
Sharing Data in Collaborative, Interactive Performances:
the SenseWorld DataNetwork

Marije A.J. Baalman, Harry C. Smoak, Christopher L. Salter
Design and Computation Arts

Concordia University
Montréal, QC, Canada

majbaalm,hsmoak,chrissal@alcor.concordia.ca

Joseph Malloch, Marcelo Wanderley
Input Devices and Music Interaction Lab

McGill University
Montréal, QC, Canada

Abstract
The SenseWorld DataNetwork framework addresses the is-
sue of sharing and manipulating multiple data streams among
different media systems in a heterogenous interactive per-
formance environment. It is intended to facilitate the cre-
ation, rehearsal process and performance practice of collab-
orative interactive media art works, by making the sharing
of data (from sensors or internal processes) between collab-
orators easier, faster and more flexible.

Keywords: Data exchange, collaborative performance, in-
teractive performance, interactive art works, sensor data, Open-
SoundControl, SuperCollider, Max/MSP

1. Introduction and Background
The SenseWorld Data Network addresses one of the major
challenges in the research/creation of interactive live per-
formance work: the sharing and manipulation of raw and/or
conditioned sensor data among different media systems (real
time audio and video, lighting, mechatronics, show control,
etc). While the introduction of common data sharing proto-
cols like Open Sound Control (OSC) [1] has facilitated com-
munication between disparate software environments, such
protocols still do not address how individual human collab-
orators work with real time data at the local client level in
specific media and application domains.

Establishing interactive relationships utilizing sensor data
to manipulate and shape light, sound and image requires an
understanding of the unique spatio-temporal characteristics
of the individual media themselves. Simultaneously, the cre-
ation of a complex performance project in a rehearsal con-
text demands techniques that provide designers - individu-
ally and collectively - with a shared set of nomenclatures
and tools for the extemporaneous manipulation of real time
data in order to create sequences or events that have experi-
ential affect for an audience.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the author(s).

Media designers often must access and process sensor
data using the programming conventions and embedded con-
ceptual frameworks of their particular software and hard-
ware platform. Moreover, they usually discuss the use of
such data only within such frameworks and its associated
techniques. Even in instances where a common software
platform (e.g., Max/MSP+Jitter) that can natively accom-
modate multiple media types (video, audio, etc.) is available
and shared among all designers, a higher level framework
must still be provided for shared data communication and
manipulation.

Our aim in developing the SenseWorld DataNetwork is to
support multiple different practices, without requiring each
designer to conform to the idiosyncrasies of any technical
implementation within a particular media practice. The frame-
work is intended to support coordinated collaboration with
real time data within a live interactive performance context,
in order to facilitate the creation of specific performance
events involving multiple types of media.

2. Design Criteria
During our work on previous interactive media performance
projects (such as Schwelle [2]), where data was shared be-
tween three computers to manage incoming input from body
and environment-based sensors, audio and lighting control,
we relied on OSC for lower level communication of data
between the software environments SuperCollider [3] and
Max/MSP [4]. As we moved on to other collaborative projects
involving multi-channel real time sensor data, we identified
a need for higher level framework which was extensible over
multiple projects and could make data communication and
processing easier, faster and more reliable.

The final design criteria were:
• Any client should be able to subscribe to (receive)

data
• Any client should be able to supply (send) data
• Restore configuration quickly
• Usable within heterogeneous media software environ-

ments
• Enable collaboration between heterogeneous design

practices
• Enable efficiency of collaboration within the limited

timeframe of rehearsals

2.1. Related work
The KeyWorx 1 framework [5] is one of the few frameworks
that addresses some of these issues, but it seems to have
an emphasis on net-based art and collaborative projects be-
tween different locations, rather than collaboration between
different media environments within one location.

The McGill Digital Orchestra [6] mapper tools propose
an alternative network based framework, but focus on musi-
cal application and have slightly different implementation
decisions. The aim there is to facilitate a plug and play
approach for plugging in sensor based interfaces and have
them communicate with digital (musical) instruments. The
users of this network do not necessarily have to be the de-
velopers of the sensor interfaces or digital instruments them-
selves, and not necessarily be programmers of some kind.

Our goal here is to facilitate communication between soft-
ware environments that artists already use for interactive
performance works. Thus, we assume that the users are
familiar with their own environments and medium. Also,
we do not enable communication to take place at the device
level, but rather at the software level, though different clients
can share the data they retrieve from sensor devices.

3. The SenseWorld DataNetwork framework
The framework’s core is implemented in SuperCollider (SC),
which is available as open source software and runs on sev-
eral platforms (Linux, OSX, Windows and FreeBSD). Clients
have been implemented in SC and Max/MSP so far. The
OSC namespace is well defined, so it should be trivial to
implement clients for other software environments such as
PureData 2 or Processing 3 .

What follows is a technical description of the implemen-
tation of the framework. Users of the framework need not be
familiar with the inner workings of the framework (or have
experience in programming SC), so long as their software
environment supports OSC and is able to comply with the
OSC namespace conventions in order to communicate with
the network. Thus, the framework is designed to allow for
ease of use within a designer’s own creative practice.

A central host receives all data messages and manages
the client connections (see figure 1). Each client can sub-
scribe to one or more data nodes in order to use that node’s
data in its own internal processes. Furthermore, each client
can publish data onto the network by creating a node. A
new client can query the network concerning which nodes
are present and is informed when new nodes appear after
the client has been registered. Thus, a data node can be un-
derstood as a collection of data that belongs together, e.g.,
data coming from the same sensor device or the output of a
particular device such as the DMX control stream for the-
atrical light.

1 http://www.keyworx.org
2 http://www.puredata.info
3 http://www.processing.org

host

cl ient cl ient

OSC OSC

sensor sensorsound theatr ical
l ight

DATA EXCHANGE

Figure 1. Diagram of the SenseWorld DataNetwork structure.

Within each node there are slots which represent single
data values, for example, a data node representing a 3-axis
accelerometer has three slots, with each slot corresponding
to one axis. If a client is only interested in one slot of a node,
he can subscribe specifically to that slot.

3.1. OSC implementation
The network is accessed through an OSC interface 4 , which
allows a client to join the data network, access its data and
also create its own data nodes on the network.

The general setup is as follows: a client first sends a reg-
istration message to the data network server. The client will
immediately begin receiving ping messages to which it must
reply with pong messages confirming the client’s availabil-
ity. Following the initial registration, the client can submit
a query message in order to receive a complete list of nodes
and slots currently available from the network. The client
can then subscribe to selected nodes and slots, and subse-
quently will receive data from the nodes and slots it is sub-
scribed to via data messages corresponding to the subscribed
data sources.

The client can supply a new node to the network by using
the /set/data message (which is also used subsequently
to set new data). A client can also label the nodes and slots
it has created. Whenever a new node or slot is added (by any
client) or changed (e.g., when it gets a label), the client will
receive a new info message automatically. All messages to
the server have a reply, which is either the requested info, a
confirmation message or a warning or error.

In comparison, the Digital Orchestra tools provide a de-
centralized network using one general multicast port on the
network to settle the ports and namespaces of clients. Since
not all interactive media software environments support lis-
tening to multicast channels, we elected not to use this ap-
proach. Rather our assumption is that each client will settle
its listening port itself within the operating system of the
computer on which it runs. The host can then distinguish

4 assumed to be used via the UDP layer, though TCP can be used as well
if the client supports it. The OSC protocol in itself is not dependent on the
underlying protocol, but is implemented on top of TCP and/or UDP in most
software systems

each client by its IP address (automatically included in the
OSC message) and a port which is an argument of each OSC
message in the namespace. The latter is necessary as several
clients (Max/MSP among them) do not send OSC messages
from the same port as they are listening to.

3.2. Auto-recovery
Practical lessons derived from rehearsal and performance
experiences reminds us that software applications and pro-
cesses can be unexpectedly and fatally interrupted (i.e., crash).
For this reason, a fast and automatic recovery of all pre-
viously instantiated connections is critical. The following
methods are implemented to enable fast and automated re-
covery in such situations. Following (re)start of the host
server and (re)establishment with the network, an announce
message is broadcast on several ports. In addition, the server
updates a publicly readable file with the current active lis-
tening port. Moreover, the host can restore previously con-
nected clients from information stored in a server readable
file. In turn, the client has read access over the network
to the host configuration file and automatically retrieves the
port information to which it has to register. Further, the
client implements an auto-configuration process triggered
upon receipt of a host announce message and a response
from the host indicating the client has successfully regis-
tered.

3.3. SuperCollider implementation
The SuperCollider (host) implementation is done via a set
of custom written classes:
SWDataNetwork base class for the network.
SWDataNode base class for a data node.
SWDataSlot base class for a data slot.
SWDataNetworkSpec implements the labelling of the nodes

and slots of the network.
SWDataNetworkOSC implements the OSC interface
SWDataNetworkOSCClient keeps track of a connected client

Data nodes have both unique IDs (integer numbers) and
human readable labels (e.g., node “3” has the label “ac-
celerometer”). Data slots are automatically numbered, ac-
cording to the order in which they appear, as they are set in
the network; they can also be given a label. The labelling
is not done automatically, so that the naming becomes a
conscious and integral part of establishing shared nomen-
clatures for the collaboration. This encourages considera-
tion by the users of what the data represents and its poten-
tial use. The label specification (the “spec”) can be stored
between sessions so it can be recalled again upon startup.

Each data node and slot has methods to print debugging
messages, set an action to be performed upon new incoming
data, scale and/or remap the data and create a control bus
on the audio server 5 with the data. Each data node also

5 SC consists of two parts: sclang, which is the programming language,
and scsynth, which is a dedicated audio server.

can specify an action to be taken in case there has been no
input to the node for a certain amount of time (e.g., trying to
reconnect to an external device).

If a client creates a node, that node is linked to the client
(the client becomes the “setter” of the node), and no other
client can set data to that node. Client configuration can also
be stored to a file and be used for recovery on startup.

All data from the network can be written to a log-file in
a text format containing lines for each time step with tab-
separated data values. The log can be opened and played
back with the class SWDataNetworkLog.

Finally, a graphical user interface 6 has been implemented
to monitor the status of the data network and the state of
each node.

3.3.1. The client
The class SWDataNetworkClient implements an OSC client
to the SenseWorld DataNetwork so that an external SC client
can also be part of the network. It implements the client side
of the OSC interface. It inherits from the class SWDataNet-
work to manage the data it receives, and thus has the same
interface in its use within SC.

In a setup with several collaborators using SC, one of
them will act as a host for the network, while the other SC
participants register as clients to that host. Since the code
interface for both is almost the same, apart from the initial-
isation, it is very easy for SC participants to prepare and
test their own inputs and outputs to the DataNetwork indi-
vidually, and switch to the shared network during collective
rehearsals.

3.3.2. Derived data
Deriving data from existing nodes can be done for example
by combining data from various nodes, calculating statisti-
cal properties of data, or smoothing data.

To facilitate this, we have developed methods to do this
either making use of the language features of SC, or by mak-
ing use of the server’s unit generators to perform these cal-
culations.

3.3.3. Example
Here we give a short example of how to use the network in
a local configuration:

x = SWDataNetwork.new; // define the network
// get data input from incoming serial data
// (from an XBee network)
q = XBeeSMS.new("/dev/ttyUSB0", 115200);
// the action sets the data that comes in to the network:
q.action_({ |msg| x.setData(msg[0], msg.copyToEnd(1)); });
// start the parsing of the input data:
q.start;
// we expect floor pressure sensor data on node 2
x.addExpected(2, \floor); // adds a label
// we want to create a node with a measure of the
// sample variance on node 102 and give it label \floorVar
x.addExpected(102, \floorVar);
// the data comes in as 8bit integers, so we scale it
x[\floor].scale = 1.0/255;

6 for which unfortunately the space is lacking for a screenshot.

Figure 2. The DataNetwork sink Max/MSP patch.

// we create a bus for the data (s is the audio server):
x[\floor].createBus(s);
// we create the sample variance node:
˜floorVar = StdDevNode.new(102, x, x.at(\floor).bus, s);
˜floorVar.start;
// now we have raw data available on node 2, x[\floor]
// and sample variance data on node 102, x[\floorVar]

3.4. Max/MSP client
A collection of abstractions is implemented for Max 5 and
Max 4.5/4.6. The collection consists essentially of two ab-
stractions: (1) dn.sink for managing the data network con-
nection, subscriptions, registration, queries, and get requests,
and (2) dn.source for adding and publishing data streams to
the node server. A sample patch, help file, and text-based
configuration file are included for each. The text file based
configuration allows for portability, ease of editing (by ex-
ternal script or editor), and quick startup and recovery. Sup-
port for network announce and info messages is also imple-
mented, allowing for autoconnection and real time updates
of data network changes.

4. Usage and Further Development
We are currently using the SenseWorld DataNetwork frame-
work in the dance production Chronotopia with the Attakkalari
Centre for Movement 7 , which toured in India in February
2009. In this production the network is used to distribute
camera motion tracking data, audio feature extraction data,

7 http://www.attakkalari.org

light output data and frame timing to two collaborators, one
controlling a CCFL light matrix and audio playback from
SC and another controlling video from Max/MSP.

Further development of the network includes making de-
rived data available on the network through the OSC inter-
face. While SC provides endless possibilities to derive data,
a common set should be requestable through the network.
The protocol for this still needs to be determined and should
be easily extensible for additions by various users.

The SenseWorld DataNetwork is one part of a suite of
tools being developed for live performance contexts between
Concordia University and McGill University’s IDMIL.

5. Acknowledgments
This work was supported by grants from the Social Sciences
and Humanities Research Council of Canada and the Hexa-
gram Institute for Research/Creation in Media Arts and Sci-
ences, Montréal, QC, Canada.

5.1. Download
The SenseWorld DataNetwork is available from http://
quarks.sourceforge.net, or through SuperCollider’s
built-in Quarks extension manager. It is released as open
source software under the GNU/General Public License.

References

[1] M. Wright, A. Freed, and A. Momeni. OpenSoundCon-
trol: State of the art 2003. In 2003 International Conference
on New Interfaces for Musical Expression, McGill Univer-
sity, Montreal, Canada 22-24 May 2003, Proceedings, pages
153–160, 2003.

[2] Marije A.J. Baalman, Daniel Moody-Grigsby, and Christo-
pher L. Salter. Schwelle: Sensor augmented, adaptive sound
design for live theater performance. In Proceedings of NIME
2007 New Interfaces for Musical Expression, New York, NY,
USA, 2007.

[3] J. McCartney. Supercollider - environment and program-
ming language for real time audio synthesis and algorithmic
composition. http://www.audiosynth.com, http:
//supercollider.sourceforge.net.

[4] Max/MSP programming environment. http://www.
cycling74.com/products/maxmsp.html.

[5] Sher Doruff. Collaborative praxis: The making of the key-
worx platform. In Joke Brouwer, Arjen Mulder, and Anne
Nigten, editors, aRt&D: Research and Development in the
Arts. V2/NAI Publishers, Rotterdam, 2005.

[6] Joseph Malloch, Stephen Sinclair, and Marcelo M. Wan-
derley. A network-based framework for collaborative de-
velopment and performance of digital musical instruments.
In Richard Kronland-Martinet, Solvi Ystad, and Kristoffer
Jensen, editors, Computer Music Modeling and Retrieval.
Sense of Sounds: 4th International Symposium, CMMR
2007, Copenhagen, Denmark, August 2007, Revised Papers,
number ISBN 978-3540850342 in Lecture Notes in Com-
puter Science. Springer, 2008.

