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Abstract. This paper describes the design and implementation of a
framework designed to aid collaborative development of a digital mu-
sical instrument mapping layer1. The goal was to create a system that
allows mapping between controller and sound parameters without re-
quiring a high level of technical knowledge, and which needs minimal
manual intervention for tasks such as configuring the network and assign-
ing identifiers to devices. Ease of implementation was also considered, to
encourage future developers of devices to adopt a compatible protocol.

System development included the design of a decentralized network
for the management of peer-to-peer data connections using OpenSound
Control. Example implementations were constructed using several differ-
ent programming languages and environments. A graphical user interface
for dynamically creating, modifying, and destroying mappings between
control data streams and synthesis parameters is also presented.

Keywords: Mapping, Digital Musical Instrument, DMI, OpenSound
Control, Network.

1 Introduction

Although designers of Digital Musical Instruments (DMI) are interested in cre-
ating useful, flexible, and inspiring interfaces and sounds, this process often
depends on the vision and insight of a single individual. The McGill Digital
Orchestra project instead brings together research-creators and researchers in
performance, composition and music technology to work collaboratively in cre-
ating tools for live performance with digital technology [1]. A large part of this
research focuses on developing new musical interfaces.2

1 This paper is a revised and substantially expanded version of a preliminary report
on this project presented at ICMC 2007[16].

2 The McGill Digital Orchestra is a research/creation project supported by the Appui
à la recherche-création program of the Fonds de recherche sur la société et la culture
(FQRSC) of the Quebec government, and will culminate with concert performances
of new works during the 2008 MusiMars/MusiMarch Festival in Montréal.

R. Kronland-Martinet, S. Ystad, and K. Jensen (Eds.): CMMR 2007, LNCS 4969, pp. 401–425, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In the process of creating instruments for this project, we have found our-
selves faced with the unique challenge of mapping new instruments in collabora-
tion with experienced performers, as well as with composers tasked with writing
pieces for these instruments. Because this ambitious project has taken on these
three main challenges of the digital performance medium simultaneously, we
have found ourselves in need of tools to help optimize the process. Specifically,
mapping the various streams of controller output to the input parameters of
synthesis engines has presented us with situations where both ease of use and
flexibility were both of the utmost importance. We needed to be able to modify
connections between data streams during precious engineer-composer-performer
meeting time, while minimizing wasted minutes “reprogramming” our signal pro-
cessing routines. Although arguably both powerful and intuitive, even graphical
environments like Cycling 74’s Max/MSP did not seem appropriate for these
purposes, because non-programmers who had limited familiarity with such tools
were expected to help in experimentation and design.

In consideration of several ongoing projects, including GDIF [13], Jamoma
[18], Integra [2], and OpenSound Control (OSC) [24], we have created a “plug
and play” network-based protocol for designing and using digital musical in-
struments. Controllers and synthesizers are able to announce their presence and
make their input and output parameters available for arbitrary connections. Any
controller is able to connect to any synthesizer “on the fly,” while performing
data scaling, clipping, and other operations.

In the course of developing an adequate working environment for this project,
we have made developments in three main areas: the design of a network archi-
tecture which lends itself to a distributed “orchestral neighbourhood”, in which
controllers and synthesizers can interface with each other over a UDP/IP bus
by means of an OSC-controlled arbitrator; the creation of a “toolbox” contain-
ing many useful functions which we found ourselves using repeatedly, coded as
Max/MSP abstractions; and lastly a graphical mapping tool with which gestural
data streams can be dynamically connected and modified.

We have tried to create a GUI that is intuitive and transparent: relationships
between parameters are visible at a glance, and changing mappings and scal-
ing requires only a few mouse clicks. We have used all of these tools in a real
collaborative context, allowing us to present not only implementations, but also
observations of their effect on our group dynamic and workflow. We have tried
to create an interface that is useful not only for technical users, but also as a
creative tool for composers and performers.

The remainder of this paper is organized as follows: section 2 provides back-
ground information and explains the motivations behind our approach to map-
ping for this project. Section 3 describes the design and implementation of the
networked mapping system. Section 4 gives some details of how users might ex-
perience the mapping system through the provided graphical interface, and also
provides information for developers on how to make compatible software. Sec-
tion 5 briefly outlines some of the functions and tools we have created to help
speed such development, available as a software package entitled the Digital
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Orchestra Toolbox. Finally, sections 6 and 7 provide discussion, insights, and
plans for future development.

2 Gesture Mapping

The digital instrument builder is faced with several tasks: after considering what
sensors should be used, how the musician will likely interface with them, and
what sounds the instrument will make, there is still the decision of which sensors
should control which aspects of the sound. This task, known as mapping, is an
integral part of the process of creating a new musical instrument [10].

2.1 Mapping Methods

Several past projects have developed tools for mapping between sound and con-
trol. However, “mapping” is a term with a wide scope, and these projects do not
necessarily agree on methods or terminology. One way to categorize mapping
methods is by whether the connections are known explicitly, or are the result of
some process which builds implicit relationships [8].

An example of the latter is [14], in which it is seen that neural networks can
be used to adapt mapping to a performer’s gestures rather than the inverse. In
contrast, toolboxes such as LoM [22] or MnM [6] are in the former category. They
are intended to aid in developing strategies for using low-dimensional control
spaces to control higher-dimensional timbral spaces through the use of several
interpolation techniques. [21] also created a tool box of mapping functions for
PureData (Pd) [19]. This work is similar to the set of Max/MSP abstractions
that we present in Section 5, and, as we’ll see in the next section, can be a useful
resource for performing signal conditioning in the context of our system.

In the current work, we focus on easing the design of mapping by representing
the individual connections between parameters in a very direct and explicit way,
rather than worrying about signal conditioning or transformation strategies. Ad-
ditionally, we feel that the choice of algorithm, or even programming language,
used to communicate with physical devices and perform signal processing should
have limited impact on inter-device interaction if they are connected on the same
network. Thus, while tools such as LoM and MnM are useful for Max/MSP pro-
grammers, or the Pd mapping toolbox can be a useful resource for PureData
programmers, we decided that approaching the problem of interoperation from a
networking and protocol point of view would yield greater long-term results, and
provide useful functionality for development of mapping techniques in a collab-
orative environment, while not necessarily precluding the use of other mapping
approaches within its framework.

2.2 The Semantic Layer

An important result of previous discussions on mapping has been the acknowl-
edgement of the need for a multi-layered topology. Specifically, Hunt and Wan-
derley [9] suggested the need for 3 layers of mapping, in which the first and last
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Fig. 1. An example single-layer mapping. One-to-many and many-to-one mappings are
defined explicitly.

layers are device-specific mappings between technical control parameters and
gestures (in the case of the first) or aesthetically meaningful “sound parame-
ters”, such as brightness or position (in the case of the third). This leaves the
middle layer for mapping between parameter names that carry proper gesture
and sound semantics. We shall refer to this layer as the “semantic layer”, as
described in Figure 2.

The tools presented here adhere to this idea. However, since the first and last
mapping layers are device-specific, the mapping between technical and semantic
parameters (layers 1 and 3) are considered to be part of the controller and syn-
thesizer interfaces. Using an appropriate OSC addressing namespace, controllers
present all available parameters (gestural and technical) to the mapping tool.
The tool is used to create and modify the semantic layer, with the option of
using technical parameters if needed.

As a simple example, the T-Stick interface [15] presents the controller’s ac-
celerometer data for mapping, but also offers an event-based “jabbing” gesture
which is extracted from the accelerometers. The former is an example of layer 1
data which can be mapped directly to a synthesizer parameter. The latter is a
gestural parameter presented by layer 2, which can be mapped, for example, to
a sound envelope trigger. The mapping between layers 1 and 2 for the “jabbing”
gesture, (what we call gesture extraction), occurs in the T-Stick’s interface patch
(see Figure 3).
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Fig. 2. A diagram of the 3-layer framework used for Digital Orchestra development,
adapted from [9]. Note that the simple “one-to-one” connection shown in the center
semantic mapping layer may in fact describe a much more complex relationship between
technical parameters.

We have also used this system in another project3 for mapping gesture control
to sound spatialization parameters [17]. In this case a technical mapping layer
exposes abstract spatialization parameters (such as sound source trajectories) to
the semantic layer, rather than synthesis parameters.

2.3 Connection Processing

Gestural data and sound parameters will necessarily carry different units of
measurement. On the gestural side, we have tried, whenever possible, to use
units related to physical measurements: distance in meters, angles in degrees. In
sound synthesis, units can sometimes be more arbitrary, but some standard ones
such as Hertz and MIDI note number are obvious. In any case, data ranges will
differ significantly between controller outputs and synthesis inputs. The mapping
tool attempts to handle this by providing several features for scaling and clipping
data streams.

One useful data processing tool that is available is a filter system for perform-
ing integration and differentiation. We have often found during sessions that a
particular gesture might be more interesting if we could map its energy or its
rate of change instead of the value directly [7]. Currently the data processing is

3 Compositional Applications of Auditory Scene Synthesis in Concert Spaces via Ges-
tural Control is a project supported by the NSERC/Canada Council for the Arts
New Media Initiative.
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Fig. 3. A screenshot of the Max/MSP patch used for the T-Stick DMI, showing two
layers of control data abstraction. The “cooked” sub-patch contains smoothing routines
for sensor data, while the “instrument” sub-patch computes instrument-related gesture
information such as “jabbing”.

limited to first-order FIR and IIR filtering operations, and anything more com-
plex must be added as needed to the “gesture” mapping layer and included in
the mappable namespace.

2.4 Divergent and Convergent Mapping

It has been found in previous research that for expert interaction, complex map-
pings are more satisfying than simple mappings. In other words, connecting a
single sensor or gestural parameter to a single sound parameter will result in a
less interesting feel for the performer [10, 20].

Of course, since our goal is to use abstracted gesture-level parameters in map-
ping as much as possible, simple mappings in the semantic layer are in fact al-
ready complex and multi-dimensional [11]. Still, we found it would be useful to be
able to create one-to-many mappings, and so the mapping tool we present here
supports this. Each connection may have different scaling or clipping applied.

We also considered the use of allowing the tool to create many-to-one map-
pings. The implication is that there must be some combining function which is
able to arbitrate between the various inputs. Should they be summed, or per-
haps multiplied, or should some sort of comparison be made between each of the
inputs?

A combining function implies some relationship between gestural parameters;
in some cases, the combination of gestural data may itself imply the extrac-
tion of a distinct gesture, and should be calculated on the first mapping layer
and presented to the mapping tool as a single parameter. In other cases the
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Fig. 4. A diagram from [12] showing the namespace hierarchy proposed for GDIF and
used for the mapping system

combination may imply a complex relationship between synthesis parameters
that could be better coded as part of the abstracted synthesis layer. In yet other
cases the picture is ambiguous, but the prospect of needing to create on-the-fly
many-to-one mappings during a working session seems to be unlikely. We did not
implement any methods for selecting combining functions, and for the moment
we have left many-to-one mappings for future work.

2.5 Portability of Mapping Sets

An important goal of the GDIF project is to pursue portability of mapping
sets between similar devices. Control devices and DMIs using OSC namespaces
structured using the hierarchy proposed for GDIF (Figure 4) will likely share
subsets of their namespaces, especially at the higher levels, which are focused on
interaction or environment rather than specific interfaces. Likewise, synthesiz-
ers receiving mapped parameters also often have named parameters in common,
provided they have been constructed according to GDIF guidelines. The moti-
vations for and structure of this hierarchy is described in detail in [12].

We designed the loading functionality of our system to permit portability of
mapping sets between different classes of device, as described in Section 4.4.
An important result of this pursuit is that different controllers and synthesizers
may be swapped without the bulk of the mapping being redefined. This provides
another motivation for encouraging users of a mapping system to make use of
high-level abstracted parameters whenever possible.
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3 The Orchestral Network Neighbourhood

In our system, there are several entities on the network that must communicate
with each other using a common language. These include controllers and syn-
thesizers, as well as the software devices used for address translation and data
processing, called routers, and finally the GUI used to create and destroy con-
nections. This protocol must allow them to perform some basic administration
tasks, including: announcing their presence on the network; deciding what name
and port to use; and finally describing what messages they can send and receive.

The system can be thought of as a higher-level protocol running on top of
an OSC layer. OSC was chosen to encapsulate message passing because it has
several advantages in the domain of audio systems. It was designed to take care of
several drawbacks typically associated with MIDI: it is transport-independent,
meaning that it defines a sequence of bytes but makes the assumption that
the transport layer will take care of accurately carrying these bytes over some
transmission medium. This lends itself well to IP networks, but is equally valid
over another transport, such as a simple serial transmission line for example.
OSC can specify data in several formats such as floating point values, strings, or
integers, instead of being restricted to a specific range as in MIDI. Data type is
specified in the message header. It is clear that OSC can be a flexible and useful
messaging system, but its main advantage for us is that it is already supported
by a large number of audio software packages, (although some support it better
than others.) This means that while we were able to efficiently design the system
described here using Max/MSP, the protocol we describe can be supported by
several other audio-oriented programming languages. This topic will be covered
more completely in Section 4.7.

In any case, while OSC can be a powerful tool, it suffers the disadvantage in
comparison to MIDI in that it dictates nothing about what lower-level transport
protocols and ports to use, nor what kinds of messages should be exchanged. We
needed to devise a common set of OSC messages to allow the use of a standard
interface to control all devices in question. The approach we have taken—that of
translating arbitrary messages from a controller into inputs for a synthesizer—
was chosen because we did not wish to impose a particular restriction on the
device namespaces themselves: we do not assume to be able to enumerate a set
of control messages as was done for General MIDI (GM). GM was designed pri-
marily for keyboard controllers, and this is apparent in its semantics, which has
been found limiting when exploring the use of alternative controllers for elec-
tronic sound. Instead, we propose a set of messages for discovering and describing
controller outputs and synthesizers inputs, as well as messages for describing the
connections and signal conditioning that might occur between them.

3.1 Topology and Protocol

Because OSC addressing is designed to uniquely identify any particular value, it
is possible to broadcast messages on a common bus and have them be correctly
targeted to the intended recipient. This makes it mostly trivial to switch between
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SYNTH CONTROLLER
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Fig. 5. A centralized topology in which all traffic is routed through a central router
service

various network topologies. While a common bus is necessary for locating de-
vices, it is not necessary nor is it optimal to have gestural data streams sharing
the same bus.

We have decided to use a multicast UDP/IP port for administrative tasks such
as device announcement and resource allocation. This common port is needed
to resolve conflicting device identifiers and to allow new devices to negotiate for
a unique private port on which to receive messages. We shall refer to it as the
“admin bus”.

For routing mapped data streams, several topologies can be used. Though it
simplifies programming, sharing a bus for high-traffic gestural streams wastes
communication as well as processing resources. Messages must be received and
addresses must be parsed before being rejected. If several devices are present on
the network, a high percentage of traffic may be rejected, making a common bus
inefficient. In our system, each device reserves a UDP/IP port for receiving data
streams. Thus the OSC traffic is quickly routed and filtered on the transport
layer and address parsing is only necessary for properly targeted messages.

Another factor affecting the network topology is the role of the router in
mapping. In a previous revision of our system, controllers sent their data streams
to a router which performed address mapping and scaling before re-transmitting
the transformed messages to a synthesizer. This implies a centralized topology
as seen in Figure 5. However, with the protocols described in this section, it is
perfectly feasible to have multiple router instances on the network. This can help



410 J. Malloch, S. Sinclair, and M.M. Wanderley

SYNTH CONTROLLER

CONTROLLERSYNTH

SYNTH CONTROLLER

MAPPING INTERFACE

ROUTER

ROUTER

ROUTER

Fig. 6. Equivalently, a router can be embedded in each controller to create a true
peer-to-peer network

reduce traffic loads and distribute processing. Extending this idea to the extreme,
we embedded the routers inside each controller, in order to create a truly peer-
to-peer topology, as described by Figure 6. The signal conditioning and message
transformation then takes place on the controller itself, and messages are sent
through the network already formatted for the target synthesizer. However, for
clarity we consider the embedded router devices to be distinct entities on the
network.

3.2 Name and Port Allocation

When an entity first appears on the network, it must choose a port to be used
for listening to incoming data streams. It must also give itself a unique name
by which it can be addressed. A simple solution would be to assign each device
a static name and port. However, we are not interested in maintaining a pub-
lic database of “claimed” ports, and, (being a digital “orchestra”), we expect
multiple instances of a particular device to be available for use.

In an attempt to be more dynamic and decentralized, we have developed a
collision handling algorithm for port and name allocation: when a new entity
announces itself, it posts to the admin bus a message stating which port it ten-
tatively intends to use. If this port is reserved or is also being asked for by another
device, a random number is added and the device tries again. If multiple devices
are attempting to reserve the same numbers, several iterations may occur, but
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Input: pt (tentative port number)
Output: pf (final port number)
T = 0;
c = −1;
announce(pt);
while T < 2000 do

update time T ;
update collision count c;
if T > 500 and c > 0 then

pt = pt + random(0..c);
T = 0;
c = −1;
announce(pt);

end
end
pf = pt;
...
repeat

if collision then announce(pf );
until forever ;

Fig. 7. Port allocation scheme, also used for device identifier ordinals

eventually each device ends with a unique port number to use. (Strictly speak-
ing, this is only necessary for devices hosted on the same computer, though we
currently run the collision algorithm on the shared admin bus over the network.)
The same algorithm is used for determining a device name composed of the de-
vice class and a unique ordinal. This unique name is prepended to all messages
from that device. Some pseudo-code of this algorithm can be found in Figure 7.

3.3 Discovery

Device discovery is an important step toward a truly “plug and play” environ-
ment. Previously, a method has been proposed for device discovery making use
of the ZeroConf protocol, which is a decentralized network configuration and an-
nouncement protocol available in all major operating systems. A Max/MSP im-
plementation of the idea, called OSCBonjour, has been created by Rémy Müller,
which we have explored[4]. While the idea is promising, it currently only handles
device discovery, leaving us still to deal with port and name allocation for the
devices. We decided that, since we are already using a common multicast UDP
bus for the allocation scheme, it would be sufficient and more consistent to use
it also for device discovery. A pure OSC solution is adequate for our purposes,
but this does not preclude the possibility of using OSCBonjour in the future,
perhaps in parallel with our current scheme.

When a device appears on the network, and after it successfully receives a
unique name and port number, it queries the network for other compatible de-
vices by submitting a simple request on the multicast admin bus:
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Fig. 8. The mapper GUI requests that devices on the network identify themselves

/device/who

All compatible devices, including the device just launched, respond to this
message with a simple message stating their unique name, device class, I/O, IP
address and port:
/device/registered /tstick/1 @inputs 1 @outputs 52 @class /tstick

@IP 192.168.0.3 @port 8001
/device/registered /granul8/1 @inputs 80 @outputs 0 @class

/granul8 @IP 192.168.0.4 @port 8000

3.4 Making Connections

Each device records the names, IP addresses and UDP ports of the other in-
stances on the network. Mapping interfaces (Section 4) also listen on the ad-
min bus and display the available devices as sources (controllers), destinations
(synths), or both. In this way, a user can refer to a device by name rather than
being required to know the address and port of a particular device. To create a
direct network connection between two devices, a message must be sent on the
admin bus specifying the devices to connect:
/link /tstick/1 /granul8/1
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The source device dynamically creates a router data structure for each linked
destination device. It then responds on the admin bus to acknowledge that it
has successfully initialized the connection:
/linked /tstick/1 /granul8/1

Similarly, devices can be disconnected,
/unlink /tstick/1 /granul8/1

resulting in the destruction of the corresponding router in the source device,
and a response on the admin bus:
/unlinked /tstick/1 /granul8/1

Once two devices have been connected with the /link message, individual OSC
datastreams can be connected to their desired destination:
/connect /tstick/1/raw/pressure/1 /granul8/1/gain
/connect /tstick/1/raw/pressure/1 /granul8/1/gain @scaling

expression @expression x*10 @clipping minimum 0

The appropriate router instance records the mapping connection, and sets up
address translation, scaling, and clipping. Once complete, the response is sent
on the admin bus:
/connected /tstick/1/raw/pressure/1 /granul8/1/gain
/properties /tstick/1/raw/pressure/1 /granul8/1/gain @scaling

expression
/properties /tstick/1/raw/pressure/1 /granul8/1/gain @expression

x*10
/properties /tstick/1/raw/pressure/1 /granul8/1/gain @clipping

minimum 0

Note the optional connection properties (scaling, clipping) which can be spec-
ified as part of the /connect message. If no properties are given, the connection
will be created using the defined default properties. (At this time, no scaling or
clipping is performed by default.) It is notable that scaling may not be appro-
priate for certain types of OSC message arguments, such as character strings,
and applied to these messages it will cause undefined behaviour. In the case
of gain-related destination parameters, use of the “@clipping both” property
at connection creation might be advisable to avoid damage to ears and audio
equipment. However, this is not done automatically.

Also notable is the two-stage process described for connecting parameters:
the first to define a network connection, and the second to define the connection
between parameter addresses. Although it is useful to separate device-level and
address-level connections, the “admin” Max/MSP abstraction described in Sec-
tion 5 automatically creates necessary device-level links if a simple “/connect”
message is sent.

Similar to the “/unlink” message at the device-connection level, individual
addresses can also be disconnected:
/disconnect /tstick/1/raw/pressure/1 /granul8/1/gain
/disconnected /tstick/1/raw/pressure/1 /granul8/1/gain
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To query the properties of a connection,
/connection/properties/get /tstick/1/raw/pressure/1

/granul8/1/gain

To modify the properties,
/connection/modify /tstick/1/raw/pressure/1 /granul8/1/gain

<desired properties, @scaling...>

Both the “/connection/properties/get” and the “/connection/modify” mes-
sages elicit a response specifying the current mapping properties:
/connection/properties /tstick/1/raw/pressure/1 /granul8/1/gain

<@scaling...>

3.5 Namespace Queries

Lastly, each orchestra member must be able to tell others what it can do. In other
words, it must be able to say what messages it can receive and what messages
it can send. Wright et al. [24] proposed the use of the /namespace message for
causing a device to enumerate its available namespace. We have implemented
this for each transmitter and receiver on the network. In addition to listing the
namespace itself, each available parameter optionally can include information
about data type, data range and units used. These come into play when the
mapper is to set up automatic scaling between data streams, as described below.

In order to make this metadata optional, we have used a tagged argument
scheme, similar to the syntax used in Jitter for object “attributes.” In the
example below, the mapper interface communicates with a controller named
“/tstick/1” and a granular synthesizer named “/granul8/1”. (These ordinals
were previously established by the allocation scheme, so as not to be confused
with other devices of the same type.) The exchange is described in the sequence
diagram seen in Figure 9.

4 The Mapping Interface

A graphical interface has been developed to aid in mapping tasks. It forms a
separate program from the other devices, but transmits and receives OSC mes-
sages on the same multicast admin bus. In addition to allowing the negotiation
of mapping connections from another location on the network, this approach has
allowed us to simultaneously use multiple mapping interfaces on the network,
with multiple users collaborating to map the parameters of a common set of
controllers and synths. The mapping interface has several main functions.

4.1 Browsing the Network Neighbourhood

The first use of the mapping interface is naturally choosing the devices that
you wish to work with, both for gesture and for sound synthesis or processing.
The interface queries devices on the network, to discover mappable inputs and
outputs, and displays this information in an easily understandable format. New
devices appearing on the network are automatically added to the display as seen
in figure 12.
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Fig. 9. On receipt of a namespace request, devices return a message for each input or
output parameter they support, with information about data range and units

4.2 Browsing and Searching Namespaces

When devices are selected in the mapping interface, a message is sent on the
admin bus requesting them to report their full OSC address-space. The inter-
face displays the parameters by OSC address, which is especially informative to
the user when strong semantics are used in the namespace. In addition, some
other information about each parameter is requested, including whether it is an
input or an output, the data type (i, f, s, etc.), the unit type associated with
the parameter (Hz, cm, etc.), and the minimum and maximum possible values.
OSC address patterns for controller outputs are displayed on the left side of the
mapping interface, and synthesizer inputs are displayed on the right.

In order to manage the browsing and mapping of very large or deep names-
paces, the mapping interface also allows for filtering and searching using pattern-
matching. Two stages of namespace filtering are available, which may be used
together. One stage allows filtering by OSC address-pattern prefix, chosen from
an automatically-populated drop-down menu, so that the user may view the set
of parameters which are children of a particular node in the address hierarchy.
The other stage allows filtering by regular expression, so that only parameters
matching a particular pattern are displayed.

On occasions where the namespace can change, such as for entities that have
a configurable interface, addition or removal of addresses is announced on the
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Fig. 10. The mapping graphical user interface can be used to explore the available
namespace, make connections, and specify scaling and other data processing

multicast bus so that routers can destroy any connections appropriately, and
mappers can add or remove entries.

4.3 Negotiating Mapping Connections and Properties

The mapping interface is essentially memoryless, merely reflecting the state of
devices and connections present on the network. Simple methods are provided for
creating and destroying mapping connections, and for editing the properties of
existing connections (i.e.: scaling, clipping). Connections are created by selecting
displayed namespaces on each side of the interface (inputs and outputs), and lines
are drawn connecting mapped parameters. Mapping connections can be selected
(in which case they are highlighted) for editing or deletion. By selecting multiple
namespaces or connections, many mappings can be created, edited, or destroyed
together.

When a connection is made, by default the router does not perform any oper-
ation on the data (“bypass”). A button is provided to instruct the appropriate
router to perform basic linear scaling between the provided data ranges. Another
button instructs the router to commence calibration of the scaling using the de-
tected minima and maxima of the input data stream. The user can also manually
type “linear” in an expression textbox with arguments defining a specific input
and output ranges. Options are also available for defining a clipping range.

The expression box is quite versatile. For more advanced users, it accepts any
string which can be understood by Max/MSP’s “expr” object, and evaluates
the mapped data according to the entered expression. Additionally, expressions
can refer to the current value, or a single previous input or output sample. This



A Network-Based Framework 417

Fig. 11. A router device can report its current set of connections. The mapper GUI
requests it when the router is first selected.

control may be used to specify single-order filters, or non-linear, logarithmic
mappings, for example. There is currently no support for table-based transfer
functions.

4.4 Saving and Loading Mapping Sets

The mapping interface also provides buttons for saving defined mapping sets
locally as a text file. This file stores the properties of each connection between
the viewed devices, along with the unique names of the devices involved. This
information is formatted according to Max/MSP’s coll object storage, although
we have considered that it may be more useful in some XML-based standard as a
language-agnostic data format to be easily imported into other implementations.
We intend to define such a format in collaboration with the GDIF project at
some point in the future.

When using the mapping interface to load a stored mapping file, devices
must first be chosen between which the connections will be made, since it is
possible that instance numbers and thus unique device names will differ between
sessions. The loading function strips each defined connection of its original device
identifier and replaces it with the name of the currently selected device. An
advantage of loading mapping sets in this way is the possibility of loading the
mapping with a different device class, as discussed in Section 2.5. Connections
involving parts of the namespace shared by the original and replacement devices
will be created normally, otherwise they will simply be discarded.
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Fig. 12. The device browser used in the mapping GUI can also be launched as a stand-
alone application. It displays all compatible devices along with their inputs, outputs,
ports and IP addresses.

4.5 Message Examples

Using the mapping interface, the user selects the controller namespace /tstick/
instrument/damping, and the synth namespace /granul8/1/grain/1/filter/
frequency:

Mapper /connect <controller parameter> <synth parameter>
Example /connect /tstick/1/instrument/damping

/granul8/1/grain/1/filter/frequency

The T-Stick receives the message and creates mapping with default parame-
ters:

Device /connected <controller parameter> <synth parameter>
<properties>

Example /connected /tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency @scaling bypass @clipping
none

The user begins calibration:

Mapper /connection/modify <controller parameter> <synth
parameter> <properties>

Example /connection/modify /tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency @scaling calibrate 20 1000

T-Stick /connection/properties <controller parameter> <synth
parameter> <properties>

Example /connection/properties /tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency @scaling calibrate 20 1000
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Example /connection/properties /tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency @scaling calibrate 20 1000
@expression (x-32)*0.00345+100

The user ends calibration:

Mapper /connection/modify <controller parameter> <synth
parameter> @scaling expression

Example /connection/modify /tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency @scaling expression

The user deletes the mapping:

Mapper /disconnect <controller parameter> <synth parameter>
Example /disconnect /tstick/1/instrument/damping

/granul8/1/grain/1/filter/frequency
T-Stick /disconnected <controller parameter> <synth parameter>
Example /disconnected /tstick/1/instrument/damping

/granul8/1/grain/1/filter/frequency

4.6 Adapting Existing Max/MSP Patches for Compatibility

The Max/MSP implementation of the tools presented here has been carefully
designed for easily adapting existing device patches (both controllers and syn-
thesizers) for compatibility with the system. If the pre-existing patch already
uses OSC for input and/or output, there is in fact very little left to do: the
messages simply need to be connected to a copy of the dot.admin abstraction
described in section 5. The last step is simply to create a text file containing a
list of OSC parameters the patch can send and/or receive, and load it into a coll
object connected to dot.admin. More detailed documentation accompanies the
distribution when downloaded, but essentially after this the adaptation is func-
tional. Optionally, the properties can be defined for each parameter, specifying
its data type, associated unit, and range; these properties, while not required,
make scaling and calibration easier when in use.

We recommend that anyone adapting an existing patch—or creating a new
patch—for use in this context use strong semantics in their choice of param-
eter names and avoid obscure abbreviations. This allows users to immediately
understand the functions of each parameter without referring to external docu-
mentation. While we also advocate the use of hierarchical parameter naming as
proposed for GDIF, this is not required;the system itself does not depend on a
particular approach.

4.7 Other Implementations

While the main body of work for this project has been developed using Max/MSP,
our choice of using OpenSound Control, a well-defined communication protocol
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#include <mapper.h>

mapper_admin_init();
my_admin = mapper_admin_new("tester", MAPPER_DEVICE_SYNTH, 8000);
mapper_admin_input_add(my_admin, "/test/input","i"))
mapper_admin_input_add(my_admin, "/test/another_input","f"))

// Loop until port and identifier ordinal are allocated.
while ( !my_admin->port.locked

|| !my_admin->ordinal.locked )
{
usleep(10000); // wait 10 ms
mapper_admin_poll(my_admin);

}

for (;;)
{
usleep(10000);
mapper_admin_poll(my_admin);

}

Fig. 13. Framework for a synth-side C program using libmapper. This is the minimal
code needed for a synth-side device to announce itself and communicate with other
devices on the network.

with growing support, has allowed us to ensure that the system remains inde-
pendent of specific software and hardware (provided it has IP networking capa-
bilities). To demonstrate this point, and to encourage the use of our protocol,
we are developing patches and libraries in several languages that make it easy
to create compliant software interfaces. For instance, we have shown that a syn-
thesizer written in PureData can be made to communicate with the system by
adding a similar dot.admin object to a patch and filling in namespace details.
Similarly, we have created a library in C that will enable a wide variety of C
and C++ programs to easily support this platform. This has been tested using
several synthesizers developed with the help of the Synthesis Toolkit in C++[5]
and the LibLo OSC library[3]. An example of the use of this library is given in
Figure 13.

5 The Digital Orchestra Toolbox

In the process of creating controller, synthesizer, and mapping patches, we have
made an effort to modularize any commonly used subroutines. These have been
organized, with help patches, into a toolbox that we find ourselves re-using quite
often. Like the rest of the software presented in this paper, this toolbox is freely
available on the Input Devices and Music Interaction Laboratory website 4. It
currently contains over 40 abstractions, some of which we will briefly describe.
4 http://www.idmil.org
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5.1 OSC and Mapping Helpers

dot.admin Handles communication on the admin bus. It is used by the syn-
thesizer and controller patches to allow them to communicate with the map-
ping system. It uses instances of dot.alloc to negotiate for a unique port
and identifier, and it responds to namespace requests. When required to do
so, dot.admin dynamically creates instances of dot.router corresponding
to each peer-to-peer device link on the network.

dot.alloc The abstracted algorithm used by dot.admin for allocating a unique
port and device name. On its own, it may be useful for negotiating any unique
resource on a shared bus.

dot.prependaddr Prepends the given symbol onto the first symbol of a list,
without affecting the remaining list members. This is intended for construct-
ing OSC addresses.

dot.autoexpr Given a destination maximum and minimum, dot.autoexpr
will automatically adjust the linear scaling coefficients for a stream of incom-
ing data. Calibration can be turned on and off. It can also handle arbitrary
mathematical expressions (through the use of an internal expr object), and
dynamically instantiates objects necessary for performing specified transfor-
mations, including first-order FIR and IIR filters.

dot.router The Max/MSP version of our “router” data-structure; performs
namespace translation of mapped parameters, and scaling and clipping of
data streams.

5.2 Gesture Extraction Helpers

dot.play/dot.record These objects can be used to record up to 254 incom-
ing data channels into a coll object using delta timing, and later played
back. It is useful for gesture capture and off-line mapping experimentation.
The objects dot.recordabsolute and dot.playabsolute perform the same
function with absolute time-stamping.

dot.extrema Automatically outputs local maxima and minima as peaks and
troughs are detected in the incoming data. Helps in extraction of gestural
events from sensor data.

dot.leakyintegrator A configurable integrator which leaks over time. The
integration can either be linear, exponential, or use an arbitrary transfer
function specified as a table.

dot.timedsmooth An averaging filter for asynchronous control data that
makes use of DSP objects for reliably timed smoothing.

dot.transfer Performs table-based waveshaping on control data streams with
customizable transfer function. (This is used in controller patches for signal
processing, but not yet accessible through the mapping GUI.)

5.3 Case Example

Sally is a composer of electro-acoustics who has written a piece requiring sound-
file triggers. Bob is a percussionist interested in exploring the use of ballistic
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body movements for electronic performance. Sally creates a Max/MSP patch
using dot.timedsmooth and dot.extrema from the Digital Orchestra Toolbox
to extract arm movements from 3-axis accelerometers held by Bob in each hand.
She exposes the smoothed accelerometer data as well as the trigger velocity
information through OSC.

Sally loads the mapping interface. She then loads her accelerometer patch
as well as a sampler patch which has been configured for OSC messaging. After
loading, these devices are listed in the mapping interface, where she selects them,
making the accelerometer and extrema data visible on the left-hand side, and the
sample triggers visible on the right-hand side. To begin, she guesses that it would
be good to trigger sample 1 using the right-hand forwards movement, scaling the
volume according to the movement’s speed. She clicks on /body/hand/right/
forward trigger, selecting it, and then clicks on /sample/1/play at volume,
connecting them. Since she had originally determined an estimated range of
values for the accelerometer data, it automatically scales to the volume infor-
mation, and the scaling coefficients are visible in the upper right-hand corner of
the screen.

Bob tries the configuration for a few minutes, but decides there is not enough
control, and it requires too much energy to achieve even modest volume on the
sound. They decide to re-calibrate. Sally clicks on “calibrate”, and Bob makes
several triggering gestures with his right hand, until the volume range seems
consistent. He makes some extreme gestures to maximize the range, so that he
is able to achieve better control with a moderate amount of effort. Sally then
toggles “calibrate” and saves the mapping. Bob plays for a while, and decides
some small adjustments to the range are needed, so Sally manually changes the
scaling coefficient instead of re-calibrating again.

Next they decide to map a low-pass filter, which is available through the
sampler, to the motion of Bob’s left hand. Sally chooses /body/left/hand/
accel/x and then clicks on /sample/1/filter/frequency. Instantly the sound
drops to a bass tone, much too low. Sally chooses clipping options from the drop-
down menu and sets the minimum to 100 Hz, and the maximum to 5000 Hz. They
re-calibrate the left-hand accelerometer range while triggering samples with the
right hand. Bob begins to understand how to control the sound more accurately
as they practice, and eventually they start looking at the score together.

6 Discussion

From their earliest use, the solutions we have developed have allowed us to
streamline the process of mapping in collaboration with performers and com-
posers. The ability to quickly experiment with a variety of mapping connections
democratizes the mapping process, since it is easier to try everyone’s ideas during
a mapping session. Showing the performers that the connections are malleable
allows them to contribute to the development of a comfortable gestural vocabu-
lary for the instrument, rather than accepting the mappings provided. Composers
are able to explore control of sounds that interest them without supervision or
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assistance of a technical member. Using common tools for the group means that
the work of others is easily viewed and understood.

Controllers and synths that are still in development are also easily supported:
as the supported parameter-space increases, the device simply presents more
namespaces to the GUI.

Naturally this system does not solve all of the problems encountered in a
collaborative effort of this type. The technical knowledge of the group members
varies widely, and some technical knowledge of the individual controllers and
synths is still necessary, not least because they are still in development and may
not always respond predictably. As much as possible, however, we have made
the connection, processing, and communication of data between devices easy to
both comprehend and perform.

One area of frustration in our work has been dealing with devices (specifi-
cally commercial software synths) which communicate solely using MIDI. Since
the norm in this case is to use MIDI control-change messages, many software
environments allow flexible mapping between MIDI input values and their inter-
nal semantically labeled synth parameters. This means that although the synth
parameters are easily understood from within a sequencing environment for ad-
justment or automation, external access to these parameters is provided only
through an arbitrary set of MIDI control change identifiers. Our solution is to
create a static set of MIDI mappings for our use, and provide a translation layer
outside the environment to expose semantic parameters identical to those used
internally. It is hoped that as users become familiar with see the advantages of
semantic mapping, they will move away from a dependence on the traditional
MIDI workflow.

In namespace design we have tried throughout to conform to the hierarchy
proposed for GDIF [13], since we are also involved in its development, and this
also raises some implementation questions. An important part of the GDIF hi-
erarchy concerns representing gesture information in terms of the body of the
performer, using the /body OSC prefix, and indeed several of our controllers
already use this namespace. However, distinguishing performers using OSC ad-
dress patterns proves much more complex when considering the various possible
permutations of multiple performers and controllers.

7 Future Work

In addition to incremental improvements in function and usability, we have
planned the addition of several new features:

Many-to-one mapping: As discussed above, we would like to implement
the ability to negotiate many-to-one mapping relationships explicitly within the
mapping interface, with simple GUI control over the desired combining function.

Vectors: Many OSC devices currently send or receive data in vectors or lists.
The ability to split, combine, individually scale, and reorder vector elements will
be added.

OSC pattern-matching:Pattern-matching and wild-card functionality is de-
fined in the OSC specification [23] but generally has not been fully implemented
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in OSC systems. It is easy to imagine scenarios in which using wild-cards in
mapped OSC address patterns would be a powerful addition to our system.

Data rates: Rather than sending controller information as quickly as possi-
ble, we would like to make the data rate a property of the mapping connection. A
data stream might be used to control very slowly-evolving synthesis parameters,
in which case very high data rates may be unnecessary and wasteful.

Remote collaboration: The implementations described above currentlywork
over a local area network, however we would like to explore their use between
remote locations communicating over the internet. In addition to collaborative
mapping sessions between remote locations, this scenario could permit low-
bandwidth communication of performance data for remote collaborative per-
formance, in which control data is sent to instances of a software synthesizer at
each location.
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