even for more usual mouse-based interfaces, groups like Ixi Software create atypical two-

dimensional “toys” for musical interaction [51].5

2.4 Discussion

This section contains some reflections on aspects of haptic display put forward by the work

discussed above. These issues were influential on the justification of using pen-based haptic

displays, on the design of the implementation described in Chapter 4, and finally on what

type of virtual instruments we might decide to construct for use with these devices.

2.4.1 Partially virtual instruments

One thing to note about the notion of an actuated keyboard, as compared to a pen- or

glove-based haptic display, is that the main difference is in the choice to virtualize only part

5These are some examples, but a complete list of two-dimension interfaces and tangible computing
interfaces is beyond the scope of this thesis.
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of the instrument. An actuated keyboard virtualizes the piano action, equally enabling the

emulation of any type of keyboard action, such as the grand piano, harpsichord, or organ

[69]. Therefore, in a sense, each instance of an emulated piano action is a virtual instrument,

whose physical controller is the set of actuated keys. However, despite its large number

of degrees of freedom, each key being one, the lack of integrality [43] across these degrees

of freedom is why the actuated keyboard would not necessarily be a choice manipulator

for virtual instruments in general. We can assume that this is what led to the extensible

design of the ERGOS device.

The human interfaces with the keys using his fingers and is able to feel their tactile

properties such as the texture (or smoothness) of the material, as well as their particular

shape, using the nerve endings in his skin. In comparison, in a true VMI, the physical

interface takes the place of the fingers instead of the keys. A completely virtualized piano

keyboard, where each key is an object in a virtual environment, could be actuated by the

exact same response algorithm as the real motorized keyboard. The haptic interface would

relay this information to the user through the response detected by the proxy object, which

represents the hand or fingers in virtual space.

A human interacting with such a keyboard using a pen-based display may feel as though

he is playing the piano with a long stick, and so the expected polyphony of the piano would

likely make this a less-than-satisfying playing experience. On the other hand, an idealized

glove-based force display that can related all tactile and kinesthetic sensations would be

able to perfectly simulate a virtual piano. The notion that instruments can be virtualized at

various locations in their mechanism—components of the virtual mechanism can be replaced

with actuated physical manipulators or vice-versa—shows that the notion of a completely

virtual instrument is not necessarily at odds with a partially virtual instrument: there is a

dimension of continuity between physical controllers and their virtual counterparts.

An implication of this is that virtual instruments are inherently limited by the choice

of physical input device for interaction with the environment. Aspects include not only

the number degrees of freedom, but also the configuration of these degrees, including their

direction and their integrality. Since we are exploring the use of pen-based devices, which

tend to share these characteristics, this must be taken into account when designing our

VMI’s. We may very well be limited to instruments that are comfortable to manipulate

with a “long stick.” An alternative approach would be to first design our VMI and consider

our requirements for an input device, but since it is more convenient to reprogram software



2 Background 20

than to have our choice of ideal hardware solutions, the former approach is preferred here.

2.4.2 The importance of multi-dimensional configuration

From the previous section, it follows that the number of degrees of freedom is not enough

information for determining the suitability of a haptic interface. The configuration of

these DOF is equally important. In pen based displays, we tend to see them grouped

around either 3-DOF or 6-DOF displays, with some exceptions. Within these groups, the

dimensions are always orthogonal. This is, of course, due to the physics of the world in

which we live. A point can be described by exactly three coordinates. Furthermore, that

point, representing the location of a body, may be rotated around each of these axes, and

thus its orientation can be described by exactly three rotations with a known order. These

are the point’s Euler angles, often represented in order-independent fashion as a matrix

or quaternion. Being able to then manipulate this point to any position or orientation

creates a certain generality for the gestural interface: a 3D or 6D point can be imagined as

representing any object in a space. In comparison, a 6-key piano keyboard also has 6 DOF,

but since they are separate and their configuration is not orthogonal, they do not easily

represent a point in space in a natural way. Trying to do so would be similar to creating

a beautiful painting using an Etch-A-Sketch. Couturier [19] would say that a pen-based

display has a high degree of compatibility with the physical world.

This theory has indeed been tested in the context of control. Jacob et al. [43] tested

users on a three-dimensional target-finding task. Subjects controlled an object using either

a Polhemus position sensor or using the mouse for x and y position and an on-screen

slider for depth. The experiment showed a marked improvement in performance when “the

structure of the perceptual space of a graphical interaction task mirrors that of the control

space of the input device.”

Interestingly, it is possible that the presence of haptic feedback may have some effect on

this principle. Florens et al. [31] mentions that they tested users on two control structures,

or ergonomies, for manipulating the rattle model. The first was a separated control where

users could affect x position with one hand and y position with the other. The second

was an integrated 2D stick. They found, qualitatively, that there was no obvious differ-

ence in performance between the two situations. Further, they claimed that users found

the first situation was more accurate and easier to exert precise control. However, when
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haptic feedback was removed, the first situation became “absolutely ineffective,” and “un-

controllable.” Unfortunately, no comments were available about the effects on the second

situation.

More work on this effect would be quite interesting, but, despite the reports of better

accuracy in the separable situation, we find that pen-based control, where all dimensions

are integrated to the fullest degree, is an adequate and useful mode of interaction for the

general case.

2.4.3 Physical accuracy

Sounding objects

Restricted to the detection of impact collisions, the level of control in a simulated instru-

ment may be limited, like the piano hammer [33], to velocity and timing, perhaps with the

addition of contact location; it is no wonder that a performer would consider micro-scale

sliding and rolling interactions to be critical for generating subtle and expressive sounds

from percussive instruments, simulated or real [90]. While this thesis is not expressly con-

cerned with sound synthesis methods, it should be noted that acoustic modeling of various

kinds is becoming quite popular in sound design for 3D simulations. A good overview of

available physical modeling techniques is given by Karjalainen and Mäki-Patola [45]. The

use of rigid-body simulation for controlling physically modeled sound has been explored

previously [70], and tends to often be targeted towards sound effects for 3D animation or

video games. The reason is mostly self-explanatory: graphical simulation of a real object

in virtual space seems to go hand in hand with its acoustical counterpart.

For Luciani et al. [48], the physically consistant preservation of energy from gesture to

sound is of utmost importance. However, the reader should keep in mind that in designing

VMI’s based on Mulder’s view, we are not directly concerned with this. Rather, the goal

is to create good controllers for sounds that may or may not be related to their physical

properties—that is, we are not trying to create sounding objects [79]. Physically modeled

sounds can, of course, provide parametric spaces that map well to the output of a virtual

controller, and so the use of acoustic modeling is a good avenue for sound design in this

context, but it is just as valid from the perspective of virtual controller design to map

to sounds that are entirely disconnected from reality, as long as they are rich in timbral

dimension and the gestural control can be intuitive to the performer. For instance, in many
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cases we are looking to create a virtual controller for a sound synthesis algorithm that has

already been implemented. Thus, the design of the controller is based on the sound, rather

than the converse.

Geometric vs. dynamics-based simulation

A point of view derived from the energy-preserving ergotic scenario described in Luciani

et al. [48] is that a simulation based on preserving the dynamics of an interaction is more

important than keeping the exact geometric nature of the physical objects being simulated.

The bowing simulator they describe makes no effort to reproduce the shape of a violin, but

rather only ensures that the physical dynamics of the bow-string interaction are accurate.

They describe how this simplified the physical model and allowed players to forget about

physics while playing the instrument.

While this is an interesting observation, in this work I argue that maintaining a geomet-

ric model of the interaction certainly could not detract from the experience, and moreso

that it might provide a more concrete experience both for the instrument designer and for

the player. If we take the view, as described in the introductory chapter, that a virtual

instrument is merely an extra layer of mapping based on a physical metaphor of manipu-

lating a virtual object, then being able to visually or haptically construct an internal image

of the control surface is what allows the player to maintain this metaphor.

Vibrating bodies

While vibrotactile stimulation—the feedback that reminds a player that his instrument is

“alive”—is certainly an important aspect of haptic feedback in gestural control, this thesis

is more concerned with how force feedback may be used to provide a tactual image of a

metaphorical controller. It is important to realize, then, that tactile feedback is in some

ways inseparable from force-based display. This is because a force display must include

some form of friction model for the tactual image to be usable. Without friction, a virtual

object tends to feel “slippery” and can be difficult to manipulate. The presence of friction is

connected to the concept of texture, since the type of friction exerted by lateral movement

along an object’s surface will give rise to an image of the object’s material properties.

Coulomb friction tends to feel “rubbery”, for example.

At this time, I am explicitly not concerned with simulating perfectly the continuity
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between frictional energy and acoustic vibration, since I have chosen to concentrate on force

feedback rather than vibrotactile feedback. Thus, the objects simulated by the environment

described in Chapter 4 have frictional properties for the purpose of making them easier to

interact with, but the acoustic vibration simulated by the external audio synthesis does not

feed back into the haptic environment. It may be possible to find a solution for this within

the described architecture, but for the moment this is left for future work. This topic is

further discussed in Section 5.2.4.

2.4.4 Rotational feedback

Feasel’s experience with simulating the guitar pick is exemplary of the currently underesti-

mated need for torque feedback in haptic devices. A large number of real-world interactions

make contact at points that are not centered on the location of the hand or fingertips. In

interactions involving tools, the fingers typically grasp the tool at one point, while contact

is made with an object at another point. Any force vector creates torque around the point

where the users grasps the tool, which is felt in the wrist. Musical examples include picking

a string, hitting with a drumstick, and bowing. The vBow, for example, benefitted from

rotational feedback, which allowed it to render the positions of virtual strings.

Torque can also be useful for moving and orienting objects that have inertial properties

in a virtual space. In pen-based haptic displays in particular, the point interaction does

not allow tracking of the fingers, and so simulations are most likely to involve tools grasped

by the whole hand. Therefore, torque display is definitely an interesting avenue for musical

interaction research. There are, unfortunately, fewer available haptic devices which have

the capability to exert rotational force, and these carry higher price tags. This only makes

it more important to show that this may be a useful feature for haptic devices, so that the

industry can become interested in producing more affordable 6-DOF devices.

2.5 Summary

This chapter has given a history of virtual musical instruments and the use of force-feedback

for musical purposes. Several issues relating to the implementation described in this thesis

were discussed. Chapter 3 will provide an overview of currently available software devel-

opment solutions for haptic displays.
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Chapter 3

Software Survey

The construction of a haptic virtual environment requires the use of several types of soft-

ware. Firstly, drivers for communicating with haptic hardware are required. Secondly,

software that implements collision detection for haptic simulation is needed. Typically this

software will maintain a scene graph which tracks the objects in the environment in a hier-

archical manner. Thirdly, for creating dynamic behaviour, a physical dynamics engine, also

called a rigid body simulator, must be used, which is responsible for tracking state infor-

mation about each object’s mass and velocity, ensuring that they behave realistically when

collisions occur. Support for graphical rendering of the environment is also needed. Lastly,

distributed virtual reality software to enable collaborative interaction may be desired, but

that is beyond our scope here.

There is a certain amount of overlap between these requirements: there are several

libraries which provide access to haptic devices but also have functions to perform collision

detection, maintain the scene graph, and display it on the screen. However, most of these

libraries do not provide physical dynamics, and so a static environment is assumed. On the

other hand, physical dynamics libraries typically have their own copy of the scene graph

which must be managed to ensure that it is synchronized with the visual-haptic scene. It

should be noted that a physical dynamics library in fact contains many of the same classes

of algorithms as a haptic library, since haptics and physics share similar collision detection

requirements. However, in a “static” haptic environment, typically the collision detection

is required only for the proxy object representing the haptic device’s end effector. This is

more often than not assumed to be a sphere, or even a sphere representing a point, which
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greatly simplifies collision detection.

Unfortunately, it also inherently limits interaction to three degrees of freedom. In

contrast, physical dynamics engines usually provide 6-DOF physics, since objects often

collide at positions away from their centers of mass. In principle, a physical dynamics

engine could be turned into a haptics library by having one object represent the haptic

device’s end effector, as discussed by DeFanti et al. [25]. In practise however, some 6-DOF

physical simulations may have difficulty meeting the real-time requirements of a 1 KHz

haptic servoloop when a moderate number of objects are in the scene. This is changing

as the available processing power continues to increase, but no offering which performs

6-DOF physical dynamics and incorporates haptic support is yet available. Section 4.4 will

describe one solution to this problem, in which static haptic processing is performed in

parallel with slower 6-DOF dynamic physics processing.

This chapter provides an overview of several software environments either commercially

or freely available for creating force feedback-enabled simulations. A short overview of the

capabilities and availability of each is included, as well as a brief description of workflow in

the environment. We also describe the physical dynamics environment chosen for the work

described in the next chapter.

3.1 Haptics software

3.1.1 CHAI 3D

CHAI 3D1, which is pronounced like Chai tea and stands for Computer Haptics & Active

Interfaces, was created by Conti et al. [18] at Stanford University. It is a C++ class frame-

work which is able to represent a scenegraph composed of both mesh-based objects, which

can be loaded from disk in the 3DS format, and objects defined by implicit functions [81],

such as spheres and torii. The library makes use of C++ inheritance to abstract the device

drivers, so that various haptic devices with differing drivers and I/O interfaces can be sup-

ported by the same source code. It supports 3-DOF interaction, though the latest version

is able to detect mesh-on-mesh collisions. At the time of this writing, it supports devices

from SensAble, MPB Technologies, and Force Dimension, as well as the ServoToGo and

Sensoray digital I/O boards, which are currently popular choices for robotics development.

1CHAI was chosen as the basis for the software discussed in Chapter 4.
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Fig. 3.1 A CHAI 3D demonstration application showing how to use it in
conjunction with the OpenDynamicsEngine. The cube can be pushed around
using the haptic device, and it bounces off the walls. CHAI can be used to
visualize object axes and surface normals, as shown here.

CHAI 3D is free to download and is open-source software covered by the GNU General

Public License version 2 (GPLv2). It has been developed on Microsoft Windows but also

runs on Linux for devices which provide drivers, and can also be pursuaded to run on Apple

OS X as well. Haptic object “material” properties such as stiffness and friction coefficients

can be tuned, and two types of collision detection optimizations are available. For graphics,

it supports various colour properties, transparency, and environment mapping which are

drawn using OpenGL. For debugging and analysis purposes, internal structures such as

collision trees, normal vectors, force vectors, and local object axes can be visualized.

3.1.2 Haptik Library

The Haptik Library [24], developed by the Siena Robotics and Systems Lab (SIRSLab),

provides a device-independent interface to pen-based haptic displays. Unlike many other

software packages discussed in this section, Haptik does not provide scenegraph tracking

or any built-in rendering algorithms. However, it uses a component-based approach for

accessing haptic hardware. “Component-based” refers to a specific paradigm for handling

communication between software modules, which is also seen in Microsoft software (COM),
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Mozilla (XPCOM), and CORBA. Instead of providing device abstraction by using C++

inheritance and polymorphism, as in CHAI for example, devices are accessed through a

well-defined, language-independant interface. Interfaces guarantee forward- and backward-

compatibility on the binary level, so that software components can be upgraded without

causing errors and without requiring recompilation. New features are added by creating

new interfaces, and components can continue to support old interfaces while simultaneously

providing new ones. Since component interfaces allow complete independance from imple-

mentation details, a particular implementation can provide other services such as recording

and playing back data, device usage over a network, or mouse-based emulation of haptic

hardware for debugging purposes.

By providing a generic interface called IHaptikDevice representing any 6-DOF haptic

device, the library allows completely hardware-independant development. (To be clear, 6-

DOF collision detection and dynamics are not provided.) Components implementing this

interface can contain the interface to the hardware’s actual driver. Currently Haptik has

implementations for devices from Force Dimension, SensAble, and MPB Technologies. The

Novint Falcon is mentioned in the article, so presumably it will be supported once it is

released. Haptik provides either a callback-based or polling architecture for running the

high-priority haptic rendering thread. The paper mentions that Haptik has been used as

a device driver in both the H3D and CHAI scenegraph packages. Some software examples

are given implementing very simple haptic effects in only four or five lines of C++ code.

It runs on Microsoft Windows and Linux.

3.1.3 osgHaptics

Maintained by Ume̊a University’s VRlab, osgHaptics [3] is an extension to the OpenScene-

Graph project [74]. The OSG project is an open-source C++ library for tracking scenes

containing 3D objects. It has been used in projects such as games, virtual reality appli-

cations, and visualization. osgHaptics uses the OpenHaptics toolkit from SensAble, (see

Section 3.1.7,) to allow haptic rendering of objects represented in the scene graph. Hap-

tic materials may have stiffness, damping, and friction properties. The software relies on

OpenHaptics to perform collision detection and to communicate with the haptic device.

As such, osgHaptics acts as a bridge between an OSG scene and a SensAble haptic device.

Software using OSG for visualization may find it a convenient way to allow haptic inter-
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Fig. 3.2 A proSENSE demonstration application. The user can feel the
virtual heart pulsing when the haptic proxy is placed on its surface. The
Simulink graph used to create the demonstration is shown here. The scene is
described by a VRML file.

action, however the toolkit is limited to devices supported by OpenHaptics. An additional

consideration is that OSG is a particularly large library, and not all projects will find it

convenient to use for simple tasks.

3.1.4 proSENSE

An offering from Handshake VR, based in Waterloo, Ontario, the proSENSE Virtual Touch

Toolbox is a set of Simulink function blocks for Mathwork’s popular Matlab scientific com-

puting software that allow the rendering of haptic effects and communication with several

haptic devices. It works in cooperation with several other Matlab toolkits, including the

Virtual Reality Toolkit and the Real-Time Workshop (RTW). Function blocks are linked

to each other graphically in a Simulink window, allowing for a visual style of programming.

The VR Toolkit is used to provide a graphical environment based on the VRML file for-

mat, which is also synchronized with the haptic model in Simulink. The RTW is used to

generate C code and compile it into an executable, which is then run in parallel with the

graphical simulation. The real-time portion of the code may run on another computer,
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using a network connection for synchronization. The generated C code is also linked with

proprietary pre-compiled object code.

Interfaces are available for devices from SensAble, Force Dimension, Quanser, and MPB

Technologies, as well as with Microsoft Windows-compatible input and force-feedback de-

vices such as joysticks and mice. Modules are available for simulating various simple objects

including boxes, cones, cylinders, spheres, elevation maps, and mesh-based objects. Objects

have properties such as size, stiffness, and friction parameters. Friction is modeled using

Coulomb friction with or without stiction. There are also modules for creating springs, in-

ertia, and damping. Additionally, several functions are available for performing time delay

compensation for operation over a network, including Handshake’s TiDeC algorithm which

is able to guarantee stability over long-delay connections. It includes limited sound support

in the form of a module which can play back a sound file based on an event trigger.

This toolkit would be best recommended for users who are familiar with the Simulink

environment and wish to incorporate haptic feedback into Matlab-based VR simulations.

For example, it may be useful to those wishing to use haptics for exploring data sets pre-

processed in Matlab. While sound support is mostly lacking, Simulink can be extended by

a C programming interface, so that communication with a more interesting audio engine

might be established. There has been some effort by Christian Frisson and David Birnbaum

of McGill’s Input Devices and Musical Interaction Laboratory to create an Open Sound

Control module for communicating with audio synthesis software, however this software

remains thus far unpublished.

One pitfall to bear in mind is that there is a different Simulink block for each supported

device, and no abstraction of the interface is provided. This means that changing hardware

will require some minimal amount of reprogramming.

3.1.5 Reachin API

The Reachin API [77], an offering from Reachin Technologies of Stockholm, Sweden, is

a complete haptics development framework. It was the first haptics/graphics framework

to support multiple devices [18]. It supports scenegraph management using the VRML

file format. Elements of the VRML scene can be given haptic properties, so that they

can be touched and manipulated with a haptic device. Object properties can be scripted

using the Python programming language. Objects can be given deformable properties, so



3 Software Survey 30

Fig. 3.3 A Reachin API demonstration application. A portion of the VRML
code used to define this environment is shown on the right-hand side. The
object can be deformed like a clay model. Some user-interface elements are
shown: two push-buttons which have a haptic “click”, and a colour wheel.

that they can become elastic or clay-like, and bump-mapping techniques can be used for

both graphical and haptic rendering of bitmap-based textures. Reachin supports several

GUI-style interaction elements, such as push-buttons and color selectors, which can be

manipulated with the haptic device.

Reachin supports devices from Force Dimension, SensAble, and MPB Technologies. It

has support for multiple devices, enabling a collaborative environment. Stereoscopic views

are also supported. Resources such as scenes and materials can be specified using Internet-

aware Universal Resource Names (URN), a scheme allowing the unique identification of

a resource which may be located remotely. An account of incorporating haptic support

through Reachin into a virtual reality system can be found in [1].

3.1.6 H3D

H3D is an open-source offering from SenseGraphics. It is dual licensed under the GNU

General Public License as well as a commercial license. It runs on Microsoft Windows,

Linux, and Apple OS X, and is based around the X3D file format, an XML-based ISO-

standard language for describing 3D scenes and objects which is often thought of as the
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Fig. 3.4 An H3D demonstration application. The X3D file which described
the scene is shown on the right. The object can be touched and feels smooth.

successor to VRML. It can be programmed directly with C++, but also has a binding

for the Python dynamic programming language. Similar to osgHaptics, it depends on

OpenHaptics to perform collision detection and haptic rendering, and thus a SensAble

license is required for use. However, since it contains a driver using the Haptik Library

as a back-end, it is possible in practice to use it with non-SensAble devices, as long as

the OpenHaptics library is available. Built-in collision detection may be added in future

revisions. In addition to X3D meshes, it supports primitives such as boxes, cylinders, and

cones. Like Reachin, scenes and materials can be specified using Internet-aware URN’s.

Several advanced graphics techniques can be used, such as shaders, textures, and stereo

rendering.

A demonstration application which comes with H3D can be seen in Figure 3.4.

3.1.7 OpenHaptics

OpenHaptics is the toolkit distributed with SensAble’s PHANTOM haptic devices. It

is a successor to their previous GHOST SDK. GHOST was the first haptics programming

framework to allow high-level definition of scene graph elements which are rendered without

the need for user-defined algorithms. Many research users bypassed this functionality for

the sake of exploring new rendering methods. As a reaction, SensAble created OpenHaptics

as two libraries, a “device-level” library called HD and a higher-level library called HL.
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The HD library provides a real-time callback which runs at the haptic rate. Functions are

provided for reading the device’s position and writing values to the device’s motors in either

Cartesian or joint-space coordinates. The HL library is a set of functions modeled after

the design of the OpenGL graphics API. It provides function calls that delimit the start

and end of a frame render, which can be inserted in a typical OpenGL drawing function.

Between these two function calls, OpenGL calls are detected and used to generate the

haptic scene. Thus, OpenHaptics makes it possible to re-use graphical rendering routines

to define the haptic scene, meaning that rendering code need only be written once. In

addition to frame delimiting, functions are available for specifying haptic properties such

as friction and stiffness.

It supports two methods for haptic display. The first is the “feedback buffer” technique,

which uses OpenGL data structures to extract the geometric properties of the scene. This

is similar in principle to most scene graph libraries described in this chapter. The second

technique, called “adaptive viewport”, uses the graphics card to render a height map of the

current scene, which is retrieved from the graphics hardware’s depth buffer. The height

map is then used to calculate collision with the haptic proxy. Since this technique makes

use of the graphics hardware, it is able to render more triangles and much more complex

scene geometry. Some drawbacks are that strange effects may be produced by concave

surfaces or if the haptic proxy moves to quickly. The documentation claims that for most

purposes a height map rendering frequency of 30 to 60 Hz is sufficient for most applications.

OpenHaptics, despite the name, is a closed-source library and supports only SensAble

devices. It runs on Windows and Linux, the latter being available separately.

3.1.8 ACROE CORDIS-ANIMA

CORDIS-ANIMA, created by Cadoz et al. [14] for their research in physical modelling for

use with multi-sensory systems, is designed to describe fundamentally physically-driven

simulations. I include it in the category of Haptics software because it describes a scene

composed of objects which can be touched with a haptic interface, however it is more

accurate to say that it is in fact particle-based rather than dealing with object primitives.

Elements in CORDIS-ANIMA are one of four basic types: the first three are mass, spring,

and friction elements, which can construct what they term “linear matter.” The fourth

element introduces non-linear relationships and is called a conditional link. Objects are
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constructed by connecting masses to each other through springs. The objects then behave

in a physical manner, allowing deformations to occur. The object deformations, through

which oscillation arises, can be used to generate sound. Simultaneously, a specially-designed

haptic interface, now commercially available through ERGOS Technologies, can be used to

interact with the scene. Thus, the same physical model is used to produce audio, graphic

and haptic feedback. In the ERGOS system, the model is run on a dedicated DSP board

which is connected to the haptic device. The DSP is embedded in a computer through a

PCI interface, and the PC is used to general graphical and audio feedback.

3.1.9 Summary

Table 3.1 summarizes the capabilities and licenses of the toolkits described above. It

shows a few trends: though there is some cross-platform support—particularly in the open-

source offerings—the best device support is for Microsoft Windows, with particularly little

attention given to Apple OS X. This is interesting since audio research, which we are

concerned with here, is one area in which OS X has attained a high level of popularity.

Most toolkits consist of C++ frameworks, although some alternative languages and text-

based description formats can be used.

Not present in the table is that sound support is only explicitly discussed by the proS-

ENSE documentation, with the exception of CORDIS-ANIMA for which sound is as im-

portant as the other sensory modes. Several libraries do come with examples of how to

use sound file play-back routines in conjunction with haptics, but these capabilities are

not directly supported by the library, and often rely on operating-system specifics such as

Microsoft’s DirectX.

Most libraries provide some support for various commercial hardware solutions, though

there are cases where only SensAble devices are supported. Again, CORDIS-ANIMA is

the exception here, where the language is compiled for a special DSP card which executes

the program independantly from the PC, with a direct interface to a particular hardware

device.

3.2 Physical dynamics engines

There are many software libraries available both open-source and proprietary that provide

routines for calculating physical dynamics. A complete survey of physical dynamics software
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Name Devices Scene
Graph

Mesh/Scene
Support

DOF Graphics Dynamics Operating
System

Programming
Language

License

CHAI 3D SensAble
Force Dimension
MPB Technologies

Yes 3DS 3 OpenGL No Windows,
Linux

C++ GPL

Haptik Li-
brary

SensAble
Force Dimension
MPB Technologies

No N/A N/A N/A N/A Windows,
Linux

C++, Java GPL /
MIT

osgHaptics SensAble Yes Many
available

3 OpenGL No Windows C++ LGPL

proSENSE SensAble
Force Dimension
Quanser
MPB Technologies

Yes VRML 3 VR Toolkit Yes Windows Matlab/
Simulink

Proprietary

Reachin
API

SensAble
Force Dimension
MPB Technologies

Yes VRML 3 OpenGL For UI ele-
ments

Windows Python,
extended
by C++

Proprietary

H3D SensAble (required)
Force Dimension
MPB Technologies

Yes X3D 3 OpenGL No Windows,
Linux, OS
X

C++,
Python

GPL +
commer-
cial

OpenHaptics SensAble Yes Application-
provided

3 OpenGL No Windows,
Linux

C / C++ Proprietary

CORDIS-
ANIMA

ACROE ERGOS Yes Application-
provided

Variable ? Yes ? CORDIS-
ANIMA

Proprietary

Table 3.1 Haptic toolkits

is beyond the scope of this thesis. However, the Open Dynamics Engine (ODE), which was

chosen for this project, is described here briefly. It was chosen because it is free and

open-source, can run under real-time constraints, and was adequate for our purposes. An

in-depth comparison between ODE and several other physical dynamics engines can be

found in [87].

3.2.1 The Open Dynamics Engine

Created by Smith [88], ODE is an open-source physical modelling engine which can be used

in conjunction with a graphics library to provide realistic physics for 3D environments.

It supports several geometries, such as prisms, spheres, cylinders, planes, and triangle

meshes. Object geometries, called “geoms”, are used for collision detection and can be

attached to rigid bodies which track physical properties such as position, orientation, mass,

and velocity. This separation between collision detection and the physical environment

provides powerful ways to create interesting dynamics. For example, multiple geoms can

be attached to a single body to create compound objects, or geoms can be dissociated from

their body in order to remove them from the simulation. Additionally, body movement can

be constrained in a number of ways by creating joints between them. Many joint types

are available, such as ball joints, hinges, universal joints, and sliding joints. Bodies can be

constrained relative to each other or relative to the global coordinate system. This way,

physical mechanisms can be created. ODE is cross-platform, with no dependancies on a
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particular graphics library.

3.3 Summary

This chapter described several currently available solutions for haptics programming. A

common theme throughout has been the use of a programming language or description file

for defining the scene contents, which is then compiled or interpreted by the software. In

contrast, audio environments such as PureData [75] or Max/MSP [20] allow the dynamic

creation and destruction of audio units during run-time. This is a paradigm which has

proven useful to researchers and artists in sound and visual media, who enjoy the flexibility

of modifying algorithms as they are executed, and appreciate the user-friendly approach

of visual programming. The technical knowledge currently required to create physically

realistic virtual environments and to take advantage of the haptic channel makes these

ideas either unaccessible or at least inconvient for this audience.

In the next chapter, we will see an approach to haptics which allows run-time experi-

mentation with objects in a virtual environment, as well as communication with third-party

audio software running in parallel on the same computer or elsewhere on a network.
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Chapter 4

A Simulation Server for Virtual

Musical Instruments

4.1 Introduction

In the previous chapter, I described several software solutions for creating haptic simu-

lations. Unfortunately, with the notable exception of CORDIS-ANIMA, none of these

solutions provides very interesting support for audio. Additionally, unlike audio research

software, they do not generally allow dynamic modification of the simulation at run-time,

and require a certain level of programming ability. They also do not make it easy to create

physically dynamic environments with objects that react to each other, since rigid body

simulation is typically only available as a separate library.

For the purpose of creating virtual musical instruments, I am interested in incorporating

all these attributes into an easy-to-use system for creating and experimenting with haptic

interfaces for music. Ideally, a haptic virtual controller should interface with previously

existing audio software instead of trying to re-invent that particular wheel, and should be

accessible to non-programmers so that it is a useful tool for musicians and researchers in

psychology, music technology, and related areas.

4.2 Case study: video integration in an audio system

As an example of an audio system that has been expanded with visual capabilities, we can

look at PureData’s GEM set of externals, written by Danks [21]. GEM provides a viewport
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for an OpenGL environment, and several objects for controlling what is drawn into it. It

supports several 2D and 3D primitives such as squares, circles, cubes, spheres, and cones.

These shapes can be texture-mapped with images or video. It can also perform certain

image processing tasks, like alpha masking or convolving two images.

PureData processes data in two ways: firstly, it has control data, which is processed

asynchronously. Whenever an event occurs, like an incoming MIDI note for example, it is

propagated immediately through the network of connected objects. Delay and metronome

objects can be used to introduce timed events. Secondly, it has audio or DSP data, which

flows continuously through a separate network of objects, updating audio hardware buffers

in real-time. The two networks are connected by DSP objects which can accept control

data. Therefore, DSP parameters are updated whenever control processing can occur,

slotted between two audio cycles.

GEM works at the control data level. When the screen must be updated, a GEM ob-

ject called “gemhead” issues a command to be passed down the chain, potentially through

geometric transformations, until it reaches a final drawing object. The timing for these

operations is not considered as critical as for the audio chain; though it is not desirable

for video output to glitch or pause, it is able to run at a lower priority than audio because

the timing interval between frames is slower, as described in the next section. However,

the GEM documentation does warn that CPU-hungry image processing may cause play-

back glitches in the audio stream, which shows that potential problems can occur when a

processing task runs in synchrony with a real-time audio stream.

The system described in this chapter began life as an idea for a “GEM for haptics.”

It quickly became apparent, however, that it would be more fruitful to run a haptics

simulation in a separate process. The reasons are several: unlike video, haptics has real-

time requirements that are more strict than those for audio, making the addition of a

haptics DSP chain to PureData require non-trivial changes to its core engine. Additionally,

because of the potential for CPU hogging, it is useful to have the option of running a haptics

simulation on a separate computer instead of within the same process as an audio/visual

engine. Finally, we would like to create a haptics system that is useful for PureData but

also for other audio software, and creating PureData-specific extensions would not have

allowed this as easily as taking advantage of a communication protocol shared by several

audio systems.
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Fig. 4.1 Each part of the system has different timing requirements and runs
independently. The process boundary is delineated by the dotted line. Each
part of the simulation process, within this line, is a separate thread, while the
audio process can be any software which is OSC compatible.

4.3 Latency requirements

A rendering system for a multi-modal display is inherently separable by each of its sensory

modes. While some common properties can be shared, each mode has different requirements

regarding timing and data throughput. For example, while control changes should be

apparent in an audio stream within 10 ms or less for a satisfying user experience [52],

visual displays usually update at about 30 Hz, meaning that control changes are allowed

up to 33 ms to be received and processed.

In contrast, force-feedback haptics requires the total latency be 1 ms or less. This is

because input and output are directly coupled: the user is part of a closed system. The

“display” depends entirely on the user’s movement, and reactions to position changes must

be as instantaneous as possible in order to render the feel of a hard surface. It has been

previously found that between a 500 Hz and 1 kHz update rate must be maintained for

a good user experience [59]. These timing requirements and their inter-relationships are

shown in Figure 4.1.

Distinct from the haptic closed-loop rate is the audio-haptic latency. This is the time

between haptic events and a resulting sound. Adelstein et al. [2] investigated this latency.
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Fig. 4.2 A synchronous system architecture in which audio and haptic sen-
sory cues are derived from the same physical model.

They used an accelerometer attached to a hammer to detect taps, and converted the signal

to MIDI to generate audio events. Subjects wore headphones so that they felt the ham-

mer independantly from hearing the results. With this apparatus, they showed that the

measured just-noticeable difference (JND) for audio-haptic latency is about 24 ms, with a

2.2 ms standard error. This has implications for the time allowed for information to flow

from a haptic simulation to an audio process, though evidence suggests that audio-haptic

timing maybe be more strict for active (motorized) haptic devices as opposed to passive

apparatus [26].

4.4 System architecture

As such, there are choices to make in terms of how the system architecture will take these

differences into account. In the ideal case, a single fast processor could be used to perform

all operations in synchrony. A single simulation of the environment would be used to

derive haptic, graphic, and audio feedback, as shown in Figure 4.2. In practice, running a

complete simulation at the audio rate will quickly exceed computing power for a moderate

number of objects. An oft-used optimization is to allow the physically vibrating bodies

to be modeled in a more efficient manner, using techniques such as modal synthesis or

waveguide modeling, while the macro interactions between objects are computed at haptic

rates.

When the two parts of such an algorithm are run synchronously on a single proces-

sor, this architecture usually provides minimal latency between each sensory mode. It is



4 A Simulation Server for Virtual Musical Instruments 40

used, for example, by the CORDIS-ANIMA system which makes use of a dedicated DSP

board and attempts to create a very high-fidelity user experience. Additionally, since a

realistic physical model is used for both gesture and sound, it creates an energy-preserving

continuum between instrumental gesture and the resulting audio output, which is ideal for

“playing” virtual physical objects intuitively [48]. As a second example, this architecture

was also used for the AHI project [26], running interrupt-driven haptics and sound on a

DSP, in order to measure a lower bound for haptic-audio latency.

However, from the point of view of creating virtual gestural controllers for existing

synthesis systems, a disadvantage of using a single physical model for all sensory modes

is that it imposes restrictions on the chosen audio synthesis model. Essentially, physical

modeling is the only acceptable audio synthesis in this paradigm, ignoring that we may

wish to control, for example, FM synthesis, etc. In fact, since the physical model takes

care of audio computation, it is not clear how to best interface such a system with existing

audio software running on a normal desktop computer.

Additionally, there is a tendancy in uses of the synchronous model to use dedicated DSP

hardware to provide tight control over timing and synchronization. Since most commercial

haptic devices are used with desktop computers, and because VMI designers would prefer

to work with audio software they are already comfortable with, a solution is required which

can take advantage of pre-existing hardware and software. An implication of using standard

PC hardware is that there is an upper-bound on achievable data rates, since most operating

systems allow timing just within 1 ms, but it also means that the computational architecture

can be extremely flexible—for example, taking advantage of the growing popularity of multi-

core processors [89], or even high-bandwidth local networking to allow a tiered approach

[54].

Therefore, an alternative to the strictly synchronous design discussed above is to con-

sider each sensory mode independently, running in separate processes with asynchronous

timing, communicating events and continuous information to each other. This architecture

stresses that it is not the synchroneity that matters, so much as the latency between each

sensory mode that must remain below the level of human perception. This is the approach

I have taken with the system described here, seen in Figure 4.3.

Each module of the multi-modal simulation runs separately, at different rates, using

either shared memory or some other communication method to stay synchronized. The

physics model is updated at about 100 Hz, though this is variable. The haptic device
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Fig. 4.3 The chosen architecture separates the haptic virtual environment
from the sound synthesis over an asynchronous communication channel.

interacts with the environment at 1 KHz. When the haptic proxy touches an object, forces

are communicated to the physics thread and applied to the object at the next cycle. This

asynchronous approach, based on an example application which is included in the CHAI

3D download, allows objects to feel stiff, since the haptic springs are calculated at an

appropriate rate, but also allows the physics model to run slower in order to allow more

objects with higher complexity to be modeled.

Events in the physical environment, such as collisions or object movement, are com-

municated to the audio process using a network protocol. Additionally, the audio process,

which is used to control the simulation, can also send messages to the physics model telling

it to instantiate or destroy objects, or to change their properties on the fly.

4.5 Communication

In this case, the audio process can be any software which supports the chosen network

protocol. For this reason, I decided to exploit the Open Sound Control (OSC) [98] standard

for several reasons: it is supported by many popular audio packages that are well-known

by the target audience; it allows hierarchical addressing of messages, which is convenient

for accessing properties of a scene graph; and it is intended to become a standard for

communication between audio systems and gestural controllers.

Open Sound Control messages are composed of an address, which is divided in parts by
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the slash character (’/’), a timestamp, and an arbitrary number of arguments which can be

any type, such as floating-point numbers, integers, strings, or booleans. For example, in a

typical synthesis situation, a controller might change the frequency of an oscillator with a

message such as:

/oscillator/1/frequency 440

For interacting with virtual environments, similar messages are defined for creating and

destroying objects, specifying relationships between objects, and modifying and retrieving

object properties. This environment can be considered a kind of server for constructing

and interacting with virtual musical instruments.

Using OSC it is possible to support standards for querying a controller’s parameter

namespace and making connections between the controller and the synthesis engine through

dedicated mapping tools. We have proposed ideas towards developing such a standard [53],

and they will be implemented for this system in the future.

By convention, OSC messages use UDP/IP datagrams as the transport layer, which are

considered unreliable but fast, and thus targetted towards data streaming and continuous

control. OSC, however, can actually be transported over other types of connections. For

example, TCP/IP might be used for more reliable communication over large networks, or

a block of shared memory might be used for fast communication on a local computer. For

our purposes, UDP/IP was adequate, being quite reliable in practise on a local network,

especially since it is usually what is supported by audio software. Informal tests showed

that an acceptable number of OSC messages were able to pass between processes on a

local network at well under the 24 ms audio-haptic latency mentioned in Section 4.3. OSC

was chosen over MIDI, a more established sound protocol, for several reasons: MIDI has

limitations on speed, does not support a hierarchical structure, and has no support for

floating-point numbers, which are used extensively for data representation in this system.

Some popular audio programs which can send and receive OSC messages are PureData

[75], Max/MSP [20], Chuck [95], and SuperCollider [58]. Additionally, almost any of these

programs could easily be used to provide a translation layer between a given set of OSC

messages and MIDI, opening the possibilities of compatibility even wider.
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4.6 Implementation

I have implemented the described system as a C++ software package called DIMPLE,

which stands for the Dynamically Interactive Musically PhysicaL Environment. It makes

use of several open-source libraries, described in the previous chapter, which allowed me

to implement the system quickly and efficiently. Since some of these libraries are licensed

under the GNU General Public License, DIMPLE is also GPL software, which means

that it is free to download, use, and modify. This choice was made to make the software

available to as wide an audience as possible, and to allow others to eventually contribute

to development.

DIMPLE makes use of the Open Dynamics Engine (ODE) to control the physical in-

teraction between virtual objects. It uses CHAI 3D to perform high-rate haptic interaction

with the objects. The CHAI 3D scene graph is synchronized with ODE at the end of each

simulation timestep. It also uses CHAI to update a 3D display, driven by the OpenGL

graphics library. A library called LibLo [36] is used for sending and receiving OSC mes-

sages. Though CHAI 3D does not support haptic hardware in all operating systems due to

availability of hardware drivers, DIMPLE itself is able to run under Microsoft Windows,

Linux, and Apple OS X.

A class hierarchy is used to organize objects in the scene and track their CHAI 3D

and ODE representations. A diagram of this class organization is given in Figure 4.4.

These classes are used for handling OSC message requests. A base class, OscBase, provides

mechanisms for registering message handlers. Each type of entity available in DIMPLE has

an OSC-enabled class associated with it. These include two types of objects, representing

spheres and prisms, as well as six types of constraints. Additionally, composite objects can

be constructed which are composed of other objects but share a single instance of ODE’s

rigid body structure. The constraint types correspond to ODE’s “joints”, defined in the

ODE manual [88]. By creating objects and constraints between them, mechanisms can be

created which interact with each other and with the haptic controller.

When a message arrives, it is transferred to the physics and haptics threads for handling.

Changes to the CHAI structures occur in the haptics thread, while changes to the ODE

structures occur in the physics thread. A common class, OscValue, is used to contain scalar

and vector properties of objects, so that any object property can be requested through OSC

messaging. These are also kept synchronized with ODE and CHAI properties through the
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Fig. 4.4 Class diagram of the OSC-aware scene graph. White arrows rep-
resent inheritance relationships, open arrows represent pointers, and black
arrows represent actions.

use of callback functions.

4.7 Messages

This section includes a brief description of messages accepted by DIMPLE. A complete

description can be found in the appendix.

4.7.1 Creating and modifying objects

Objects and constraints are categorized under the major message classes of /object and

/constraint. Objects are created by sending the create message addressed to the re-

quested shape or constraint type. Creation messages must be given a name as the first

argument. Henceforth the object shall be referred to by name throughout its life. An

optional position can also be specified with a 3-vector argument. For example,

/object/sphere/create mysphere 0 0.1 0

This creates a sphere at the given coordinates. Note that the coordinate system used

assumes that the visible screen area in x and y is in the range [-1, 1]. The sphere’s radius

can then be changed:
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/object/mysphere/radius 0.5

Other properties, described in the appendix, are accessed in a similar manner.

4.7.2 Creating constraints

Constraints can also be created between objects. The keyword world is reserved for creating

constraints between an object and the “world”, referring to the global Cartesian coordinate

system. An object constrained by a hinge to the world will seem to be hinged to nothing,

free to rotate around a particular axis in space. For example,

/constraint/hinge/create hinge1 mysphere world 0 0 0 0 0 1

This would hinge the sphere to the point (0, 0, 0), around the axis defined by (0, 0, 1).

Note that different constraints require different numbers of points or axes to define them.

4.7.3 Specifying constraint responses

Constraints can also be given responses, which are functions defining how the remaining

free axes of a constraint should respond to changes in position. An example of a response

is a spring. Applying a spring response to a hinge will create an object which pushes

back when it is rotated off of its rest position. A response can be specified using a similar

message,

/constraint/hinge1/response spring 10 0.1

This would inform the hinge to respond according to a spring with a stiffness coefficient of

10 and a damping coefficient of 0.1.

4.7.4 Retrieving properties

Properties of objects or constraints can be retrieved by requesting them using the /get

message. This message takes an optional argument specifying an interval in milliseconds.

If this argument is unspecified, the value will be returned to the calling program once. If it

is given, the value will be returned at regular intervals. This helps in specifying values to

be used as continuous control for modulating parameters of an audio synthesis algorithms.

For example,
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/constraint/hinge1/force/magnitude/get 10

This will return the force applied by the constraint’s response handler every 10 ms. The

value will stop being sent if the same message is sent with a specified interval of zero.

4.8 Virtual Musical Instruments Created

The previous sections introduced a software environment for dynamically creating and

experimenting with virtual musical instruments. Here, we describe some simple VMI’s

that have been created using it. These are not intended to be realistically useful musical

instruments, but merely show how the environment can be used. The focus will be on the

description of the virtual controller, though audio synthesis will also be discussed briefly.

Though most examples are in PureData, similar constructs could certainly be created in

other music languages supporting OSC.

4.8.1 Force Stick

As an initial pilot project, I decided to re-implement Verplank’s Force Stick [92] in the

DIMPLE environment. This seemed like a good starting point, since the force stick is

composed of a single bar attached to one actuated joint, which are the minimal components

of a DIMPLE instrument.

Initialize the object (named “stick”), and specify its shape, position and mass:

/object/prism/create stick

/object/stick/size 0.02 0.02 0.3

/object/stick/position 0 0 0.15

/object/stick/mass 2

It can be seen here that once an object is created, it becomes part of the OSC namespace.

It can then accept OSC methods which modify it. It is also immediately introduced into

the simulation, appears on the screen, and can be touched and manipulated with the

haptic device. Next, add a constraint (a hinge) located at the bottom of the prism, named

“motor”, with a damped spring response:
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Fig. 4.5 A user playing the virtual Force Stick.

/constraint/hinge/create motor stick world 0 0 0 0 1 0

/constraint/motor/response spring 20 1

The constraint is located at (0,0,0) and its axis points along (0,1,0), the X-axis. This is

the axis around which the stick will rotate.

The constraint is defined to be between the object stick, and world, indicating a fixed

position. The stiffness of the spring action is defined as 20 N·m/rad, and the damping

coefficient is 1 N·m·s/rad. The object will not move in space except in rotation around the

line segment defined by the given point and axis. The spring, named motor, will respond

according to the given coefficients.

To change the behaviour of the object when it is pushed or pulled by the device proxy,

a different response message can be sent to the motor constraint. For instance, to get a

squeeze type of response, as suggested by Verplank, a negative linear response can be used.

/constraint/motor/response spring -10
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Fig. 4.6 A patch in PureData which creates the Force Stick simulation.

This will reverse the usual spring, so that the stick tends to fall away from the original

location, and must be pulled back to the center. “Walls” can be specified on the constraint

so that it does not fall all the way around the hinge. No damping was specified here.

To create a sonic response, for example, by modifying the timbre or pitch of a synthe-

sizer, the following message will indicate that the system should send messages every 30

ms:

/constraint/motor/force/magnitude/get 30

This will cause the force exerted by the stick’s constraint to be sent to the audio system at

regular intervals. Conversely, the force exerted on the stick itself could be retrieved by,

/object/stick/force/magnitude/get 30

This simple simulation shows that objects can be created, and user manipulations can

produce continuous streams of data that can modulate audio parameters—in this case, the

frequency of a sinusoid. A picture of a user manipulating the virtual Force Stick can be

seen in Figure 4.5. A patch created in PureData which generates the simulation is shown

in Figure 4.6.
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Fig. 4.7 The PureData patch used to generate the MarbleBox simulation.
The audio portion of the patch is not shown here. A counting structure is
used to generate each new marbles with a unique name.

4.8.2 Marble Box

For a more complex example which might be used to test network latency issues, I decided to

simulate the PebbleBox, a controller created by O’Modhrain and Essl [73]. The PebbleBox

is a controller using audio analysis to detect collisions between small polished pebbles,

which can be used to excite some synthesis engine, such as physical modelling of water or

ice cubes. In the virtual version, the pebbles are replaces with spheres which fill a box.

A picture of an implementation in DIMPLE, using only a few messages, can be seen in

Figure 4.7 and a screenshot is shown in Figure 4.8. Each part of the box is specified with a

create message, which is hinged in place so that it is not affected by gravity. Marbles are

then dropped into the box. The audio portion receives messages from DIMPLE informing

it which objects collided and at what combined velocity. The marbles can be pushed

around using the haptic device. Since the CHAI proxy is a point-like sphere which makes

interaction with spherical shapes difficult—they role away before they can be pushed—it

has been found that it is more interesting to use an ODE body such as a sphere or cube to
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Fig. 4.8 A screenshot of the MarbleBox graphical representation. Here, the
light-coloured ball represents the haptic proxy. As marbles hit each other
and the sides, they produce triggers for a resonator-bank modal synthesis
algorithm.

push around the marbles by “grabbing” it with the haptic proxy using a stiff spring. This

functionality has been encapsulated in DIMPLE by specifying the message,

/object/<name> /grab

When an object is grabbed, it follows the movement of the haptic end effector, but it

conversely allows the haptic device to give an impression of the object’s weight and the

feeling of bumping into other objects in the scene.

A simple audio model was used, consisting of a decaying envelope applied to a low-

frequency sinusoid, so that the spheres seemed to make a small “bumping” sound. However,

in a later experiment, these collision messages were forwarded to a proper modal synthesis

algorithm, running in Max/MSP on a separate computer. This seemed to give the marbles

a perceptually metallic quality, and showed how easy it was to use OSC for easily linking to

another synthesis engine—the PureData model was running on Microsoft Windows, while

Max/MSP was running on a Mac on the local network. Perceptually, latency did not seem

to be a problem.

For comparison, two previous virtual implementations of the PebbleBox have been

created in the Enactive Network [50]. One of these simulations used the same physical dy-

namics engine (ODE) as the implementation discussed here, while the other used CORDIS-

ANIMA. The ODE simulation was written in C++ and used Microsoft Direct3DSound for
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performing spatialization on playback of soundfiles. Spatialization was controlled by the

positions of the marbles. Similar to this simulation, the marbles could be pushed around

with the haptic device. Haptics were implemented using OpenHaptics from SensAble. The

CORDIS-ANIMA implementation was two-dimensional. It consisted of a large circle con-

taining several smaller circles. The movement parts were executed at 3 KHz, while the

sounding parts of the model were calculated at 30 KHz. It used an ERGOS device inter-

facing with the simulation at 3 KHz. In contrast the ODE/Phantom simulation ran at 1

KHz. It was reported that, “the ERGOS haptic device was quoted as providing a more

distinct perception of the local surface properties of each of the objects,” though it is not

clear what aspect of the device, such as update rate, stiffness, or ergonomics, was most

responsible. The report discusses an interesting aspect of this simulation which is that it

contains the presence of both direct audio feedback related to movement as well as indirect

feedback related to objects colliding against each other. Users found direct feedback “easier

to understand”.

4.8.3 Chained FM

Since the MarbleBox was oriented around event-style data, an attempt was created to

provide continuous control for FM synthesis. Additionally, I was interested to see how

objects would behave when connected through hinges in a serial fashion. In Chained FM,

each successive prism is connected to the prism to its left by a hinge. The left-most prism

is hinged to the world. Pushing against a prism causes a chain reaction in which the

other prisms follow suit. Since each hinge is given a spring response, movement leads to

coupled oscillating behaviour. In the case shown here, the velocity of the objects is used

to modulate the carrier and modulator frequencies of two FM pairs. In practise, velocity

may not be the most interesting parameter for this purpose, but it was sufficient to show

how multi-parametric changes can be modified in a related way by coupling objects in the

scene. A picture of the interface is given in Figure 4.9 and the PureData patch is shown in

Figure 4.10.

4.8.4 Rolling Balls and Cannon Balls

In collaboration with Mark Mashall and Joe Malloch, who are also students in McGill’s

Input Devices and Music Interaction Laboratory, we explored the use of DIMPLE for
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Fig. 4.9 A photograph of a user interacting with Chained FM using a Sens-
Able Phantom Desktop. The prism objects are connected by springs. The
movement of these objects produces parametric changes in an FM synthesis
algorithm.

non-haptic tasks. In one instance, we directed the gravity vector of the MarbleBox VMI

according to the center of balance determined by a force-sensing floor, causing the marbles

to roll to one side or another in correspondence with the user’s posture. The ball positions

were then used to control a spatialization algorithm.

In another set-up, we connected several drum pads from a MIDI drum set to Max/MSP.

We caused balls to be created when a drum was hit, and sent flying in a direction according

to the position of the drum relative to the player. Again the moving position of each created

ball was used to control spatialization. These two experiments were done for a project

related to the gestural control of spatialization [56].

The advantage of using OSC here was clear: since controllers for the force floor and

drum pads had already be created in Max/MSP, we were able to very quickly connect

previously made modules in no more than a few minutes to create new demonstrations

that took advantage of DIMPLE’s physical dynamics engine.
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Fig. 4.10 The PureData patch used to generate Chained FM. The left-most
window shows the creation of the prism objects and their hinges. The middle
patch shows the receiving portion, in which parameters are sent to the right-
most patch, which contains the FM synthesis pairs. Here, velocity is used to
control modulator and carrier frequencies.

4.9 Summary

A system has been presented for running a haptically-enabled virtual environment in a

process which can asynchronously communicate with several existing audio software pack-

ages using an increasingly well-supported communication protocol. Objects can be created

as well as several types of constraints on these objects. A haptic device can be used to

interact with these objects, allowing the sensation of touch. Properties of objects can be

requested using the OSC protocol, and used for modulating audio synthesis parameters.

We have shown the use of the system for creating a few simple virtual musical instru-

ments that can be touched. There are, however, several other constraint types to explore,

and neither constraints between objects, nor the use of various constraint responses has

been fully exploited. Future work will certainly reveal the use of these features. The next
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chapter proposes some expansions to the system, and describe tentative experimental work

which may take advantage of DIMPLE’s dynamic nature and ease of use.
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Chapter 5

Conclusions and Future Work

This chapter will present some conclusions drawn from the experience of creating this

system, and provide an outline of some work to be carried out in the future which will

make use of its unique features and also suggest the addition of new functionalities.

5.1 Conclusions and Applications

In this thesis, I have described the system I developed for creating and interacting with

physically active virtual musical instruments using haptic force-feedback technology.

While the features offered by this software do not necessarily allow the simulation of

all possible virtual instruments, it is hoped that a good cross-section of basic interaction

paradigms can be created, as well as a few that would be problematic with real objects.

Hitting gestures, plucking, pushing, and pulling are all possible. With some basic extensions

described below in Section 5.2.3, it may be possible to take advantage of rubbing, scrubbing,

and bowing gestures. Additionally, dynamically modifying physical parameters such as the

gravity vector, object mass, and stiffness, removing and adding objects in the scene, and

creating and breaking constraints between objects can allow simulation of interactions that

might be quite difficult to accomplish using sensors and mechanical systems.

Haptics can provide a more immersive virtual experience. Feedback through the hap-

tic channel can be a rich source of information about the interface and algorithm being

manipulated. For virtual instruments, where the control surface is otherwise not tangible,

providing a haptic sense of the environment can help a performer to maintain awareness of

the metaphor that is being used to control sonic output. Multi-modal displays have applica-
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tion in psychology and music technology research, as well as for haptic device evaluation in

the commercial market; if it can be shown that there are certain minimal performance mea-

sures for satisfying musical control over a given virtual instrument, such as those described

by Hayward and Astley [38], then new devices can be evaluated accordingly. The perfor-

mance of a haptic device may be critical to applications such as virtual surgery, and finding

correlations with musical interaction may be useful for manufacturers and researchers who

need access to moderately large numbers of subjects who are skilled in gestural control.

I hope that by providing this software to the music and research communities, it will

help to promote the use of haptic technology for enhancing and investigating musical inter-

action. While it is important to keep the limitations of pen-based haptic display in mind,

virtualized musical interfaces provide a means of making available a practically unlim-

ited set of gestural control possibilities without requiring the cost and difficulty of custom

hardware development. With haptic devices becoming available at lower cost, it is an ex-

citing time to be part of this growing research community. Making haptic technology and

physically dynamic virtual environments available to a large subset of music and audio

software should provide a convenient means for musicians and researchers alike to explore

the possibilities offered by it.

5.2 Ideas for future work

This section will present some ideas for expansion of the system, and ruminations on future

research directions.

5.2.1 Object shapes

The given system can be used to create virtual environments which make use of a limited

set of 3D primitives, and several available constraints can be applied to their relative or

absolute movement. While more complicated compound objects can be created by “gluing”

together these primitives, not all possible or even desirable shapes and interactions can be

described in this way. Adding more primitives to the environment is one way to expand the

tool box. However, the support of mesh-based objects would also be quite useful. It would

allow manipulation of objects resembling structures in real life or in the imagination, which

could be designed using capable external tools. Since DIMPLE makes use of CHAI 3D, it

would make sense to allow it to load 3DS files, which is a functionality it already supports.
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ODE does support physical dynamics involving mesh objects, though it is necessarily slower

than primitive-based collision detection. It may be possible to incorporate more complex

algorithms for fast collision handling in higher polygon environments if necessary. Prof.

Ming C. Lin of the University of North Carolina at Chapel Hill, for example, has a large

body of research dedicated to optimizing mesh-based collision detection [27, 35, 47, 97].

5.2.2 Deformable objects

Objects in the environment are currently limited to rigid bodies, but the manipulation of

virtual “clay” or other deformable models would provide an interesting avenue for musical

control. Mulder found informally that deforming virtual objects in ways that seemed

intuitively related to certain sound parameters was beneficial to performance.

Many haptic software packages, such as OpenHaptics or the Reachin API, come with

a demonstration of a deformable membrane. This is sometimes intended to simulate the

idea of poking a patient’s skin with a needle in a medical simulation. However, the idea

of injecting energy into a deformable system to cause oscillations is used by several mu-

sical paradigms: the CORDIS-ANIMA and Cymatic systems use it at the level of audio

frequency oscillations to create simulations of vibrating bodies, while Verplank’s scanned

synthesis uses large oscillations of a string model to control a related audio algorithm.

Thus, it would seem interesting to be able to deform virtual objects within this system.

Maintaining physical realism and supporting various types of deformation can be computa-

tionally demanding, but it remains nonetheless an interesting avenue for exploration. OSC

could likely be used to transmit the positions of an object’s vertex points without imposing

too much overhead.

5.2.3 Texture and friction

Though her results were surprising, O’Modhrain [71] showed that friction certainly has an

effect on the playability of a haptic instrument. Richard and Cutkosky [78] reviewed several

friction models for haptics, also proposing a new one. Friction is a source of vibrotactile

feedback which is not desirable to remove from force feedback simulations, since virtual

objects would otherwise feel “slippery.” Fortunately, CHAI 3D is already equipped to

handle multiple friction models, but currently only provides one. Since friction has a

particular effect in musical interactions—namely, to inject a certain pattern of energy into
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a vibrating system—it would be interesting to add support for several friction models, and

also to determine how best the information about micro-interactions could be summarized

and transmitted to the audio engine. This problem has been previously investigated by

van den Doel et al. [90], and incorporating and improving their findings would be interesting.

Additionally, as seen in the Reachin API [77], it is possible to give objects a haptic

texture using a bump map. These textured micro-interactions would certainly have appli-

cability in musical interaction. Fine-grained textures would make an interesting study case

for examining the importance of a haptic device’s physical precision.

5.2.4 Vibrotactile feedback

Related to this idea, in terms of the CORDIS-ANIMA model especially, is the idea that

audio frequency vibrations contain an important portion of the energy injected into the

system by user interaction. This audio vibration, which is what supposedly makes an

instrument feel “warm” and “alive”, and which Chafe [15] and others have shown to be

detectable by performers, helps give a user feedback about the relationship between control

changes and sound output. Though this project has decidedly concentrated on force feed-

back over vibrotactile feedback, ignoring this rich source of information would be a mistake.

Currently there exists software solutions allowing processes on a computer or network to

transmit audio streams to each other with low latency. One example is the JACK system

[23], designed on Linux but also available for Apple OS X. Providing the ability to route

this information into the control surface or even directly into the haptic controller may be

an interesting possibility.

5.2.5 Experimental research

Creating virtual musical instruments can allow the exploration of aspects of haptic interac-

tion that would be impossible with real instruments. Experimental research depends almost

entirely on separating variables so that they can be explored in a methodical fashion. In an

acoustic instrument, it is impossible or very difficult to separate the vibrations of a body

from the shape, weight, and texture of it. Even in an electronic gestural controller, it can

be problematic to remove the texture of the surface, the feel of buttons or often the outline

of many types of sensors. When an instrument is completely virtualized, it can be played

with or without being felt, and the continuum between having rich tactual information and
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having none at all can be explored. Haptic variables such as weight and stiffness can be

modified independantly.

Within the Enactive Network, cross-modal studies have been proposed such as target-

finding tasks in which haptic and sonic information is modulated in various ways according

to distance. In another discussion, it was suggested to explore the addition of auditory

stimuli to a haptic experiment involving simulation of a virtual rolling ball [99]. Subjects

were able to judge the length of a virtual tube more easily when continuous haptic feedback

was present, in comparison to only the difference in time between the beginning and end of

the roll. Auditory feedback would provide more permutations to the experiment. Within

my own work, I would like to examine how the presence of inertia and haptic contour of a

control surface affects the playability of a musical interface, and also how the presence of

visual stimulus affects the results.
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Appendix A

OSC messages implemented in

DIMPLE

This document specifies messages which are handled or broadcast by DIMPLE.

A.1 Global parameters

These parameters are global to the whole simulated world.

• /haptics/enable boolean

Enable the haptic device. Prior to enabling haptics, only the physics thread is run-

ning. If boolean is zero, haptics will be disabled.

• /graphics/enable boolean

Enable the graptic window. Prior to enabling graphics, the physics thread is running

with no visual display. If boolean is zero, the graphics window will close.

• /world/gravity x y z

/world/gravity z

Specify the world gravity vector. If only one parameter is specified, it is assumed to

be the magnitude of a downward-pointing vector.

• /world/clear

Clear all objects in the world.
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A.2 Objects

Objects are the physical objects which move in the environment, collide with each other,

and can be touched using the haptic proxy.

A.2.1 Object creation

These messages are for creating objects of simple geometric primitives.

• /object/sphere/create name x y z

Create a sphere named name at the given position in space, with a default radius of

0.01.

• /object/prism/create name x y z

Create a prism named name at the given position in space, with a default size of

(0.01, 0.01, 0.01).

A.2.2 Object methods

These messages make some modification to an object.

• /object/name/destroy

Destroy the object named name.

• /object/name/grab

“Grabbing” an object means introducing a stiff two-way spring between the position

of the object and the haptic proxy object. In effect, movement of the device causes

the object to following quickly, and movement of the object causes pulling forces on

the end effector. The user thus feels the object’s weight, and the illusion of the object

being associated with the haptic device is created.

• /object/name/ungrab

If an object is grabbed, this method lets it go.

A.2.3 Object attributes

These messages represent an object’s attributes. They can be set by sending the message

to DIMPLE, or requested as described in Section A.4, below.
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Object size

• /object/name/radius radius

/object/name/size width height depth

Specify the radius of a sphere or the size of a prism. The mass will be scaled corre-

spondingly.

Object materials

• /object/name/mass mass

The object’s weight in grams.

• /object/name/color r g b

The object’s colour in RGB values between 0 and 1.

• /object/name/friction static dynamic

The static and dynamic friction coefficients for name.

• /object/name/stiffness stiffness

The object’s stiffness coefficient.

Object movement

• /object/name/position/magnitude magnitude 1

/object/name/position x y z

The object’s position. Setting this attribute will “beam” it to the new position

immediately.

• /object/name/velocity/magnitude magnitude

/object/name/velocity x y z

The object’s velocity. Setting this attribute will cause unnatural movement of the

object.

• /object/name/acceleration/magnitude magnitude

/object/name/acceleration x y z

1Setting a vector’s magnitude will work only if the current magnitude is non-zero.
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The object’s acceleration. Setting this attribute is equivalent to applying a force

without regard for the object’s mass.

• /object/name/force x y z

Apply the given force vector to name, or retrieve the force applied to an object

through collisions or interaction with the proxy object.

A.3 Constraints

A constraint consists of some way in which two objects, or one object and a fixed position,

are related. Often this is a case where two objects are joined by some kind of joint, and

the movement on said joint can be restricted or given some kind of response behaviour.

A.3.1 Constraint creation

Each constraint type requires a different set of attributes, by definition. The reader is

refered to the Open Dynamics Engine manual [88] for more information on these constraint

types and the attributes they require.

• /constraint/fixed/create name object object pointx pointy pointz

• /constraint/ball/create name object object pointx pointy pointz

• /constraint/hinge/create name object object pointx pointy pointz

axisx axisy axisz

• /constraint/hinge2/create name object object pointx pointy pointz

axis1x axis1y axis1z axis2x axis2y axis2z

• /constraint/sliding/create name object object pointx pointy pointz

axisx axisy axisz

• /constraint/universal/create name object object pointx pointy pointz

axis1x axis1y axis1z axis2x axis2y axis2z

In the above, object may be world, to indicate a constraint against a fixed position.
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A.3.2 Constraint methods

• /constraint/name/destroy

Destroy the constraint named name. Note that constraints will also be destroyed if

one of the associated objects is destroyed.

A.3.3 Constraint responses

Each constraint can be given a response characteristic, which specifies how it should behave

as the user pushes the constraint away from the fulcrum of the constraint.

• /constraint/name/response response ...

Where response is one of:

– spring stiffness damping

Response is determined by a damped spring equation. If damping is not speci-

fied, an undamped spring is used.

– constant value

Response presents a constant force against the direction of movement. Feels

similar to moving a stiff hinge. Supplying zero for value will remove any response

so that the constraint moves freely.

– noise threshold

Response presents a noisy graininess in movement, like moving against sand

paper.

– pluck position stiffness

Multiple pluck response messages may be accumulated at different positions.

It corresponds to a “membrane” which gives some resistance before breaking

through. position here is an angle in radians. stiffness is optional, and has a

reasonable default.

– wall position direction

Walls delimit the range of motion for a constraint. In other words, any motion

past the given position, in the given direction, be treated like an infinitely stiff

spring. (In practise, a “very” stiff spring will be used.) position is an angle in

radians, and direction is either 1 or -1.
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A.3.4 Constraint attributes

Constraint attributes can be set by sending the message to DIMPLE, or requested as

described in Section A.4, below.

• /constraint/name/force/magnitude magnitude

/constraint/name/force x y z

The current force acting on the constraint.

A.4 Requesting information

A.4.1 Requesting attributes

Any attributes of objects and constraints listed in the previous section may be of interest

to the audio and control systems. Thus any of the attributes may take the /get method

to retrieve corresponding value.

• .../attribute/get interval

Specify interval = 0 to stop. interval may be omitted to get the attribute only once.

The get method may include an optional interval in milliseconds which will tell the

haptic system to report the corresponding attribute continuously at regular intervals.

The returned attribute will have the same OSC message address, but without /get.

A.4.2 Requesting collisions

The following messages can be used to request collision information. Collisions currently

provide only force information. (The repelling force magnitude required for a perfectly

elastic collision.)

• /object/collide/get

/object/collide/get boolean

Request that all inter-object collisions be reported. If boolean is not provided, it is

assumed to be 1. If boolean = 0, collisions will no longer be reported.

Collisions are reported with the message,

/object/collide object object force
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• /object/name/collide/get

/object/name/collide/get boolean

Request that all collisions with object name are reported. If boolean is not provided,

it is assumed to be 1. If boolean = 0, collisions will no longer be reported for this

object.

Collisions are reported with the message,

/object/name/collide force
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with haptic feedback. Enactive Network, 2005.

[32] Force Dimension. Omega & Delta haptic devices (hardware).
Available: http://www.forcedimension.com.

[33] B. Gillespie. Haptic Display of Systems with Changing Kinematic Constraints: The
Virtual Piano Action. PhD thesis, Stanford University, January 1996.

[34] R. B. Gillespie and S. O’Modhrain. The Moose: A haptic user interface for blind
persons with application to the digital sound studio. Technical Report STAN-M-95,
Stanford University Department of Music, October 1995.

[35] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. Cullide: interactive collision
detection between complex models in large environments using graphics hardware. In



References 70

HWWS ’03: Proceedings of the ACM SIGGRAPH/Eurographics conference on graph-
ics hardware, pages 25–32, Aire-la-Ville, Switzerland, 2003. Eurographics Association.

[36] S. Harris and N. Humfrey. LibLo: Lightweight OSC implementation. Available:
http://liblo.sourceforge.net/, January 2007.

[37] V. Hayward and B. Armstrong. A new computational model of friction applied to hap-
tic rendering. In Proceedings of The Sixth International Symposium on Experimental
Robotics VI, pages 403–412, London, UK, March 2000. Springer Verlag.

[38] V. Hayward and O. R. Astley. Performance measures for haptic interfaces. In G. Giralt
and G. Hirzinger, editors, Robotics Research: The 7th International Symposium, pages
195–207, Berlin, Germany, 1996. Springer Verlag.

[39] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, and G. Robles-De-La-Torre.
Haptic interfaces and devices. Sensor Review, 24(1):16–29, 2004.

[40] T. Hermann, J. Krause, and H. Ritter. Real-time control of sonification models with a
haptic interface. In Proceedings of the International Conference on Auditory Display,
pages 82–86, Kyoto, Japan, July 2002. International Community for Auditory Display.

[41] D. Howard, S. Rimell, A. Hunt, P. Kirk, and A. Tyrrell. Tactile feedback in the control
of a physical modelling music synthesiser. In Proceedings of the 7th International
Conference on Music Perception and Cognition, pages 224–227, 2002.

[42] A. Hunt, M. Wanderley, and M. Paradis. The importance of parameter mapping in
electronic instrument design. In Proceedings of the 2002 Conference on New Interfaces
for Musical Expression, pages 149–154, 2002.

[43] R. J. K. Jacob, L. E. Sibert, D. C. McFarlane, and J. M. Preston Mullen. Integrality
and separability of input devices. ACM Transactions on Computer-Human Interaction,
1(1):3–26, 1994.
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