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In this article we describe our ongoing research and 
development efforts towards integrating the control of  
sound spatialisation in computer-aided composition. Most 
commonly, the process of sound spatialisation is separated 
from the world of symbolic computation. We propose a model 
in which spatial sound rendering is regarded as a subset of sound 
synthesis, and spatial parameters are treated as abstract musical 
materials within a global compositional framework. The library 
OMPrisma is presented, which implements a generic system for 
the control of spatial sound synthesis in the computer-aided 
composition environment OpenMusic. 
 
 
1. INTRODUCTION  

The digital revolution of music and media tech-
nologies in the early 1990s has stimulated an immense 
growth in the field of sound spatialisation. With many 
of today’s computer music tools it is possible to 
render spatial sound scenes for many channels of 
audio and large numbers of sound sources. Many 
research centres and performance venues have 
installed large-scale multichannel systems, offering 
promising new possibilities for sound spatialisation 
applications, which require corresponding efforts in 
the fields of authoring and musical control. 

From a compositional point of view, we speak of  
‘sound spatialisation’ as soon as the positions of sound 
sources, the ambience of a room, or any other spatial 
or acoustic element is taken into account as a musical 
parameter of a work. While space has probably always 
played an important role in music composition, the 
formalisation of space as a structural parameter is a 
rather recent phenomenon (Harley 1994). Stockhausen 
(1989) stated that spatial configurations are as mean-
ingful as intervals in melody or harmony, and that the 
consideration of spatial parameters is an integral part 
of the compositional process. Indeed, even prior to the 
advent of sound spatialisation technologies as com-
monly understood today, avant-garde composers in 
the 1950s had already begun to integrate space as a 
musical dimension into their pioneering electroacous-
tic works, taking advantage of the emerging tech-
nologies at hand, such as microphones, analogue mix-

ing desks and loudspeakers (e.g. Karlheinz Stock-
hausen in Kontakte or Gesang der Jünglinge, Pierre 
Schaeffer in Symphonie pour un homme seul, or Edgar 
Varèse with Poème électronique). 

Now that digital signal processing and musical 
acoustics are mature and well-established research 
fields, spatial sound scenes can be realised with a 
variety of rendering techniques, software tools and 
hardware setups. The literature reveals a broad spec-
trum of approaches and implementations for spatial 
sound rendering: perceptually informed amplitude 
panning techniques such as Vector Base Amplitude 
Panning (VBAP) (Pulkki 1997) or Distance Based 
Amplitude Panning (DBAP) (Lossius 2007), holo-
phonic techniques aiming at the physical reconstruc-
tion of a soundfield, such as Wave Field Synthesis 
(WFS) (Berkhout, de Vries and Vogel 1993) or 
Higher-Order Ambisonics (HOA) (Daniel 2001), 
binaural/transaural techniques, and finally hybrid 
techniques, such as Space Unit Generator (SUG) 
(Moore 1983) or Virtual Microphone Control (ViMiC) 
(Braasch 2005).1 

Each approach, however, relies on specific as-
sumptions about the nature of sound sources, listener 
and environment, and as a consequence might not be 
equally well-suited for different musical applications. 
Considering that works are often performed in 
multiple venues with different acoustic properties and 
loudspeaker arrangements, scalability and adaptability 
of spatialisation systems are also of major importance. 
To accommodate different scenarios, contexts and 
configurations, these systems should allow users to 
conceive spatialisation processes from a more abstract 
level. While much recent research focuses on 
strategies for real-time control (see for instance 
Marshall, Malloch and Wanderley 2007) or the 
development of interchange formats (Peters, Ferguson 
and McAdams 2007; Kendall, Peters and Geier 2008), 
there have been few attempts to integrate the control 

                                                 
1 The SpatBASE project proposes an interesting and fairly doc-
umented reference of existing spatial sound rendering concepts and 
implementations: http://redmine.spatdif.org/wiki/spatdif/SpatBASE  



2  Marlon Schumacher and Jean Bresson 

of spatialisation into compositional environments. In 
fact, sound spatialisation is often treated as a post-
production technique which is unconnected to the 
processes dealt with in computer-aided composition, 
and therefore remains isolated in the corresponding 
compositional models and applications. 

In this paper we present recent works aimed at 
integrating spatialisation in the computer-aided com-
position environment OpenMusic (Agon 1998; 
Assayag, Rueda, Laurson, Agon and Delerue  1999). 
After a brief discussion of related works (Section 2), 
we introduce a generic framework for sound synthesis 
and spatialisation, embedded in this environment 
(Section 3). The OMPrisma library is described as a 
structured system where spatialisation processes can 
be carried out and controlled in a flexible way, in 
relation to the symbolic compositional models and 
integrated with sound synthesis processes (Section 4). 
We present a powerful extension to the sound synthe-
sis and spatialisation frameworks, allowing these two 
processes to be merged into hybrid structures 
implementing the concept of spatial sound synthesis 
(Section 5), and conclude with a number of example 
applications (Section 6). 

 
 

2. RELATED WORKS 

Among the most popular tools used for the com-
positional control of spatial sound scenes are those 
commonly referred to as "digital audio workstations" 
(DAWs). These environments are typically based on 
the metaphor of a multitrack tape-recorder and allow 
for automation and non-linear (mostly manual) editing 
of control parameters separated into a number of 
tracks. The user, however, has only limited access to 
the control data, and as the number of sound sources 
and parameters increases it becomes cumbersome to 
monitor and manage the complexity of the spatial 
sound scene. Moreover, it is difficult to link the 
concrete representations (soundfiles, automation data) 
to more abstract compositional concepts, as this type 
of interface does not represent logical relationships.2 

Real-time audio processing environments, such as 
Max/MSP  (Puckette 1991), PureData (Puckette 1996) 
or SuperCollider (McCartney 2002) provide frame-
works in which control interfaces and rendering 
algorithms for sound spatialisation can be developed 
and integrated with more general sound synthesis 
and/or interactive processes (see for instance Schacher 
and Kocher 2006). The IRCAM Spatialisateur (Jot and 
Warusfel 1995) provides graphical user interfaces in 
MaxMSP (SpatViewer/SpatOper) which allow the 
control of numerous low-level parameters via a 
reduced number of perceptual descriptors such as 
‘liveness’, ‘presence’, and the like.  

                                                 
2 An overview of DAWs in terms of surround features 

can be found at: http://acousmodules.free.fr/hosts.htm  

Zirkonium (Ramakrishnan, Goßmann and Brüm-
mer 2006) and Beastmulch (Wilson 2008) are 
examples of large-scale spatialisation systems based 
on the model of ‘live diffusion’ which allow for the 
grouping together of sound sources and for these 
groups to be controlled individually.   

Several research projects focus specifically on 
higher-level control, abstracting the spatial sound 
scene description from the rendering techniques (see 
for example Geier, Ahrens and Spors 2008). The 
Holo-Edit interface in the Holophon project (Cabaud 
and Pottier 2002) is an application allowing the high-
level control of spatial parameters (trajectories). Con-
ceived as an authoring tool for sound spatialisation, 
Holo-Edit provides complementary interfaces for 
viewing/editing of spatial parameters, including a top-
view editor, a set of timeline controls, and 3D visuali-
sation. Moreover, it provides a set of tools for 
algorithmic generation and modification of spatial 
trajectories (Pottier 1998), which is a significant step 
towards compositional control. Earlier projects, such 
as MoveInSpace (Todoroff, Traube and Ledent 1997) 
also provided advanced features, such as a trajectory 
generator, room and loudspeaker settings, and corre-
lation of the spatialisation parameters to sound 
morphological features (some characteristics which 
will be found in different parts of our work), imple-
mented as an independent control layer on the Ircam 
Musical Workstation (Lindeman, Starkier and 
Dechelle 1990). A different approach for authoring of 
spatial sound scenes is taken in the MidiSpace (Pachet 
and Delerue 1998) and MusicSpace (Pachet and 
Delerue 2000; Delerue 2004) systems, which provide 
graphical interfaces allowing the design of spatial 
sound scenes including MIDI instruments and audio 
sources. Most notably, these applications include 
powerful constraint setting and propagation systems 
allowing the definition of spatial relations between the 
different sound sources in the scene.  

Most control systems, however, focus on a specific 
model of sound spatialisation (such as surround-mix-
ing, sound-diffusion, etc.). Although we noted the 
algorithmic functionalities (in Holo-Edit or MoveIn-
Space) and tools for constraint-setting and propagation 
(MusicSpace), these features require integration with 
higher-level programmable environ-ments in order to 
enable more abstract representations and accommo-
date different compositional applica-tions. As stated in 
(Assayag 1998), efficient compositional environments 
should be conceptually close to specialised program-
ming environments: in such compositional contexts, 
high-level, symbolic tools and processes allow ab-
stracting control data and processes to a set of man-
ageable and musically meaningful representations, 
while remaining open enough to be used in different 
contexts by different composers. 

OpenSpace (Delerue and Agon 1999) was an origi-
nal attempt at integrating the MusicSpace control 
system in the computer-aided composition environ-
ment OpenMusic. Visual programs allowed defining a 
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spatial setup for MusicSpace sound sources and 
incrementally adding constraints, while the maquette 
interface was used to control the unfolding of this 
process in time. Another project carried out in 
OpenMusic is OMSpat (Nouno and Agon 2002), a 
library for the control of the Spatialisateur. In OMSpat 
an array of sound sources, trajectories and room 
parameters could be created from algorithmically (or 
manually) defined curves and parameters. This array 
was then formatted as a parameter file for a specific 
Spatialisateur control application that could reproduce 
the spatial sound scene using two, four, or eight 
speakers, or via binaural rendering. Although the 
temporal resolution of the control-data and the number 
of simultaneous sound sources were limited, the 
ability to script trajectories and spatial parameters 
allowed the user to establish structural relationships 
between spatialisation and other symbolic data and 
processes defined in the computer-aided composition 
environment. This project has recently been gener-
alised and extended, introducing new 3D-trajectory 
objects and tools for formatting output for external 
environments (Bresson, Agon and Schumacher, 2010). 
Some similarities can also be found in the works we 
present in this paper, which inherit much of the 
control paradigms and structures from the same type 
of objects (matrices: see Section 3). 

As discussed below, we approach the control of 
sound spatialisation by considering spatial parameters 
as additional parameters in a sound synthesis 
framework, whether they relate to micro-level sound 
synthesis components (such as partials or grains) or to 
pre-existing sound sources. This approach, embedded 
in a high-level control environment, allows us to 
extend the common model of sound source 
spatialisation to the more general concept of spatial 
sound synthesis, and to generalise some of the 
techniques for time-domain or frequency-domain 
spatial distributions, presented for instance in (Topper, 
Burtner and Serafin 2002; Kim-Boyle 2008), within a 
symbolic and programmable compositional context. 
 
 
 
 
3. A GENERIC FRAMEWORK FOR THE 
CONTROL OF SOUND SPATIALISATION  

3.1 The computer-aided composition 
environment: OpenMusic  

OpenMusic (OM) is a visual programming language 
for music composition based on Common Lisp/CLOS 
(Gabriel, White and Bobrow 1991). This environment 
allows the graphical design of programs by patching 
together functional components, and provides high-

level musical interfaces such as scores and other 
graphical editors. It has been used to develop 
numerous musical works, constituting a powerful and 
efficient framework for the creation of complex 
musical structures related to various compositional 
approaches (Agon, Assayag and Bresson 2006; 
Bresson, Agon and Assayag 2008). Additional 
development in OpenMusic has involved the 
integration of sound processing, analysis and synthesis 
tools, and led to a renewed conception of sound 
representations in the framework of computer-aided 
compositional models (Bresson and Agon 2007). 
Integrating the control of sound spatialisation into the 
conceptual framework of a computer-aided compo-
sition environment introduces new possibilities: 
spatialisation parameters, as any other musical data, 
can be devised and determined using algorithms and 
programming interfaces, hence in close relation with 
associated processes. OpenMusic provides a number 
of geometrical objects such as breakpoint- and 3D-
curves (BPC/3DC) representing abstract spatial con-
figurations defined as sequences of points. Temporal 
information can be explicitly specified (which turns 
curves into trajectories), or kept implicit and inter-
preted according to a given context. These objects can 
be generated and transformed by algorithmic pro-
cesses in the programming environment or visualised 
and edited manually using graphical editors. Figure 1 
shows an example for the algorithmic generation of 
3D curves by visual programs. 
 

3.2 Sound synthesis and spatialisation: 
OMChroma/OMPrisma 

OMChroma (Agon, Stroppa and Assayag 2000) is a 
compositional framework for the control of sound 
synthesis in OpenMusic, based on Marco Stroppa's 
Chroma system (Stroppa 2000). This framework 
provides a set of classes  (in terms of object-oriented 
programming) referring to underlying sound synthesis 
processes. Each class is associated with a digital signal 
processing (DSP) patch, currently in the form of a 
Csound instrument (Boulanger 2000). The parameters 
of these instruments (called p-fields in Csound) are 
detected and matched to corresponding slots of the 
class, which can be instantiated in OpenMusic's visual 
programs. Accordingly, the graphical representation of 
an OMChroma class (called a box) has a number of 
inlets corresponding to the underlying sound synthesis 
parameters in the Csound instrument.  OMChroma 
includes a large library of classes, ranging from basic 
(e.g. additive, granular, FM, etc.) to more complex 
sound synthesis algorithms. This library is user-
extensible, and new classes can easily be defined from 
existing Csound instruments. 
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Figure 1. Generation of 3D curves via visual programs in OM. The 3DC-lib box is a set of 3DC objects. The data can be 
visualised and edited in graphical editors.

OMChroma classes are matrix structures, instanti-
ated with a given number of ‘components’ (repre-
sented as columns). Each row corresponds to a slot of 
the class (i.e. to the related synthesis parameter in the 
Csound instrument). A matrix can include arbitrary 
numbers of components, describing vectors of para-
meter-values for the underlying synthesis instrument, 
which can be controlled via high-level and symbolic 
means and subjected to compositional processes. 
When the matrix is 'synthesised' (i.e. rendered into an 
audio file) a Csound score is gene-rated from the 2D 
data structure: each component in the matrix (a 
column with a value for each synthesis parameter) 
corresponds to an event in the score (see Stroppa 2000 
for a detailed discussion).  

OMPrisma is a library providing a set of matrix 
classes corresponding to spatial sound rendering 
instruments (see Section 4). The OMPrisma classes 
extend the OMChroma matrix, and therefore benefit 
from the same expressive power and control structures 
used in the control of sound synthesis processes. The 
computed matrix contents depend on the type of the 
supplied data and on the number of components: a 
single value, for instance, means that all components 
have the same value for a given parameter; lists of 
values are taken literally or repeated cyclically until 
the number of elements matches the number of com-
ponents; breakpoint-functions are sampled over the 
number of components; and mathematical/functional 
expressions (defined as Lisp functions or visual pro-
grams) are evaluated individually for each component. 

Once instantiated, the contents of a matrix can be 
visualised and edited manually as a 2D array using a 
graphical editor.  

Figure 2 shows a basic sound spatialisation process 
carried out in OMPrisma. A set of monaural sound-
files is spatialised and rendered into a multichannel 
file for quadraphonic reproduction using the class 
pan.quad.discrete from the OMPrisma class-library. 

The body of the instrument in the orchestra file of 
Figure 2 (from instr1 to endin) is copied from the 
pan.quad.discrete class. The synthesize function for-
mats the values of the components in the matrix into 
Csound score statements (i.e. turning the columns into 
rows). Most values here are numbers (except the file 
names used for p4, which are derived from the sound-
files in the OM patch). When continuously changing 
values are required, for example for describing transi-
tions or envelopes, breakpoint-function objects can be 
used, which are internally converted into Csound 
tables. 

Note that not all parameters (p-fields in the Csound 
orchestra) are explicitly specified in the OM patch. 
The matrix boxes allow the user to selectively display 
or hide the different slot inlets of a class, whereby 
unspecified (i.e. hidden) slots are set to default values. 
In figure 2, only the slots onsets, soundfile, xpos and 
ypos, corresponding to p2, p4, p8 and p9, respectively, 
are specified to control the spatialisation process. The 
default value for the slot gain-envelope, for example, 
is 500 (a Csound table identifier), which is set for p6 
as no value is specified in the OM patch. Similarly, 
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Figure 2. Sound source spatialisation with OMPrisma. Left: the patch in OpenMusic. Right: the generated Csound 
orchestra and score files.

the three ‘panning function tables’ (visible at the top 
of the score file in figure 2) are defined inside the 
class pan.quad.discrete, and function as presets, which 
can be referred to via numerical indices in the csound 
score. This way irrelevant or redundant information is 
hidden from the user, making for a more ergonomic 
and context-sensitive interface.  

As in the case of sound synthesis processes, the 
dynamic instantiation of multiple Csound instruments 
(corresponding to the components of a matrix) yields a 
virtually unlimited polyphony for the spatial sound 
rendering process. In this perspective, a matrix can be 
regarded as a generic data structure for the description 
of spatial sound scenes with arbitrary numbers of 
sound sources, possibly controlled independently, 
using common rules, control data or algorithms. 

It is also possible to devise a synthesis process 
using multiple matrices (i.e. synthesising a list of 
matrices instead of a single one).  If the matrices cor-
respond to different classes, the respective instruments 
are gathered in a single orchestra file and identified by 
instrument number (instr1, instr2, ...). Each matrix can 
also be assigned a global onset-time, allowing it to be 
considered as a temporal ‘event’ in a larger-scale time 
structure. 
 
 
 
 

4. OMPRISMA 

OMPrisma is implemented as an extensible frame-
work comprising a library of classes for spatial sound 
rendering (Section 4.1), a library of tools and func-
tions for generation and manipulation of spatialisation 
parameters (Section 4.2), and an external standalone 
application (titled Multiplayer) for decoding and dif-
fusion of the rendered multichannel audio formats 
(Section 4.3). 

Several studies have documented a great variety of 
compositional approaches for sound spatialisation (see 
for example Harley 1994), and it is unlikely that a 
specific spatial sound rendering technique will satisfy 
every artist's needs. A more sensible solution is to 
provide a programmable abstraction layer which sepa-
rates the spatial sound scene description from its 
rendering, and leave it to the user which spatial sound 
rendering approach is most suitable for a given pur-
pose. The OMPrisma class-library provides a palette 
of spatial sound rendering instruments, implementing 
different spatial sound rendering techniques. Currently 
available are classes for stereo, quadraphonic and 5.0 
(ITU) panning, VBAP, RVBAP, DBAP, HOA, and a 
mixed-order Ambisonics system with optional 
simulation of room-acoustics. Table 1 gives an 
overview of implemented spatial sound rendering 
concepts and respective classes.  
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Amplitude 
Panning VBAP RVBAP DBAP Ambisonics SPAT 

Pan.stereo.discrete 
Pan.stereo.continuous 

Vbap.2D.discrete 
Vbap.2D.continuous 

Rvbap.2D.discrete 
Rvbap.2D.continuous 

Dbap.2D.discrete 
Dbap.2D.continuous 

Ambi.2D.discrete 
Ambi.2D.continuous 

Spat.2D.discrete 
Spat.2D.contrinuous 

Pan.quad.discrete 
Pan.quad.continuous 

Vbap.3D.discrete 
Vbap.3D.continuos 

Rvbap.3D.discrete 
Rvbap.3D.continuous 

Dbap.2D.discrete 
Dbap.3D.continuous 

Ambi.3D.discrete 
Ambi.3D.continuous 

Spat.3D.discrete 
Spat.3D.continuous 

Pan.5.0.discrete 
Pan.5.0.continuous    Ambi.UHJ.discrete 

Ambi.UHJ.continuous  

Table 1. Spatial sound rendering concepts and respective classes in OMPrisma. 

    Dynamically changing values, such as envelopes or 
trajectories (i.e. 'spatial glissandi') can be described 
both in terms of successions of discrete, ‘granular’ 
positions or as a single continuous movement (con-
sider for example the notion of a glissando on a piano 
vs. a fretless string instrument). In (Harley 1998) the 
author discusses the difference between ‘discrete’ or 
‘stepwise proceeding’ spatial movements (dating back 
to the Venetian school of polychorality in the late 
renaissance), and ‘continuous’ motion (introduced in 
instrumental and electronic music of the post-war 
avantgarde). We adopted this notion in that every 
OMPrisma class is available in a dedicated version for 
discrete and continuous control, respectively.  

The separation of the spatial sound scene descrip-
tion from its rendering and reproduction offers many 
advantages (see Peters, Lossius, Schacher, Baltazar, 
Bascou and Place 2009). For example, it allows the 
user to rapidly exchange a given spatial sound ren-
dering with another one without affecting the other 
components. It further facilitates modifications or 
extensions at the renderer level (i.e. Csound instru-
ments), since the DSP implementation can be 
modified independently as long as it provides the 
same interface to the environment. Moreover, the use 
of an external real-time application for decoding and 
diffusion (the Multiplayer) will provide the flexibility 
of adapting the reproduction of a spatial sound scene 
according to a given environment. Figure 3 shows an 
example of 3 OMPrisma classes rendering the same 
spatial sound scene using different techniques.  
 
 
4.1 Spatial sound rendering 

OMPrisma employs the Csound language as spatial 
sound rendering engine, which allows for sample-
synchronous control of all parameters, high-resolution 
processing and unlimited polyphony. Note that the 
same matrix control-structures may as well be used 
and formatted for another synthesis engine, or written 
into external interchange format files, see for example 
(Stroppa 2000; Bresson et al. 2010). In order to easily 
maintain, modify and extend the collection of spatial 

sound rendering instruments, they have been 
implemented following a modular design. Common 
functionality is encapsulated into modules (user-
defined-opcodes, Lazzarini 2005) and re-used across 
the different instruments, such as the soundfile-player, 
or source pre-processing modules. In the following 
section we will discuss some of the implementation-
specific details. 
 
 
4.1.1. Dynamic instrument configuration 

Many spatialisation algorithms are capable of driving 
various loudspeaker configurations and numbers of 
output channels. The OMChroma system allows for 
the writing of global statements into Csound orchestra 
files before the instrument definition, which permits 
dynamically changing the output configuration with-
out the need of modifying the original instrument's 
body.  Accordingly, a single OMPrisma class (imple-
menting a specific spatial sound rendering technique) 
can be used for various loudspeaker setups and output 
channels.  
 
 
4.1.2 Source pre-processing 

For classes implementing intensity-based panning 
techniques we have developed source pre-processing 
modules for rendering of perceptual cues to support 
the impression of distance and motion of a sound 
source. The effect of air absorption is simulated with a 
second order Butterworth lowpass filter with variable 
cut-off frequency. An attenuation-module accounts for 
the decrease of a sound source's amplitude as a func-
tion of distance. Doppler shifts are simulated with a 
moving write-head delay-line with high quality 
interpolation.  

Rather than hard-coding the equations for rendering 
of perceptual distance-cues into the spatialisation 
engines directly, we implemented a table-lookup sys-
tem for greater efficiency and flexibility. Lookup 
tables can be generated using pre-defined (see Section 
4.2.2) or user-defined functions, and manually edited 
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Figure 3. The same spatial sound scene description realised with different spatial sound rendering techniques: 

5.0 (ITU) panning, VBAP and higher-order Ambisonics.

using OpenMusic’s graphical breakpoint-function 
editors. These tables can then be connected to the 
corresponding slot of a class to be applied to a specific 
sound source (see Figure 4), or provided as global 
tables for the whole spatial sound rendering process.  
 
 
4.1.3 Room effects  

Room acoustics and reverberation are important 
perceptual cues for the localisation of a sound source, 
and provide information on a surrounding environ-
ment's size, shape and material (Blauert 1983). The 
description of room effects is conceptually different 
from the description of sound sources and therefore 
requires alternative control-strategies. Depending on 
the underlying model and implementation of a rever-
beration algorithm the control interfaces can vary to a 
great extent (for example perceptual vs. physical mod-
els) and often require the setting of many individual 
parameters, which might clutter up the interface when 
specified as individual slots of a class. Thus, in OM-
Prisma room parameters are defined in tables, as a 
compact data-structure (provided to a single slot of a 
class), which can be edited graphically or algorithmi-
cally directly in OM, and imported/exported as files to 
disk. Currently, two spatial sound rendering classes in 
OMPrisma include reverberation: RVBAP and SPAT. 
The reverberation algorithm in RVBAP is imple-

mented as a feedback delay network based on digital 
waveguides, while SPAT implements a shoebox 
room-model based on recursive rendering of discrete 
reflections. Note that due to Csound’s dynamic in-
stantiation paradigm the full range of parameters of 
the spatial sound rendering engine is available for 
each individual sound source. As with any other ma-
trix slot, room parameters can be set globally for the 
whole synthesis process or controlled individually for 
each component. 
 
 
4.1.4 Within the loudspeaker array 

The placement of virtual sound sources within the 
surrounding loudspeaker array is a feature often de-
sired by composers, which is difficult or even impos-
sible to realise with many spatial sound rendering 
techniques. A number of works have addressed this 
issue (Menzies 2002, Daniel 2003), however these 
solutions are mostly idiosyncratic to a given spatial 
sound rendering concept and can be difficult to control 
for a non-expert user and without adequate technical 
equipment. In order to have a consistent approach for 
different spatial rendering classes we implemented the 
popular technique of decreasing the directionality of a 
sound source as it enters the speaker array towards the 
listener, approaching complete monophony (i.e. all 
speakers contributing equally) at its centre. For classes 
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implementing VBAP, for example this is accom-
plished through implicit control of the ‘spread’ 
parameter (Pulkki 1999); in the case of Ambisonics, 
via controlled decrease of gain coefficients for higher-
order components (as described in Schacher and 
Kocher 2006). This behaviour is optional and can be 
tweaked or bypassed. 
 
 
4.2 Control strategies 

OMPrisma is designed to provide a higher-level ab-
straction layer for spatial sound scene description 
which is independent of the underlying rendering 
implementation. Accordingly, all classes share a struc-
tured interface complying with current specifications 
of the Spatial Sound Description Interchange Format 
(SpatDIF, Peters et al. 2007). Control parameters  (i.e. 
class slots) are organized into conceptual groups (or 
namespaces), such as soundfile-player parameters, 
position data, renderer-specific parameters (such as 
the ‘spread’ parameter for VBAP), source pre-
processing settings and reverberation parameters. An 
overview of OMPrisma classes with respective slots is 
given in the Appendix. Figure 4 shows an example of 
a complete spatialisation process including conversion 
of a 3DC-lib into individual trajectories for position 
control, symbolic setting of room-parameters and 
rendering of perceptual distance cues. Global settings 
for the rendering process are provided directly to the 
synthesize method, independently of the spatial sound 
scene description.  
 
 
4.2.1 Trajectories 

Trajectories for position-control of sound sources can 
be defined via geometric objects, such as breakpoint-
functions (BPFs), 2D breakpoint-curves (BPCs), and 
3D-curves (3DCs, see figure 1). The function gen-
trajectory unfolds these geometric objects in time and 
returns the corresponding control data (envelopes for 
each Cartesian dimension) using two complementary 
strategies: In ‘constant speed’ mode, the sound source 
will travel along the trajectory with constant speed, 
while in ‘constant time’ mode it will respect a constant 
time interval between successive points in the trajec-
tory. As an additional feature, the gen-trajectory func-
tion allows the generation of B-Spline curves; that is, 
polynomial interpolations between the object's initial 
control points. This way, a trajectory can for example 
be specified manually with a few breakpoints, and its 
curvature controlled using this function. Obviously, 
trajectories can be set and modified via pre-defined or 
user-defined algorithms. Alternatively, the new object 
3D-trajectory was implemented, which allows the 
assignment of time-tags to spatial points in the trajec-
tory, either explicitly or automatically (deduced from 
surrounding points).  

After the spatio-temporal morphology of a trajec-
tory has been defined its absolute playback speed can 
be controlled via frequency envelopes (individually 
for each Cartesian dimension). If no frequency enve-
lopes are specified, the speed of a trajectory is implic-
itly scaled to fit the duration of its corresponding 
synthesis event (e.g. the duration of the soundfile). 
The use of frequency envelopes allows for dynamic 
control of the speed-of-travel of a sound source (in-
cluding stopping or reversing the travel direction), 
creating spatial patterns (e.g. spirolaterals and lissa-
jous figures), or working with audio-rate oscillations 
and frequency modulations at the border between 
sound synthesis and spatialisation. As with any matrix 
parameter, trajectories can be set globally or specified 
independently for each component (i.e. sound source).  
 
 

4.2.2 Function library  

OMPrisma features a ‘compositional toolbox’ of 
functions and utilities for generation and manipulation 
of spatialisation data. The function library includes 
tools for processing of 2D or 3D breakpoint curves, 
such as interpolations in Cartesian or spherical coordi-
nates, geometric transformations (e.g. rotations, 
scaling, mirroring), and stochastically-driven ma-
nipulations such as perturbations and clusterings. For 
rendering of perceptual distance-cues a set of pre-
defined functions are provided which implement 
commonly used equations to control the simulation of 
attenuation, air-absorption and Doppler shifts as func-
tions of distance. Yet another category are renderer-
specific functions, used for example to set reverbera-
tion/room-parameters. The spat-room function shown 
in figure 4, for example, allows the setting of physical 
properties of a shoebox room-model in a symbolic 
way by connecting functions describing characteristics 
of individual walls (spat-wall) to a global room-model 
(spat-room). Finally, various utilities are provided, for 
example for configuration of loudspeaker setups, or to 
perform conversions between coordinate systems. 
Since these tools are embedded in a programming 
environment, they can be easily adapted, extended and 
related to the extensive set of libraries and features of 
OpenMusic.  
 

 
4.2.3 Algorithmic sound scene manipulation  

A particularly powerful concept inherited from the 
OMChroma system is the user-fun. This function, 
written directly in LISP or defined graphically in an 
OpenMusic patch, can access and modify the contents 
of a matrix and defines programs in order to manipu-
late, possibly generate or remove elements before 
starting the rendering process. 



Spatial Sound Synthesis in Computer-Aided Composition  9 
 

Figure 4. Example for a sound spatialisation process using the OMPrisma class spat.3D.continuous. The gen-
trajectory function converts a 3DC-lib object containing 3-dimensional trajectories into envelopes for x, y, z.  

Functions, pre-defined lookup-tables and presets are used to control the rendering of perceptual distance cues. Room-
characteristics are specified via the function spat-room. The function ambi-setup is used to set global parameters for 

the rendering process.

    User-funs can take additional arguments (provided 
as inlets to the matrix), which allows the user to 
introduce new control-parameters in the spatialisation 
process. This paradigm constitutes a powerful tool for 
selective and global manipulations of the matrix data, 
such as groupings, rotations/translations of sound 
source positions, or arbitrary rule-based transfor-
mations of entire spatial sound scenes. One possible 
application is the modelling of composite sound 
sources emitting sound over an extended space by 

breaking the original sound source up into a set of 
independent point sources. Figure 5 shows a 
graphically-defined user-fun implementing the 
concept of Sound Surface Panning as described in 
(Ramakrishnan et al. 2006): for each sound source in 
the matrix a two-dimensional shape is specified, 
which is synthesised as a mesh of evenly distributed 
point sources. This process is controlled using the 
same data as in figure 4 (i.e. soundfiles, trajectories, 
etc.) and rendered into a multichannel soundfile using 
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Figure 5. Implementation of Sound Surface Panning via a user-fun applied to an OMPrisma matrix. a) Sound Surfaces 
are graphically defined via BPC objects and provided as additional parameters (width/height/resolution) to the matrix. 
The patch labelled ‘SSP-userfun’ (b) is set as user-fun for the matrix, and therefore evaluated for each component in 

order to replace the sound sources with ‘sound surfaces’. 

 VBAP. Note that, thanks to the common control-
interface for OMPrisma classes the same user-fun and 
global processing can be applied to any other spatial 
sound rendering class. Similarly, we have employed 
the user-fun to implement W-panning (described in 
Schumacher and Bresson 2010).    
 

 
4.3 Decoding and diffusion: the Multiplayer  

For any spatial sound composition tool it is of great 
importance that the user be able to monitor the results 
immediately. A tight auditory feedback loop between 
composition and reproduction facilitates efficient 
workflows and allows tweaking and fine-tuning the 
spatialisation processes via perceptual evaluations. 
Another important aspect is the ability to adjust the 
reproduction in real-time in order to adapt to a given 
environment, such as a specific studio setup or concert 
venue. This might include tasks such as the routing of 
logical output channels to physical devices, the ad-
justment of gains or time-delays for specific channels, 
or in the case of encoded formats setting and tweaking 
decoder parameters in real-time. 
   The Multiplayer is a standalone application for de-
coding and diffusion of interleaved multichannel 
soundfiles in different formats. It is implemented as a 
set of modules complying with the Jamoma frame-
work for Max/MSP (Place and Lossius 2006). It is 

intended to facilitate the work on spatial sound com-
positions in changing environments and for different 
loudspeaker setups, without requiring any expert-
knowledge from the user. Figure 6 shows a screenshot 
of the Multiplayer application. 
 
 
4.3.1 Integration  

The Multiplayer seamlessly integrates into the work-
flow with OMPrisma via bi-directional communica-
tion using Open Sound Control (OSC) (Wright 2005). 
Once the communication has been established, the 
Multiplayer can safely be sent to the background and 
entirely controlled from OM (using the same transport 
controls as OM's internal players). Optionally, the 
Multiplayer can be synchronised with rendering set-
tings in OMPrisma, in the sense that it will automati-
cally update its configuration accordingly, hence no 
switching between applications is required. 
 
 
4.3.2 Adaptability  

Other important aspects for a decoding or diffusion 
application are compatibility with different formats 
and adaptability to different reproduction environ-
ments. The Multiplayer dynamically re-configures its 
internal dsp structure via scripting (i.e. adds / removes  
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Figure 6. The Multiplayer standalone application decoding a 3rd-order Bformat soundfile. On the right hand side is a 
3D visualisation of a hemispherical loudspeaker setup. 

channels) to match a given reproduction situation. 
Modules are provided for soundfield manipulations 
(rotations and mirroring along the principal axes), 
Ambisonics decoding, numerical and graphical inter-
faces for configuration of loudspeaker setups, and 
binaural rendering. Sound pressure- and time-differ-
ences in non-equidistant loudspeaker setups can be 
either automatically compensated (via loudspeaker 
positions) or manually balanced.  
 
 
4.3.2 Auralisation 

Composers are often required to elaborate musical 
works using loudspeaker configurations which are 
different from the intended reproduction setup in the 
performance venue. To address this issue, the Multi-
player provides a binaural rendering module for vir-
tual loudspeaker binauralisation; that is, simulating a 
certain loudspeaker setup by treating the loudspeakers 
as virtual sound sources. Another benefit of this 
feature is the possibility of auditioning spatial sound 
scenes for various loudspeaker configurations (e.g. 
experimenting with irregular setups) and from differ-
ent listening positions. It also allows the work with 
OMPrisma in the complete absence of loudspeakers. 
Moreover, it can be employed for rendering of bi-
naural mixdowns. Since all parameters are accessible 
via OSC, external devices (such as head-trackers) can 
be employed for interactive control of the binaural 
rendering.  
 
 
 
 

5. FROM SOUND SOURCE 
SPATIALISATION TO SPATIAL 
SOUND SYNTHESIS 

The process of sound spatialisation can be carried out 
on multiple time-scales (Roads 2001). While tradi-
tional diffusion practices are usually based on direct 
manipulations that can be performed in real-time, 
there is no such restriction using digital signal pro-
cessing techniques. Much as the development of 
analogue studio techniques (and, later, the digital syn-
thesiser) made it possible to manipulate sound below 
the level of individual sound objects in the domain of 
sound synthesis, spatialisation processes can be 
applied to the microstructure of a sound in order to 
synthesise sounds with complex spatial morphologies. 
 
 

5.1. Spatial sound synthesis 

Within the presented framework we consider the term 
spatial sound synthesis most appropriate to denote the 
extension of sound synthesis algorithms into the 
spatial domain, that is as a general term to express 
spatialisation processes at the micro-level of sound. 
Several systems have been described which allow for 
spatial sound synthesis applications: Torchia and 
Lippe (2004) presented a system for real-time control 
of spectral diffusion effects which allows to filter a 
sound into its spectral components and spatialise them 
individually. Scatter (McLeran, Roads, Sturm and 
Shynk 2008) is another original system for granular 
synthesis, which allows spatial positioning of 
individual grains using dictionary-based methods. The 
Spatial Swarm Granulator (Wilson 2008) allows the 
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Figure 7. Spatial sound synthesis: Merging synthesis and spatialisation classes in OMChroma. At the bottom right: 
the merged Csound instrument generated automatically from the class add-1 (add-1.orc, top left) and the class 

pan.quad.discrete from figure 2 (pan.quad.discrete.orc, top right).

control of spatial positions of individual grains based 
on Reynold's Boids algorithm (Reynolds 1987). Kim-
Boyle (2008) gives an overview of frequency-domain 
spatial distributions, mostly controlled via particle and 
agent systems. Interestingly, the author stresses the 
need for ’an interface with the power to control and 
transform coordinates for hundreds of particles which 
at the same time does not overwhelm the user with 
massive banks of control data’. In their presentation of 
Spatio-Operational Spectral Synthesis (which is con-
ceptually close to our notion of spatial sound 
synthesis), Topper et al. (2002) describe the process as 
‘taking an existing synthesis algorithm and breaking it 
apart into logical components’ and then ‘[assembling] 
the components by applying spatialisation algorithms’.  

The OMChroma system, which builds upon an in-
itial implicit decomposition of the sound synthesis 
process into ‘components’ (see section 3.2), lends 
itself particularly well to this idea of spatial sound 
synthesis. The separation into logical components is 
given in the initial design of the OMChroma classes 

and generalised by the use and control of matrix 
structures. The same paradigm is adopted for the indi-
vidual spatialisation of each synthesis component. 
 
 
  
5.2. Implementation with 
OMChroma/OMPrisma 

Generalized spatial sound synthesis processes can be 
achieved in OMChroma by designing Csound instru-
ments to perform both sound synthesis and spatial 
sound rendering. However, given the number of pos-
sible combinations of existing synthesis classes (in 
OMChroma) and spatialisation classes (in OM-
Prisma), the explicit implementation of individual 
spatial sound synthesis instruments would lead to an 
excessive amount of classes. A more sensible solution 
is to combine sound synthesis instruments with spatial 
renderers dynamically, in order to create compound 
instruments capable of spatial sound synthesis.   
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Figure 8. Symbolic control of a spatial sound synthesis process in OpenMusic. The visual program on the right hand side 
(3d-polar-virtfun)  converts the symbolic musical materials to synthesis and spatialisation parameters. The spatial 

positions of the synthesised score materials are shown in the 3DC-lib at the bottom left.

In terms of signal-flow this idea can be described as 
an automatic detection and redirection of the output of 
the synthesiser to the input of the spatial sound 
renderer (i.e. replacing the former input sound source). 
This is a non-trivial task, however, which is carried 
out in two steps: 
 
1. A new Csound instrument is created by merging 

the original synthesis and spatial rendering in-
struments. In the synthesis instrument, the 
variable bound to the signal output must be iden-
tified, while, on the spatial rendering side, the 
original input and its internal dependencies must 
be detected and replaced by the synthesis output. 
Variable declarations, bindings and redundancies 
must be handled between both instrument-pars-
ing processes. Useless parameters must be 
omitted (e.g. the ‘soundfile-player’ part in the 
spatialisation instruments), and the Csound p-
fields order and indexing must be adapted ac-
cordingly. 

 

2. The merged Csound instrument code is then used 
to create a new hybrid class starting from the two 
initial ones (synthesis and spatial rendering). 
Fortunately, Common Lisp and CLOS provide 
powerful tools for meta-object programming and 
dynamic class definition (Gabriel et al. 1991). 
After inspecting the different slots and properties 
of the respective classes, a new one is defined by 
keeping the common fields (e.g. e-dels, dura-
tions) and combining the specific ones of the 
different instruments. The resulting class is 
instantiated using the corresponding slot values 
in the two initial objects. 

 

From a user's perspective this merging-process is 
accomplished by simply connecting two objects (any 
synthesis class from OMChroma and any spatial 
rendering class from OMPrisma) to the function 
chroma-prisma, which internally creates the new mer-
ged-orchestra class and outputs an initialised instance. 
The resulting instance can eventually be plugged  
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Figure 9. Interfacing sound spatialisation and analysis tools in OpenMusic. Control-data is derived from sound analyses 
(transient detection, fundamental-frequency estimation and partial-tracking) of the original soundfile (a). A visual pro-
gram (mapping) specifies mapping-functions to determine spatial positions and reverberation characteristics (b). The 

3DC visualises the spatial distribution of the sound segments, indices represent successive sound segments (c). 

into the synthesize function in order to perform the 
spatial sound synthesis. This process is illustrated in 
figure 7, in which an additive synthesis class is mer-
ged with a quadraphonic spatial sound rendering class. 
This system therefore constitutes a powerful synthesis 
framework, enabling high-level control over the full 
range of sound synthesis and spatialisation parameters 
for each individual component — partials, grains, or 
any other primitive components of a given synthesis 
algorithm. 
 
 
6. EXAMPLE APPLICATIONS 

One of the main interests of the OMPrisma framework 
is its integration into a general compositional envi-
ronment (OpenMusic). This embedding leads to novel 
possibilities for integrating symbolic, sound and spati-
alisation data into compositional frameworks and 
offers a degree of control difficult to achieve using 
conventional tools. In this section we show a number 
of examples of how spatial parameters can be related 
to other musical dimensions within a compositional 
framework.  

    In figure 8, symbolic musical material (a score in 
common music notation) is used as input data to con-
trol both sound synthesis and spatialisation 
parameters. The spatial positions for the synthesised 
sound components (plucked-string synthesis) are de-
rived via arithmetic operations from the chords/notes 
contained in the score: For every chord the ‘virtual 
fundamental’ is calculated; that is the highest funda-
mental frequency for which the notes of the chord 
could be thought of as harmonic partials. This funda-
mental frequency is first converted into a pitch-class 
value and then rescaled and interpreted as azimuth 
angle (i.e. a position on a horizontal circle). Similarly, 
the mean-pitch of the same chord is used to calculate 
an elevation angle. With these two polar coordinates a 
position for each chord on the surface of a unit-sphere 
is determined. The positions of the individual notes of 
each chord are specified via controlled perturbations 
of its center-position. The resulting 'spatial clusters' 
(each corresponding to a chord) are visualized in the 
3DC-lib at the bottom left of the figure. 
 
 



Spatial Sound Synthesis in Computer-Aided Composition  15 
 

 
Figure 10. Spatial additive synthesis using the classes add-1 and ambi.2D.continuous: (a) a harmonic spectrum is 

generated  (visualised as a chord) and additional partials (micro-clusters) added around each harmonic; (b) A set of 
envelopes (BPF-lib) is used to control both sound synthesis and spatialisation parameters; (c) Two manually-defined 

(i.e. hand-drawn) trajectories are interpolated over the number of partials. Each partial is assigned an individual 
trajectory, displayed in the 3DC-lib on the right-hand side. 

    Figure 9 shows a somewhat complementary ap-
proach: the use of concrete, external data to control 
the spatialisation of an existing soundfile3. In this 
example, the spatialisation parameters of a percussion 
(tabla) solo are controlled exclusively via data which 
is extracted from the soundfile itself using OM’s 
sound analysis tools (Bresson 2006). First, the source 
soundfile is analysed for transients in order to segment 
the percussion solo into individual tabla strokes. A 
fundamental frequency-estimation and partial-tracking 
is performed, from which profiles for pitch and 
spectral centroid are generated (a). For each sound 
segment (i.e. tabla stroke), its fundamental frequency 
and spectral centroid value is looked up and mapped 
to azimuth and elevation angle for spatialisation 
control. Since we are working in a differed-time 
paradigm, the duration of each segment can be used as 

                                                 
 3 This technique could be considered an auto-adaptive 

digital audio effect, as the control data is derived from sound 
features using specific mapping functions (Verfaille, Zolzer 
and Arfib 2006). 

control data to determine its distance from the centre 
position, and to set reverberation parameters (b). Con-
sequently, every tabla stroke in the original soundfile 
will be assigned an individual spatial position and 
reverberation characteristics, correlated with its pitch, 
spectral centroid and duration.  

A large variety of spatial sound synthesis applica-
tions can be realised by freely combining sound syn-
thesis and spatialisation instruments. Granular 
synthesis, for instance, is a popular model for time-
domain spatial sound synthesis (see for example 
McLeran et al. 2008; Wilson 2008). Typically, each 
sound grain is assigned an individual position in 
space, often controlled stochastically (rather than 
literally) in order to reduce the large number of pa-
rameters to a few manageable variables. 

Another interesting model is ‘spatial additive syn-
thesis’: In spatial additive synthesis a complex sound 
is synthesised from elementary sinusoidal components 
which are spatialised individually. Figure 10 shows an 
example for continuous control of spatial additive 
synthesis in which hundreds of partials are synthe-
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sised, each with its individual set of dynamically 
changing sound synthesis and spatialisation param-
eters. It is also a nice illustration of how a complex 
spatial sound synthesis process — requiring large 
amounts of control-data — can be managed via a 
small number of conceptually meaningful, high-level 
abstractions.  
 
 
7. CONCLUSION 

We have presented a system for the symbolic control 
of sound source spatialisation and spatial sound syn-
thesis in compositional contexts. This system has been 
implemented as an extension of OMChroma in the 
computer-aided composition environment OpenMusic. 
Embedded in this framework, spatial sound scenes can 
be generated and manipulated via high-level structures 
and algorithms, which allows for explicit control of 
arbitrary numbers of control parameters, difficult to 
achieve via manual editing or other conventional ap-
proaches (e.g. real time, track-based). 

The visual programming and compositional envi-
ronment provides an extensive set of tools for the 
generation, manipulation and control of spatial param-
eters and processes. More importantly, the integration 
of spatialisation tools into environments for computer-
aided composition allows spatialisation to be treated 
as a structural parameter, and enables complex rela-
tionships with other musical dimensions and in 
relation to a global compositional framework. Inter-
esting relationships can for instance be created using 
external data derived from sound analyses or any other 
musical/extra-musical source or process. 

OMPrisma separates the different stages of sound 
spatialisation into several layers as proposed in (Peters 
et al. 2009), with authoring in OM programs, descrip-
tion in matrices, interpretation via the synthesize func-
tion, rendering via Csound orchestras, and finally, the 
decoding and communication with physical devices 
using the external Multiplayer application.  

Thanks to an original class-merging system be-
tween OMChroma (sound synthesis) and OMPrisma 
(spatial sound rendering), the concept of spatial sound 
synthesis is implemented in a generic way, allowing 
arbitrary combinations of sound synthesis and spatial 
sound rendering techniques. The control of sound 
spatialisation is tightly integrated in the compositional 
framework and benefits from the same flexibility and 
expressive power as sound synthesis and general 
compositional processes.  

Future work is planned in several directions: The 
existing class-library could be extended with other 
spatial sound rendering concepts, such as SUG. More 
processor-demanding approaches such as ViMiC or 
WFS would be particularly promising candidates 
(facilitated by the offline-rendering paradigm). It 
would also be interesting to use the system in the 
context of directivity synthesis (Warusfel and Mis-
dariis 2001), for instance to synthesise artificial 

sounds with intricate directivity patterns. More com-
plex processing chains could be envisaged in this 
framework, including for instance spectral diffusion or 
other spatial audio effects. On the ‘control’ level, 
different OpenMusic tools such as the maquette, for 
temporal modelling (see Agon 1998), or the cr-model 
for abstract sound representations based on time-fre-
quency structures (see Bresson, Stroppa and Agon 
2007) form interesting contexts in which spatial sound 
control could be integrated.  

So far OMPrisma has been used for the compo-
sition of a number of works, most notably Cognitive 
Consonance by C. Trapani, performed at the Ircam 
Agora Festival, Paris 2010. OMPrisma is distributed 
with the OpenMusic package through the IRCAM 
forum and is also available as an open source OM-
library. More information and sound examples are 
available: 
http://www.music.mcgill.ca/~marlon/OMPrisma.  
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APPENDIX 
 

 

Table 2. OMPrisma classes and respective slots (p-fields) for discrete control 
 

 PAN. 
STEREO 

PAN. 
QUAD 

PAN. 
5.0 

DPAN. 
STEREO 

DPAN. 
QUAD 

DPAN. 
5.0 VBAP RVBAP DBAP AMBI- 

SONICS SPAT 

Soundfile ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Gain ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Gain-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Startpos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Xpos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ypos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Zpos       ✓ ✓ ✓ ✓ ✓ 
Pan-fun ✓ ✓ ✓ ✓ ✓ ✓      
Spread       ✓ ✓    
Blur         ✓   
Order          ✓ ✓ 
Atten-fun    ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Air-fun    ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Rev-level        ✓    
Rev-spread        ✓    
Rev-feedback        ✓    
Rev-params        ✓    
Spk-params         ✓   
Room-params           ✓ 
Center-radius       ✓ ✓  ✓ ✓ 

 
 
 

Table 3. OMPrisma classes and respective slots (p-fields) for continuous control 
 

 
 

PAN. 
STEREO 

PAN. 
QUAD 

PAN. 
5.0 

DPAN. 
STEREO 

DPAN. 
QUAD 

DPAN. 
5.0 VBAP RVBAP DBAP AMBI- 

SONICS SPAT 

Soundfile ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Gain ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Gain-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Startpos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Xpos-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ypos-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Zpos-env       ✓ ✓ ✓ ✓ ✓ 
Xpos-freqenv ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Ypos-freqenv ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Zpos-freqenv       ✓ ✓ ✓ ✓ ✓ 
Pan-fun ✓ ✓ ✓ ✓ ✓ ✓      
Spread-env       ✓ ✓    
Spread-freqenv       ✓ ✓    
Blur-env         ✓   
Blur-freqenv         ✓   
Order-env          ✓ ✓ 
Order-freqenv          ✓ ✓ 
Atten-fun    ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Air-fun    ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Doppler-fun    ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Rev-level        ✓    
Rev-spread        ✓    
Rev-feedback        ✓    
Rev-params        ✓    
Spk-params         ✓   
Room-params           ✓ 
Center-radius       ✓ ✓  ✓ ✓ 

 
 


