
Organised Sound 15(3): 271-289 © Cambridge University Press, 2010.

Spatial Sound Synthesis in Computer-Aided
Composition

MARLON SCHUMACHER** and JEAN BRESSON†

**IDMIL – DCS – CIRMMT, Schulich School of Music of McGill University, 555 Sherbrooke St West, Montreal, QC, Canada
E-mail: marlon.schumacher@music.mcgill.ca
† IRCAM – CNRS UMR STMS, 1, place I. Stravinsky, 75002 Paris, France
E-mail: jean.bresson@ircam.fr

In this article we describe our ongoing research and
development efforts towards integrating the control of
sound spatialisation in computer-aided composition. Most
commonly, the process of sound spatialisation is separated
from the world of symbolic computation. We propose a model
in which spatial sound rendering is regarded as a subset of sound
synthesis, and spatial parameters are treated as abstract musical
materials within a global compositional framework. The library
OMPrisma is presented, which implements a generic system for
the control of spatial sound synthesis in the computer-aided
composition environment OpenMusic.

1. INTRODUCTION

The digital revolution of music and media tech-
nologies in the early 1990s has stimulated an immense
growth in the field of sound spatialisation. With many
of today’s computer music tools it is possible to
render spatial sound scenes for many channels of
audio and large numbers of sound sources. Many
research centres and performance venues have
installed large-scale multichannel systems, offering
promising new possibilities for sound spatialisation
applications, which require corresponding efforts in
the fields of authoring and musical control.

From a compositional point of view, we speak of
‘sound spatialisation’ as soon as the positions of sound
sources, the ambience of a room, or any other spatial
or acoustic element is taken into account as a musical
parameter of a work. While space has probably always
played an important role in music composition, the
formalisation of space as a structural parameter is a
rather recent phenomenon (Harley 1994). Stockhausen
(1989) stated that spatial configurations are as mean-
ingful as intervals in melody or harmony, and that the
consideration of spatial parameters is an integral part
of the compositional process. Indeed, even prior to the
advent of sound spatialisation technologies as com-
monly understood today, avant-garde composers in
the 1950s had already begun to integrate space as a
musical dimension into their pioneering electroacous-
tic works, taking advantage of the emerging tech-
nologies at hand, such as microphones, analogue mix-

ing desks and loudspeakers (e.g. Karlheinz Stock-
hausen in Kontakte or Gesang der Jünglinge, Pierre
Schaeffer in Symphonie pour un homme seul, or Edgar
Varèse with Poème électronique).

Now that digital signal processing and musical
acoustics are mature and well-established research
fields, spatial sound scenes can be realised with a
variety of rendering techniques, software tools and
hardware setups. The literature reveals a broad spec-
trum of approaches and implementations for spatial
sound rendering: perceptually informed amplitude
panning techniques such as Vector Base Amplitude
Panning (VBAP) (Pulkki 1997) or Distance Based
Amplitude Panning (DBAP) (Lossius 2007), holo-
phonic techniques aiming at the physical reconstruc-
tion of a soundfield, such as Wave Field Synthesis
(WFS) (Berkhout, de Vries and Vogel 1993) or
Higher-Order Ambisonics (HOA) (Daniel 2001),
binaural/transaural techniques, and finally hybrid
techniques, such as Space Unit Generator (SUG)
(Moore 1983) or Virtual Microphone Control (ViMiC)
(Braasch 2005).1

Each approach, however, relies on specific as-
sumptions about the nature of sound sources, listener
and environment, and as a consequence might not be
equally well-suited for different musical applications.
Considering that works are often performed in
multiple venues with different acoustic properties and
loudspeaker arrangements, scalability and adaptability
of spatialisation systems are also of major importance.
To accommodate different scenarios, contexts and
configurations, these systems should allow users to
conceive spatialisation processes from a more abstract
level. While much recent research focuses on
strategies for real-time control (see for instance
Marshall, Malloch and Wanderley 2007) or the
development of interchange formats (Peters, Ferguson
and McAdams 2007; Kendall, Peters and Geier 2008),
there have been few attempts to integrate the control

1 The SpatBASE project proposes an interesting and fairly doc-
umented reference of existing spatial sound rendering concepts and
implementations: http://redmine.spatdif.org/wiki/spatdif/SpatBASE

2 Marlon Schumacher and Jean Bresson

of spatialisation into compositional environments. In
fact, sound spatialisation is often treated as a post-
production technique which is unconnected to the
processes dealt with in computer-aided composition,
and therefore remains isolated in the corresponding
compositional models and applications.

In this paper we present recent works aimed at
integrating spatialisation in the computer-aided com-
position environment OpenMusic (Agon 1998;
Assayag, Rueda, Laurson, Agon and Delerue 1999).
After a brief discussion of related works (Section 2),
we introduce a generic framework for sound synthesis
and spatialisation, embedded in this environment
(Section 3). The OMPrisma library is described as a
structured system where spatialisation processes can
be carried out and controlled in a flexible way, in
relation to the symbolic compositional models and
integrated with sound synthesis processes (Section 4).
We present a powerful extension to the sound synthe-
sis and spatialisation frameworks, allowing these two
processes to be merged into hybrid structures
implementing the concept of spatial sound synthesis
(Section 5), and conclude with a number of example
applications (Section 6).

2. RELATED WORKS

Among the most popular tools used for the com-
positional control of spatial sound scenes are those
commonly referred to as "digital audio workstations"
(DAWs). These environments are typically based on
the metaphor of a multitrack tape-recorder and allow
for automation and non-linear (mostly manual) editing
of control parameters separated into a number of
tracks. The user, however, has only limited access to
the control data, and as the number of sound sources
and parameters increases it becomes cumbersome to
monitor and manage the complexity of the spatial
sound scene. Moreover, it is difficult to link the
concrete representations (soundfiles, automation data)
to more abstract compositional concepts, as this type
of interface does not represent logical relationships.2

Real-time audio processing environments, such as
Max/MSP (Puckette 1991), PureData (Puckette 1996)
or SuperCollider (McCartney 2002) provide frame-
works in which control interfaces and rendering
algorithms for sound spatialisation can be developed
and integrated with more general sound synthesis
and/or interactive processes (see for instance Schacher
and Kocher 2006). The IRCAM Spatialisateur (Jot and
Warusfel 1995) provides graphical user interfaces in
MaxMSP (SpatViewer/SpatOper) which allow the
control of numerous low-level parameters via a
reduced number of perceptual descriptors such as
‘liveness’, ‘presence’, and the like.

2 An overview of DAWs in terms of surround features

can be found at: http://acousmodules.free.fr/hosts.htm

Zirkonium (Ramakrishnan, Goßmann and Brüm-
mer 2006) and Beastmulch (Wilson 2008) are
examples of large-scale spatialisation systems based
on the model of ‘live diffusion’ which allow for the
grouping together of sound sources and for these
groups to be controlled individually.

Several research projects focus specifically on
higher-level control, abstracting the spatial sound
scene description from the rendering techniques (see
for example Geier, Ahrens and Spors 2008). The
Holo-Edit interface in the Holophon project (Cabaud
and Pottier 2002) is an application allowing the high-
level control of spatial parameters (trajectories). Con-
ceived as an authoring tool for sound spatialisation,
Holo-Edit provides complementary interfaces for
viewing/editing of spatial parameters, including a top-
view editor, a set of timeline controls, and 3D visuali-
sation. Moreover, it provides a set of tools for
algorithmic generation and modification of spatial
trajectories (Pottier 1998), which is a significant step
towards compositional control. Earlier projects, such
as MoveInSpace (Todoroff, Traube and Ledent 1997)
also provided advanced features, such as a trajectory
generator, room and loudspeaker settings, and corre-
lation of the spatialisation parameters to sound
morphological features (some characteristics which
will be found in different parts of our work), imple-
mented as an independent control layer on the Ircam
Musical Workstation (Lindeman, Starkier and
Dechelle 1990). A different approach for authoring of
spatial sound scenes is taken in the MidiSpace (Pachet
and Delerue 1998) and MusicSpace (Pachet and
Delerue 2000; Delerue 2004) systems, which provide
graphical interfaces allowing the design of spatial
sound scenes including MIDI instruments and audio
sources. Most notably, these applications include
powerful constraint setting and propagation systems
allowing the definition of spatial relations between the
different sound sources in the scene.

Most control systems, however, focus on a specific
model of sound spatialisation (such as surround-mix-
ing, sound-diffusion, etc.). Although we noted the
algorithmic functionalities (in Holo-Edit or MoveIn-
Space) and tools for constraint-setting and propagation
(MusicSpace), these features require integration with
higher-level programmable environ-ments in order to
enable more abstract representations and accommo-
date different compositional applica-tions. As stated in
(Assayag 1998), efficient compositional environments
should be conceptually close to specialised program-
ming environments: in such compositional contexts,
high-level, symbolic tools and processes allow ab-
stracting control data and processes to a set of man-
ageable and musically meaningful representations,
while remaining open enough to be used in different
contexts by different composers.

OpenSpace (Delerue and Agon 1999) was an origi-
nal attempt at integrating the MusicSpace control
system in the computer-aided composition environ-
ment OpenMusic. Visual programs allowed defining a

Spatial Sound Synthesis in Computer-Aided Composition 3

spatial setup for MusicSpace sound sources and
incrementally adding constraints, while the maquette
interface was used to control the unfolding of this
process in time. Another project carried out in
OpenMusic is OMSpat (Nouno and Agon 2002), a
library for the control of the Spatialisateur. In OMSpat
an array of sound sources, trajectories and room
parameters could be created from algorithmically (or
manually) defined curves and parameters. This array
was then formatted as a parameter file for a specific
Spatialisateur control application that could reproduce
the spatial sound scene using two, four, or eight
speakers, or via binaural rendering. Although the
temporal resolution of the control-data and the number
of simultaneous sound sources were limited, the
ability to script trajectories and spatial parameters
allowed the user to establish structural relationships
between spatialisation and other symbolic data and
processes defined in the computer-aided composition
environment. This project has recently been gener-
alised and extended, introducing new 3D-trajectory
objects and tools for formatting output for external
environments (Bresson, Agon and Schumacher, 2010).
Some similarities can also be found in the works we
present in this paper, which inherit much of the
control paradigms and structures from the same type
of objects (matrices: see Section 3).

As discussed below, we approach the control of
sound spatialisation by considering spatial parameters
as additional parameters in a sound synthesis
framework, whether they relate to micro-level sound
synthesis components (such as partials or grains) or to
pre-existing sound sources. This approach, embedded
in a high-level control environment, allows us to
extend the common model of sound source
spatialisation to the more general concept of spatial
sound synthesis, and to generalise some of the
techniques for time-domain or frequency-domain
spatial distributions, presented for instance in (Topper,
Burtner and Serafin 2002; Kim-Boyle 2008), within a
symbolic and programmable compositional context.

3. A GENERIC FRAMEWORK FOR THE
CONTROL OF SOUND SPATIALISATION

3.1 The computer-aided composition
environment: OpenMusic

OpenMusic (OM) is a visual programming language
for music composition based on Common Lisp/CLOS
(Gabriel, White and Bobrow 1991). This environment
allows the graphical design of programs by patching
together functional components, and provides high-

level musical interfaces such as scores and other
graphical editors. It has been used to develop
numerous musical works, constituting a powerful and
efficient framework for the creation of complex
musical structures related to various compositional
approaches (Agon, Assayag and Bresson 2006;
Bresson, Agon and Assayag 2008). Additional
development in OpenMusic has involved the
integration of sound processing, analysis and synthesis
tools, and led to a renewed conception of sound
representations in the framework of computer-aided
compositional models (Bresson and Agon 2007).
Integrating the control of sound spatialisation into the
conceptual framework of a computer-aided compo-
sition environment introduces new possibilities:
spatialisation parameters, as any other musical data,
can be devised and determined using algorithms and
programming interfaces, hence in close relation with
associated processes. OpenMusic provides a number
of geometrical objects such as breakpoint- and 3D-
curves (BPC/3DC) representing abstract spatial con-
figurations defined as sequences of points. Temporal
information can be explicitly specified (which turns
curves into trajectories), or kept implicit and inter-
preted according to a given context. These objects can
be generated and transformed by algorithmic pro-
cesses in the programming environment or visualised
and edited manually using graphical editors. Figure 1
shows an example for the algorithmic generation of
3D curves by visual programs.

3.2 Sound synthesis and spatialisation:
OMChroma/OMPrisma

OMChroma (Agon, Stroppa and Assayag 2000) is a
compositional framework for the control of sound
synthesis in OpenMusic, based on Marco Stroppa's
Chroma system (Stroppa 2000). This framework
provides a set of classes (in terms of object-oriented
programming) referring to underlying sound synthesis
processes. Each class is associated with a digital signal
processing (DSP) patch, currently in the form of a
Csound instrument (Boulanger 2000). The parameters
of these instruments (called p-fields in Csound) are
detected and matched to corresponding slots of the
class, which can be instantiated in OpenMusic's visual
programs. Accordingly, the graphical representation of
an OMChroma class (called a box) has a number of
inlets corresponding to the underlying sound synthesis
parameters in the Csound instrument. OMChroma
includes a large library of classes, ranging from basic
(e.g. additive, granular, FM, etc.) to more complex
sound synthesis algorithms. This library is user-
extensible, and new classes can easily be defined from
existing Csound instruments.

4 Marlon Schumacher and Jean Bresson

Figure 1. Generation of 3D curves via visual programs in OM. The 3DC-lib box is a set of 3DC objects. The data can be
visualised and edited in graphical editors.

OMChroma classes are matrix structures, instanti-
ated with a given number of ‘components’ (repre-
sented as columns). Each row corresponds to a slot of
the class (i.e. to the related synthesis parameter in the
Csound instrument). A matrix can include arbitrary
numbers of components, describing vectors of para-
meter-values for the underlying synthesis instrument,
which can be controlled via high-level and symbolic
means and subjected to compositional processes.
When the matrix is 'synthesised' (i.e. rendered into an
audio file) a Csound score is gene-rated from the 2D
data structure: each component in the matrix (a
column with a value for each synthesis parameter)
corresponds to an event in the score (see Stroppa 2000
for a detailed discussion).

OMPrisma is a library providing a set of matrix
classes corresponding to spatial sound rendering
instruments (see Section 4). The OMPrisma classes
extend the OMChroma matrix, and therefore benefit
from the same expressive power and control structures
used in the control of sound synthesis processes. The
computed matrix contents depend on the type of the
supplied data and on the number of components: a
single value, for instance, means that all components
have the same value for a given parameter; lists of
values are taken literally or repeated cyclically until
the number of elements matches the number of com-
ponents; breakpoint-functions are sampled over the
number of components; and mathematical/functional
expressions (defined as Lisp functions or visual pro-
grams) are evaluated individually for each component.

Once instantiated, the contents of a matrix can be
visualised and edited manually as a 2D array using a
graphical editor.

Figure 2 shows a basic sound spatialisation process
carried out in OMPrisma. A set of monaural sound-
files is spatialised and rendered into a multichannel
file for quadraphonic reproduction using the class
pan.quad.discrete from the OMPrisma class-library.

The body of the instrument in the orchestra file of
Figure 2 (from instr1 to endin) is copied from the
pan.quad.discrete class. The synthesize function for-
mats the values of the components in the matrix into
Csound score statements (i.e. turning the columns into
rows). Most values here are numbers (except the file
names used for p4, which are derived from the sound-
files in the OM patch). When continuously changing
values are required, for example for describing transi-
tions or envelopes, breakpoint-function objects can be
used, which are internally converted into Csound
tables.

Note that not all parameters (p-fields in the Csound
orchestra) are explicitly specified in the OM patch.
The matrix boxes allow the user to selectively display
or hide the different slot inlets of a class, whereby
unspecified (i.e. hidden) slots are set to default values.
In figure 2, only the slots onsets, soundfile, xpos and
ypos, corresponding to p2, p4, p8 and p9, respectively,
are specified to control the spatialisation process. The
default value for the slot gain-envelope, for example,
is 500 (a Csound table identifier), which is set for p6
as no value is specified in the OM patch. Similarly,

Spatial Sound Synthesis in Computer-Aided Composition 5

Figure 2. Sound source spatialisation with OMPrisma. Left: the patch in OpenMusic. Right: the generated Csound
orchestra and score files.

the three ‘panning function tables’ (visible at the top
of the score file in figure 2) are defined inside the
class pan.quad.discrete, and function as presets, which
can be referred to via numerical indices in the csound
score. This way irrelevant or redundant information is
hidden from the user, making for a more ergonomic
and context-sensitive interface.

As in the case of sound synthesis processes, the
dynamic instantiation of multiple Csound instruments
(corresponding to the components of a matrix) yields a
virtually unlimited polyphony for the spatial sound
rendering process. In this perspective, a matrix can be
regarded as a generic data structure for the description
of spatial sound scenes with arbitrary numbers of
sound sources, possibly controlled independently,
using common rules, control data or algorithms.

It is also possible to devise a synthesis process
using multiple matrices (i.e. synthesising a list of
matrices instead of a single one). If the matrices cor-
respond to different classes, the respective instruments
are gathered in a single orchestra file and identified by
instrument number (instr1, instr2, ...). Each matrix can
also be assigned a global onset-time, allowing it to be
considered as a temporal ‘event’ in a larger-scale time
structure.

4. OMPRISMA

OMPrisma is implemented as an extensible frame-
work comprising a library of classes for spatial sound
rendering (Section 4.1), a library of tools and func-
tions for generation and manipulation of spatialisation
parameters (Section 4.2), and an external standalone
application (titled Multiplayer) for decoding and dif-
fusion of the rendered multichannel audio formats
(Section 4.3).

Several studies have documented a great variety of
compositional approaches for sound spatialisation (see
for example Harley 1994), and it is unlikely that a
specific spatial sound rendering technique will satisfy
every artist's needs. A more sensible solution is to
provide a programmable abstraction layer which sepa-
rates the spatial sound scene description from its
rendering, and leave it to the user which spatial sound
rendering approach is most suitable for a given pur-
pose. The OMPrisma class-library provides a palette
of spatial sound rendering instruments, implementing
different spatial sound rendering techniques. Currently
available are classes for stereo, quadraphonic and 5.0
(ITU) panning, VBAP, RVBAP, DBAP, HOA, and a
mixed-order Ambisonics system with optional
simulation of room-acoustics. Table 1 gives an
overview of implemented spatial sound rendering
concepts and respective classes.

6 Marlon Schumacher and Jean Bresson

Amplitude
Panning VBAP RVBAP DBAP Ambisonics SPAT

Pan.stereo.discrete
Pan.stereo.continuous

Vbap.2D.discrete
Vbap.2D.continuous

Rvbap.2D.discrete
Rvbap.2D.continuous

Dbap.2D.discrete
Dbap.2D.continuous

Ambi.2D.discrete
Ambi.2D.continuous

Spat.2D.discrete
Spat.2D.contrinuous

Pan.quad.discrete
Pan.quad.continuous

Vbap.3D.discrete
Vbap.3D.continuos

Rvbap.3D.discrete
Rvbap.3D.continuous

Dbap.2D.discrete
Dbap.3D.continuous

Ambi.3D.discrete
Ambi.3D.continuous

Spat.3D.discrete
Spat.3D.continuous

Pan.5.0.discrete
Pan.5.0.continuous Ambi.UHJ.discrete

Ambi.UHJ.continuous

Table 1. Spatial sound rendering concepts and respective classes in OMPrisma.

 Dynamically changing values, such as envelopes or
trajectories (i.e. 'spatial glissandi') can be described
both in terms of successions of discrete, ‘granular’
positions or as a single continuous movement (con-
sider for example the notion of a glissando on a piano
vs. a fretless string instrument). In (Harley 1998) the
author discusses the difference between ‘discrete’ or
‘stepwise proceeding’ spatial movements (dating back
to the Venetian school of polychorality in the late
renaissance), and ‘continuous’ motion (introduced in
instrumental and electronic music of the post-war
avantgarde). We adopted this notion in that every
OMPrisma class is available in a dedicated version for
discrete and continuous control, respectively.

The separation of the spatial sound scene descrip-
tion from its rendering and reproduction offers many
advantages (see Peters, Lossius, Schacher, Baltazar,
Bascou and Place 2009). For example, it allows the
user to rapidly exchange a given spatial sound ren-
dering with another one without affecting the other
components. It further facilitates modifications or
extensions at the renderer level (i.e. Csound instru-
ments), since the DSP implementation can be
modified independently as long as it provides the
same interface to the environment. Moreover, the use
of an external real-time application for decoding and
diffusion (the Multiplayer) will provide the flexibility
of adapting the reproduction of a spatial sound scene
according to a given environment. Figure 3 shows an
example of 3 OMPrisma classes rendering the same
spatial sound scene using different techniques.

4.1 Spatial sound rendering

OMPrisma employs the Csound language as spatial
sound rendering engine, which allows for sample-
synchronous control of all parameters, high-resolution
processing and unlimited polyphony. Note that the
same matrix control-structures may as well be used
and formatted for another synthesis engine, or written
into external interchange format files, see for example
(Stroppa 2000; Bresson et al. 2010). In order to easily
maintain, modify and extend the collection of spatial

sound rendering instruments, they have been
implemented following a modular design. Common
functionality is encapsulated into modules (user-
defined-opcodes, Lazzarini 2005) and re-used across
the different instruments, such as the soundfile-player,
or source pre-processing modules. In the following
section we will discuss some of the implementation-
specific details.

4.1.1. Dynamic instrument configuration

Many spatialisation algorithms are capable of driving
various loudspeaker configurations and numbers of
output channels. The OMChroma system allows for
the writing of global statements into Csound orchestra
files before the instrument definition, which permits
dynamically changing the output configuration with-
out the need of modifying the original instrument's
body. Accordingly, a single OMPrisma class (imple-
menting a specific spatial sound rendering technique)
can be used for various loudspeaker setups and output
channels.

4.1.2 Source pre-processing

For classes implementing intensity-based panning
techniques we have developed source pre-processing
modules for rendering of perceptual cues to support
the impression of distance and motion of a sound
source. The effect of air absorption is simulated with a
second order Butterworth lowpass filter with variable
cut-off frequency. An attenuation-module accounts for
the decrease of a sound source's amplitude as a func-
tion of distance. Doppler shifts are simulated with a
moving write-head delay-line with high quality
interpolation.

Rather than hard-coding the equations for rendering
of perceptual distance-cues into the spatialisation
engines directly, we implemented a table-lookup sys-
tem for greater efficiency and flexibility. Lookup
tables can be generated using pre-defined (see Section
4.2.2) or user-defined functions, and manually edited

Spatial Sound Synthesis in Computer-Aided Composition 7

Figure 3. The same spatial sound scene description realised with different spatial sound rendering techniques:

5.0 (ITU) panning, VBAP and higher-order Ambisonics.

using OpenMusic’s graphical breakpoint-function
editors. These tables can then be connected to the
corresponding slot of a class to be applied to a specific
sound source (see Figure 4), or provided as global
tables for the whole spatial sound rendering process.

4.1.3 Room effects

Room acoustics and reverberation are important
perceptual cues for the localisation of a sound source,
and provide information on a surrounding environ-
ment's size, shape and material (Blauert 1983). The
description of room effects is conceptually different
from the description of sound sources and therefore
requires alternative control-strategies. Depending on
the underlying model and implementation of a rever-
beration algorithm the control interfaces can vary to a
great extent (for example perceptual vs. physical mod-
els) and often require the setting of many individual
parameters, which might clutter up the interface when
specified as individual slots of a class. Thus, in OM-
Prisma room parameters are defined in tables, as a
compact data-structure (provided to a single slot of a
class), which can be edited graphically or algorithmi-
cally directly in OM, and imported/exported as files to
disk. Currently, two spatial sound rendering classes in
OMPrisma include reverberation: RVBAP and SPAT.
The reverberation algorithm in RVBAP is imple-

mented as a feedback delay network based on digital
waveguides, while SPAT implements a shoebox
room-model based on recursive rendering of discrete
reflections. Note that due to Csound’s dynamic in-
stantiation paradigm the full range of parameters of
the spatial sound rendering engine is available for
each individual sound source. As with any other ma-
trix slot, room parameters can be set globally for the
whole synthesis process or controlled individually for
each component.

4.1.4 Within the loudspeaker array

The placement of virtual sound sources within the
surrounding loudspeaker array is a feature often de-
sired by composers, which is difficult or even impos-
sible to realise with many spatial sound rendering
techniques. A number of works have addressed this
issue (Menzies 2002, Daniel 2003), however these
solutions are mostly idiosyncratic to a given spatial
sound rendering concept and can be difficult to control
for a non-expert user and without adequate technical
equipment. In order to have a consistent approach for
different spatial rendering classes we implemented the
popular technique of decreasing the directionality of a
sound source as it enters the speaker array towards the
listener, approaching complete monophony (i.e. all
speakers contributing equally) at its centre. For classes

8 Marlon Schumacher and Jean Bresson

implementing VBAP, for example this is accom-
plished through implicit control of the ‘spread’
parameter (Pulkki 1999); in the case of Ambisonics,
via controlled decrease of gain coefficients for higher-
order components (as described in Schacher and
Kocher 2006). This behaviour is optional and can be
tweaked or bypassed.

4.2 Control strategies

OMPrisma is designed to provide a higher-level ab-
straction layer for spatial sound scene description
which is independent of the underlying rendering
implementation. Accordingly, all classes share a struc-
tured interface complying with current specifications
of the Spatial Sound Description Interchange Format
(SpatDIF, Peters et al. 2007). Control parameters (i.e.
class slots) are organized into conceptual groups (or
namespaces), such as soundfile-player parameters,
position data, renderer-specific parameters (such as
the ‘spread’ parameter for VBAP), source pre-
processing settings and reverberation parameters. An
overview of OMPrisma classes with respective slots is
given in the Appendix. Figure 4 shows an example of
a complete spatialisation process including conversion
of a 3DC-lib into individual trajectories for position
control, symbolic setting of room-parameters and
rendering of perceptual distance cues. Global settings
for the rendering process are provided directly to the
synthesize method, independently of the spatial sound
scene description.

4.2.1 Trajectories

Trajectories for position-control of sound sources can
be defined via geometric objects, such as breakpoint-
functions (BPFs), 2D breakpoint-curves (BPCs), and
3D-curves (3DCs, see figure 1). The function gen-
trajectory unfolds these geometric objects in time and
returns the corresponding control data (envelopes for
each Cartesian dimension) using two complementary
strategies: In ‘constant speed’ mode, the sound source
will travel along the trajectory with constant speed,
while in ‘constant time’ mode it will respect a constant
time interval between successive points in the trajec-
tory. As an additional feature, the gen-trajectory func-
tion allows the generation of B-Spline curves; that is,
polynomial interpolations between the object's initial
control points. This way, a trajectory can for example
be specified manually with a few breakpoints, and its
curvature controlled using this function. Obviously,
trajectories can be set and modified via pre-defined or
user-defined algorithms. Alternatively, the new object
3D-trajectory was implemented, which allows the
assignment of time-tags to spatial points in the trajec-
tory, either explicitly or automatically (deduced from
surrounding points).

After the spatio-temporal morphology of a trajec-
tory has been defined its absolute playback speed can
be controlled via frequency envelopes (individually
for each Cartesian dimension). If no frequency enve-
lopes are specified, the speed of a trajectory is implic-
itly scaled to fit the duration of its corresponding
synthesis event (e.g. the duration of the soundfile).
The use of frequency envelopes allows for dynamic
control of the speed-of-travel of a sound source (in-
cluding stopping or reversing the travel direction),
creating spatial patterns (e.g. spirolaterals and lissa-
jous figures), or working with audio-rate oscillations
and frequency modulations at the border between
sound synthesis and spatialisation. As with any matrix
parameter, trajectories can be set globally or specified
independently for each component (i.e. sound source).

4.2.2 Function library

OMPrisma features a ‘compositional toolbox’ of
functions and utilities for generation and manipulation
of spatialisation data. The function library includes
tools for processing of 2D or 3D breakpoint curves,
such as interpolations in Cartesian or spherical coordi-
nates, geometric transformations (e.g. rotations,
scaling, mirroring), and stochastically-driven ma-
nipulations such as perturbations and clusterings. For
rendering of perceptual distance-cues a set of pre-
defined functions are provided which implement
commonly used equations to control the simulation of
attenuation, air-absorption and Doppler shifts as func-
tions of distance. Yet another category are renderer-
specific functions, used for example to set reverbera-
tion/room-parameters. The spat-room function shown
in figure 4, for example, allows the setting of physical
properties of a shoebox room-model in a symbolic
way by connecting functions describing characteristics
of individual walls (spat-wall) to a global room-model
(spat-room). Finally, various utilities are provided, for
example for configuration of loudspeaker setups, or to
perform conversions between coordinate systems.
Since these tools are embedded in a programming
environment, they can be easily adapted, extended and
related to the extensive set of libraries and features of
OpenMusic.

4.2.3 Algorithmic sound scene manipulation

A particularly powerful concept inherited from the
OMChroma system is the user-fun. This function,
written directly in LISP or defined graphically in an
OpenMusic patch, can access and modify the contents
of a matrix and defines programs in order to manipu-
late, possibly generate or remove elements before
starting the rendering process.

Spatial Sound Synthesis in Computer-Aided Composition 9

Figure 4. Example for a sound spatialisation process using the OMPrisma class spat.3D.continuous. The gen-
trajectory function converts a 3DC-lib object containing 3-dimensional trajectories into envelopes for x, y, z.

Functions, pre-defined lookup-tables and presets are used to control the rendering of perceptual distance cues. Room-
characteristics are specified via the function spat-room. The function ambi-setup is used to set global parameters for

the rendering process.

 User-funs can take additional arguments (provided
as inlets to the matrix), which allows the user to
introduce new control-parameters in the spatialisation
process. This paradigm constitutes a powerful tool for
selective and global manipulations of the matrix data,
such as groupings, rotations/translations of sound
source positions, or arbitrary rule-based transfor-
mations of entire spatial sound scenes. One possible
application is the modelling of composite sound
sources emitting sound over an extended space by

breaking the original sound source up into a set of
independent point sources. Figure 5 shows a
graphically-defined user-fun implementing the
concept of Sound Surface Panning as described in
(Ramakrishnan et al. 2006): for each sound source in
the matrix a two-dimensional shape is specified,
which is synthesised as a mesh of evenly distributed
point sources. This process is controlled using the
same data as in figure 4 (i.e. soundfiles, trajectories,
etc.) and rendered into a multichannel soundfile using

10 Marlon Schumacher and Jean Bresson

Figure 5. Implementation of Sound Surface Panning via a user-fun applied to an OMPrisma matrix. a) Sound Surfaces
are graphically defined via BPC objects and provided as additional parameters (width/height/resolution) to the matrix.
The patch labelled ‘SSP-userfun’ (b) is set as user-fun for the matrix, and therefore evaluated for each component in

order to replace the sound sources with ‘sound surfaces’.

 VBAP. Note that, thanks to the common control-
interface for OMPrisma classes the same user-fun and
global processing can be applied to any other spatial
sound rendering class. Similarly, we have employed
the user-fun to implement W-panning (described in
Schumacher and Bresson 2010).

4.3 Decoding and diffusion: the Multiplayer

For any spatial sound composition tool it is of great
importance that the user be able to monitor the results
immediately. A tight auditory feedback loop between
composition and reproduction facilitates efficient
workflows and allows tweaking and fine-tuning the
spatialisation processes via perceptual evaluations.
Another important aspect is the ability to adjust the
reproduction in real-time in order to adapt to a given
environment, such as a specific studio setup or concert
venue. This might include tasks such as the routing of
logical output channels to physical devices, the ad-
justment of gains or time-delays for specific channels,
or in the case of encoded formats setting and tweaking
decoder parameters in real-time.
 The Multiplayer is a standalone application for de-
coding and diffusion of interleaved multichannel
soundfiles in different formats. It is implemented as a
set of modules complying with the Jamoma frame-
work for Max/MSP (Place and Lossius 2006). It is

intended to facilitate the work on spatial sound com-
positions in changing environments and for different
loudspeaker setups, without requiring any expert-
knowledge from the user. Figure 6 shows a screenshot
of the Multiplayer application.

4.3.1 Integration

The Multiplayer seamlessly integrates into the work-
flow with OMPrisma via bi-directional communica-
tion using Open Sound Control (OSC) (Wright 2005).
Once the communication has been established, the
Multiplayer can safely be sent to the background and
entirely controlled from OM (using the same transport
controls as OM's internal players). Optionally, the
Multiplayer can be synchronised with rendering set-
tings in OMPrisma, in the sense that it will automati-
cally update its configuration accordingly, hence no
switching between applications is required.

4.3.2 Adaptability

Other important aspects for a decoding or diffusion
application are compatibility with different formats
and adaptability to different reproduction environ-
ments. The Multiplayer dynamically re-configures its
internal dsp structure via scripting (i.e. adds / removes

Spatial Sound Synthesis in Computer-Aided Composition 11

Figure 6. The Multiplayer standalone application decoding a 3rd-order Bformat soundfile. On the right hand side is a
3D visualisation of a hemispherical loudspeaker setup.

channels) to match a given reproduction situation.
Modules are provided for soundfield manipulations
(rotations and mirroring along the principal axes),
Ambisonics decoding, numerical and graphical inter-
faces for configuration of loudspeaker setups, and
binaural rendering. Sound pressure- and time-differ-
ences in non-equidistant loudspeaker setups can be
either automatically compensated (via loudspeaker
positions) or manually balanced.

4.3.2 Auralisation

Composers are often required to elaborate musical
works using loudspeaker configurations which are
different from the intended reproduction setup in the
performance venue. To address this issue, the Multi-
player provides a binaural rendering module for vir-
tual loudspeaker binauralisation; that is, simulating a
certain loudspeaker setup by treating the loudspeakers
as virtual sound sources. Another benefit of this
feature is the possibility of auditioning spatial sound
scenes for various loudspeaker configurations (e.g.
experimenting with irregular setups) and from differ-
ent listening positions. It also allows the work with
OMPrisma in the complete absence of loudspeakers.
Moreover, it can be employed for rendering of bi-
naural mixdowns. Since all parameters are accessible
via OSC, external devices (such as head-trackers) can
be employed for interactive control of the binaural
rendering.

5. FROM SOUND SOURCE
SPATIALISATION TO SPATIAL
SOUND SYNTHESIS

The process of sound spatialisation can be carried out
on multiple time-scales (Roads 2001). While tradi-
tional diffusion practices are usually based on direct
manipulations that can be performed in real-time,
there is no such restriction using digital signal pro-
cessing techniques. Much as the development of
analogue studio techniques (and, later, the digital syn-
thesiser) made it possible to manipulate sound below
the level of individual sound objects in the domain of
sound synthesis, spatialisation processes can be
applied to the microstructure of a sound in order to
synthesise sounds with complex spatial morphologies.

5.1. Spatial sound synthesis

Within the presented framework we consider the term
spatial sound synthesis most appropriate to denote the
extension of sound synthesis algorithms into the
spatial domain, that is as a general term to express
spatialisation processes at the micro-level of sound.
Several systems have been described which allow for
spatial sound synthesis applications: Torchia and
Lippe (2004) presented a system for real-time control
of spectral diffusion effects which allows to filter a
sound into its spectral components and spatialise them
individually. Scatter (McLeran, Roads, Sturm and
Shynk 2008) is another original system for granular
synthesis, which allows spatial positioning of
individual grains using dictionary-based methods. The
Spatial Swarm Granulator (Wilson 2008) allows the

12 Marlon Schumacher and Jean Bresson

Figure 7. Spatial sound synthesis: Merging synthesis and spatialisation classes in OMChroma. At the bottom right:
the merged Csound instrument generated automatically from the class add-1 (add-1.orc, top left) and the class

pan.quad.discrete from figure 2 (pan.quad.discrete.orc, top right).

control of spatial positions of individual grains based
on Reynold's Boids algorithm (Reynolds 1987). Kim-
Boyle (2008) gives an overview of frequency-domain
spatial distributions, mostly controlled via particle and
agent systems. Interestingly, the author stresses the
need for ’an interface with the power to control and
transform coordinates for hundreds of particles which
at the same time does not overwhelm the user with
massive banks of control data’. In their presentation of
Spatio-Operational Spectral Synthesis (which is con-
ceptually close to our notion of spatial sound
synthesis), Topper et al. (2002) describe the process as
‘taking an existing synthesis algorithm and breaking it
apart into logical components’ and then ‘[assembling]
the components by applying spatialisation algorithms’.

The OMChroma system, which builds upon an in-
itial implicit decomposition of the sound synthesis
process into ‘components’ (see section 3.2), lends
itself particularly well to this idea of spatial sound
synthesis. The separation into logical components is
given in the initial design of the OMChroma classes

and generalised by the use and control of matrix
structures. The same paradigm is adopted for the indi-
vidual spatialisation of each synthesis component.

5.2. Implementation with
OMChroma/OMPrisma

Generalized spatial sound synthesis processes can be
achieved in OMChroma by designing Csound instru-
ments to perform both sound synthesis and spatial
sound rendering. However, given the number of pos-
sible combinations of existing synthesis classes (in
OMChroma) and spatialisation classes (in OM-
Prisma), the explicit implementation of individual
spatial sound synthesis instruments would lead to an
excessive amount of classes. A more sensible solution
is to combine sound synthesis instruments with spatial
renderers dynamically, in order to create compound
instruments capable of spatial sound synthesis.

Spatial Sound Synthesis in Computer-Aided Composition 13

Figure 8. Symbolic control of a spatial sound synthesis process in OpenMusic. The visual program on the right hand side
(3d-polar-virtfun) converts the symbolic musical materials to synthesis and spatialisation parameters. The spatial

positions of the synthesised score materials are shown in the 3DC-lib at the bottom left.

In terms of signal-flow this idea can be described as
an automatic detection and redirection of the output of
the synthesiser to the input of the spatial sound
renderer (i.e. replacing the former input sound source).
This is a non-trivial task, however, which is carried
out in two steps:

1. A new Csound instrument is created by merging

the original synthesis and spatial rendering in-
struments. In the synthesis instrument, the
variable bound to the signal output must be iden-
tified, while, on the spatial rendering side, the
original input and its internal dependencies must
be detected and replaced by the synthesis output.
Variable declarations, bindings and redundancies
must be handled between both instrument-pars-
ing processes. Useless parameters must be
omitted (e.g. the ‘soundfile-player’ part in the
spatialisation instruments), and the Csound p-
fields order and indexing must be adapted ac-
cordingly.

2. The merged Csound instrument code is then used
to create a new hybrid class starting from the two
initial ones (synthesis and spatial rendering).
Fortunately, Common Lisp and CLOS provide
powerful tools for meta-object programming and
dynamic class definition (Gabriel et al. 1991).
After inspecting the different slots and properties
of the respective classes, a new one is defined by
keeping the common fields (e.g. e-dels, dura-
tions) and combining the specific ones of the
different instruments. The resulting class is
instantiated using the corresponding slot values
in the two initial objects.

From a user's perspective this merging-process is
accomplished by simply connecting two objects (any
synthesis class from OMChroma and any spatial
rendering class from OMPrisma) to the function
chroma-prisma, which internally creates the new mer-
ged-orchestra class and outputs an initialised instance.
The resulting instance can eventually be plugged

14 Marlon Schumacher and Jean Bresson

Figure 9. Interfacing sound spatialisation and analysis tools in OpenMusic. Control-data is derived from sound analyses
(transient detection, fundamental-frequency estimation and partial-tracking) of the original soundfile (a). A visual pro-
gram (mapping) specifies mapping-functions to determine spatial positions and reverberation characteristics (b). The

3DC visualises the spatial distribution of the sound segments, indices represent successive sound segments (c).

into the synthesize function in order to perform the
spatial sound synthesis. This process is illustrated in
figure 7, in which an additive synthesis class is mer-
ged with a quadraphonic spatial sound rendering class.
This system therefore constitutes a powerful synthesis
framework, enabling high-level control over the full
range of sound synthesis and spatialisation parameters
for each individual component — partials, grains, or
any other primitive components of a given synthesis
algorithm.

6. EXAMPLE APPLICATIONS

One of the main interests of the OMPrisma framework
is its integration into a general compositional envi-
ronment (OpenMusic). This embedding leads to novel
possibilities for integrating symbolic, sound and spati-
alisation data into compositional frameworks and
offers a degree of control difficult to achieve using
conventional tools. In this section we show a number
of examples of how spatial parameters can be related
to other musical dimensions within a compositional
framework.

 In figure 8, symbolic musical material (a score in
common music notation) is used as input data to con-
trol both sound synthesis and spatialisation
parameters. The spatial positions for the synthesised
sound components (plucked-string synthesis) are de-
rived via arithmetic operations from the chords/notes
contained in the score: For every chord the ‘virtual
fundamental’ is calculated; that is the highest funda-
mental frequency for which the notes of the chord
could be thought of as harmonic partials. This funda-
mental frequency is first converted into a pitch-class
value and then rescaled and interpreted as azimuth
angle (i.e. a position on a horizontal circle). Similarly,
the mean-pitch of the same chord is used to calculate
an elevation angle. With these two polar coordinates a
position for each chord on the surface of a unit-sphere
is determined. The positions of the individual notes of
each chord are specified via controlled perturbations
of its center-position. The resulting 'spatial clusters'
(each corresponding to a chord) are visualized in the
3DC-lib at the bottom left of the figure.

Spatial Sound Synthesis in Computer-Aided Composition 15

Figure 10. Spatial additive synthesis using the classes add-1 and ambi.2D.continuous: (a) a harmonic spectrum is

generated (visualised as a chord) and additional partials (micro-clusters) added around each harmonic; (b) A set of
envelopes (BPF-lib) is used to control both sound synthesis and spatialisation parameters; (c) Two manually-defined

(i.e. hand-drawn) trajectories are interpolated over the number of partials. Each partial is assigned an individual
trajectory, displayed in the 3DC-lib on the right-hand side.

 Figure 9 shows a somewhat complementary ap-
proach: the use of concrete, external data to control
the spatialisation of an existing soundfile3. In this
example, the spatialisation parameters of a percussion
(tabla) solo are controlled exclusively via data which
is extracted from the soundfile itself using OM’s
sound analysis tools (Bresson 2006). First, the source
soundfile is analysed for transients in order to segment
the percussion solo into individual tabla strokes. A
fundamental frequency-estimation and partial-tracking
is performed, from which profiles for pitch and
spectral centroid are generated (a). For each sound
segment (i.e. tabla stroke), its fundamental frequency
and spectral centroid value is looked up and mapped
to azimuth and elevation angle for spatialisation
control. Since we are working in a differed-time
paradigm, the duration of each segment can be used as

 3 This technique could be considered an auto-adaptive

digital audio effect, as the control data is derived from sound
features using specific mapping functions (Verfaille, Zolzer
and Arfib 2006).

control data to determine its distance from the centre
position, and to set reverberation parameters (b). Con-
sequently, every tabla stroke in the original soundfile
will be assigned an individual spatial position and
reverberation characteristics, correlated with its pitch,
spectral centroid and duration.

A large variety of spatial sound synthesis applica-
tions can be realised by freely combining sound syn-
thesis and spatialisation instruments. Granular
synthesis, for instance, is a popular model for time-
domain spatial sound synthesis (see for example
McLeran et al. 2008; Wilson 2008). Typically, each
sound grain is assigned an individual position in
space, often controlled stochastically (rather than
literally) in order to reduce the large number of pa-
rameters to a few manageable variables.

Another interesting model is ‘spatial additive syn-
thesis’: In spatial additive synthesis a complex sound
is synthesised from elementary sinusoidal components
which are spatialised individually. Figure 10 shows an
example for continuous control of spatial additive
synthesis in which hundreds of partials are synthe-

16 Marlon Schumacher and Jean Bresson

sised, each with its individual set of dynamically
changing sound synthesis and spatialisation param-
eters. It is also a nice illustration of how a complex
spatial sound synthesis process — requiring large
amounts of control-data — can be managed via a
small number of conceptually meaningful, high-level
abstractions.

7. CONCLUSION

We have presented a system for the symbolic control
of sound source spatialisation and spatial sound syn-
thesis in compositional contexts. This system has been
implemented as an extension of OMChroma in the
computer-aided composition environment OpenMusic.
Embedded in this framework, spatial sound scenes can
be generated and manipulated via high-level structures
and algorithms, which allows for explicit control of
arbitrary numbers of control parameters, difficult to
achieve via manual editing or other conventional ap-
proaches (e.g. real time, track-based).

The visual programming and compositional envi-
ronment provides an extensive set of tools for the
generation, manipulation and control of spatial param-
eters and processes. More importantly, the integration
of spatialisation tools into environments for computer-
aided composition allows spatialisation to be treated
as a structural parameter, and enables complex rela-
tionships with other musical dimensions and in
relation to a global compositional framework. Inter-
esting relationships can for instance be created using
external data derived from sound analyses or any other
musical/extra-musical source or process.

OMPrisma separates the different stages of sound
spatialisation into several layers as proposed in (Peters
et al. 2009), with authoring in OM programs, descrip-
tion in matrices, interpretation via the synthesize func-
tion, rendering via Csound orchestras, and finally, the
decoding and communication with physical devices
using the external Multiplayer application.

Thanks to an original class-merging system be-
tween OMChroma (sound synthesis) and OMPrisma
(spatial sound rendering), the concept of spatial sound
synthesis is implemented in a generic way, allowing
arbitrary combinations of sound synthesis and spatial
sound rendering techniques. The control of sound
spatialisation is tightly integrated in the compositional
framework and benefits from the same flexibility and
expressive power as sound synthesis and general
compositional processes.

Future work is planned in several directions: The
existing class-library could be extended with other
spatial sound rendering concepts, such as SUG. More
processor-demanding approaches such as ViMiC or
WFS would be particularly promising candidates
(facilitated by the offline-rendering paradigm). It
would also be interesting to use the system in the
context of directivity synthesis (Warusfel and Mis-
dariis 2001), for instance to synthesise artificial

sounds with intricate directivity patterns. More com-
plex processing chains could be envisaged in this
framework, including for instance spectral diffusion or
other spatial audio effects. On the ‘control’ level,
different OpenMusic tools such as the maquette, for
temporal modelling (see Agon 1998), or the cr-model
for abstract sound representations based on time-fre-
quency structures (see Bresson, Stroppa and Agon
2007) form interesting contexts in which spatial sound
control could be integrated.

So far OMPrisma has been used for the compo-
sition of a number of works, most notably Cognitive
Consonance by C. Trapani, performed at the Ircam
Agora Festival, Paris 2010. OMPrisma is distributed
with the OpenMusic package through the IRCAM
forum and is also available as an open source OM-
library. More information and sound examples are
available:
http://www.music.mcgill.ca/~marlon/OMPrisma.

Acknowledgements

This work was developed in collaboration with the
IRCAM Music Representation team and the Input
Devices and Music Interaction Lab of the Schulich
School of Music of McGill University (IDMIL),
funded by an Inter-Centre Research Grant from the
Centre for Interdisciplinary Research in Music, Media
and Technology (CIRMMT).

References

Agon, C. 1998. OpenMusic: un langage de programmation
visuelle pour la composition musicale. PhD. Thesis,
Université Pierre et Marie Curie, Paris 6, France.

Agon, C., Stroppa, M. and Assayag, G. 2000. High Level
Musical Control of Sound Synthesis in OpenMusic.
Proceedings of the International Computer Music Con-
ference, Berlin, Germany.

Agon, C., Assayag, G. and Bresson, J. (Eds.) 2006. The OM
Composer's Book 1. Paris : Editons Delatour / IRCAM.

Assayag, G. 1998. Computer Assisted Composition Today.
First Symposium on Music and Computers. Corfu,
Greece.

Assayag, G., Rueda, C., Laurson, M., Agon, C. and Delerue,
O. 1999. Computer Assisted Composition at IRCAM:
From PatchWork to OpenMusic. Computer Music Jour-
nal, 23(3).

Berkhout, A. J., de Vries, D. and Vogel, P. 1993. Acoustic-
control by wave field synthesis. Journal of the
Acoustical Society of America, 93, pp. 2764–2778.

Blauert, J. 1983. Spatial Hearing, MIT Press, Cambridge,
MA.

Boulanger, R. (Ed.) 2000. The Csound Book. Perspectives in
Software Synthesis, Sound Design, Signal Processing
and Programming. MIT Press.

Spatial Sound Synthesis in Computer-Aided Composition 17

Braasch, J. 2005. A loudspeaker-based 3D sound projection
using Virtual Microphone Control (ViMiC). 118th Con-
vention of the Audio Engineering Society. Barcelona,
Spain.

Bresson, J. 2006. Sound Processing in OpenMusic. Pro-
ceedings of the International Conference on Digital
Audio Effects (DAFx-06). Montreal, QC, Canada.

Bresson, J. and Agon, C. 2007 Musical Representation of
Sound in Computer-Aided Composition: A Visual Pro-
gramming Framework. Journal of New Music Research,
36(4).

Bresson, J., Agon, C. and Assayag, G. (Eds.) 2008. The OM
Composer's Book 2. Paris : Editons Delatour / IRCAM.

Bresson, J., Agon, C. and Schumacher, M. 2010. Représen-
tation des données de contrôle pour la spatialisation dans
OpenMusic. Actes des Journées d'informatique Musi-
cale, Rennes, France.

Bresson, J., Stroppa, M. and Agon, C. 2007. "Generation
and Representation of Data and Events for the Control
of Sound Synthesis." Proceedings of the Sound and
Music Computing Conference (SMC'07), Lefkada,
Greece.

Daniel, J. 2001. Représentation de champs acoustiques,
applications à la transmission et à la reproduction de
scènes sonores complexes dans un contexte multimedia.
PhD Thesis, Université Pierre et Marie Curie, Paris 6,
France.

Cabaud, B. and Pottier, L. 2002. Le contrôle de la spatiali-
sation multi-sources – Nouvelles fonctionnalités dans
Holophon version 2.2. Actes des Journées
d’Informatique Musicale, Marseille, France.

Delerue, O. 2004. Spatialisation du son et programmation
par contraintes : Le système MusicSpace. PhD Thesis,
Université Pierre et Marie Curie, Paris 6, France.

Delerue, O. and Agon, C. 1999. OpenMusic + MusicSpace =
OpenSpace. Actes des Journées d'Informatique
Musicale, Issy-les-moulineaux, France.

Gabriel, R. P., White, J. L. and Bobrow, D. G. 1991. CLOS:
Integrating object-oriented and functional programming.
Communications of the ACM, 34(9).

Geier, M., Ahrens, J. and Spors, S. 2008. The SoundScape
Renderer: A Unified Spatial Audio Reproduction
Framework for Arbitrary Rendering Methods. AES
124th Convention. Amsterdam, The Netherlands.

Harley, M. A. 1998. Spatiality of sound and stream
segregation in twentieth century instrumental music.
Organised Sound, 3(2), pp. 147-166

Harley, M. A. 1994. Space and Spatialization in
Contemporary Music: History and Analysis, Ideas and
Implementations. PhD Dissertation, McGill University,
Montreal, Canada.

Jot, J.-M. and Warusfel O. 1995. A Real-Time Spatial
Sound Processor for Music and Virtual Reality
Applications. Proceedings of International Computer
Music Conference. Banff, Canada.

Kendal G. S., Peters N. and Geier M. 2008. Towards an
interchange format for spatial audio scenes. Proceedings
of the International Computer Music Conference.
Belfast, Ireland.

Kim-Boyle, D. 2008. Spectral Spatialization - An overview.
Proceedings of the International Computer Music
Conference. Belfast, Ireland.

Lazzarini, V. 2005. Extensions to the Csound Language:
from User-Defined to Plugin Opcodes and Beyond.
Proceedings of the 3rd Linux Audio Developer's
Conference. Karlsruhe, Germany.

Lossius, T. 2007. Sound Space Body: Reflections on Artistic
Practice. PhD thesis, Bergen National Academy of the
Arts.

Lindemann, E., Starkier, M. and Dechelle, F. 1990. The
IRCAM Musical Workstation: Hardware Overview and
Signal Processing Features. Proceedings of the
International Computer Music Conference. Glasgow,
UK.

Marshall, M. T., Malloch, J., and Wanderley, M. M. 2007.
Gesture Control of Sound Spatialization for Live
Musical Performance. Gesture-Based Human-Computer
Interaction and Simulation: 7th international Gesture
Workshop, Lisbon, Portugal.

McCartney, J. 2002. Rethinking the computer music
language: SuperCollider. Computer Music Journal,
26(4).

McLeran, A., Roads, C., Sturm, B. L. and Shynk, J. J.
2008. Granular sound spatialisation using dictionary-
based methods. Proceedings of the Sound and Music
Computing Conference. Berlin, Germany.

Menzies, D. 2002. W-panning and O-format, tools for object
spatialisation. AES 22nd International Conference of
Virtual, Synthetic and Entertainment Audio. Espoo,
Finland.

Moore, F. R. 1983. A General Model for Spatial Processing
of Sounds. Computer Music Journal, 7(6), pp. 6-15.

Nouno, G. and Agon, C. 2002. Controle de la spatialisation
comme parametre musical. Actes des Journées
d’Informatique Musicale. Marseille, France.

Pachet, F. and Delerue, O. 1998. MidiSpace: a Temporal
Constraint-based Music Spatialize. ACM Multimedia
Conference. Bristol, UK.

Pachet, F. and Delerue, O. 2000. On-the-fly Multi Track
Mixing. AES 109th Convention. Los Angeles, USA.

Peters N., Ferguson S., McAdams S. 2007 Towards a Spatial
Sound Description Interchange Format (SpatDIF),
Canadian Acoustics, 35 (3), pp. 64–65.

Peters N., Lossius, T., Schacher, J., Baltazar, P., Bascou, C.
and Place, T. 2009. A stratified approach for sound
spatialization. Proceedings of the Sound and Music
Computing Conference. Porto, Portugal.

Place, T. and Lossius, T. 2006. Jamoma: A modular
standard for structuring patches in Max. Proceedings of
the International Computer Music Conference. New
Orleans, USA.

Pottier, L. 1998. Dynamical Spatialisation of sound.
HOLOPHON: a graphical and algorithmical editor for
∑1. Proceedings of the International Conference on
Digital Audio Effects (DAFx-98). Barcelona, Spain.

Puckette, M. 1991. Combining Event and Signal in the
MAX Graphical Programming Environment. Computer
Music Journal, 15(3).

Puckette, M. 1996. PureData: another integrated computer
music environment. Proceedings of the 2nd Intercollege
Computer Music Concerts. Tachikawa, Japan.

Pulkki, V. 1997. Virtual sound source positioning using
vector base amplitude panning. Journal of the Audio
Engineering Society, 45(6), pp. 456–466.

18 Marlon Schumacher and Jean Bresson

Pulkki. V. 1999. Uniform spreading of amplitude panned
virtual sources. Proceedings of the 1999 IEEE Workshop
Proceedings on Applications of Signal Processing to
Audio and Acoustics, pp. 187–190, Mohonk Mountain
House, New Paltz,

Ramakrishnan, C., Goßmann, J. and Brümmer, L. 2006. The
ZKM Klagdom. Proceedings of the Conference on New
Interfaces for Musical Expression. Paris, France.

Reynolds, C. W. 1987. Flocks, herds and schools: A
distributed behavioral model. SIGGRAPH Computer.
Graphics, 21(4), pp. 25-34.

Roads, C. 2001. Microsound. MIT Press. Cambridge.
Schacher, J. C. and Kocher, P. 2006. Ambisonics

spatialisation Tools for Max/MSP. Proceedings of the
International Computer Music Conference. New
Orleans, USA.

Schumacher, M. and Bresson, J. 2010. Compositional
Control of Periphonic Sound Spatialization. To be
published in Proceedings of the International
Symposium on Ambisonics and Spherical Acoustics.
Paris, France.

Stockhausen, K. 1989. Stockhausen on Music: Lectures and
Interviews Compiled by Robin Maconie, London:
Marion Boyars.

Stroppa, M. 2000. Paradigms for the high level musical
control of digital signal processing. Proceedings of the
International Conference on Digital Audio Effects
(DAFx-00). Verona, Italy.

Todoroff, T., Traube, C. and Ledent, J.-M. 1997.
NeXTSTEP Graphical Interfaces to Control Sound
Processing and Spatialization Instruments. Proceedings
of the International Computer Music Conference.
Thessaloniki, Greece.

Topper, D., Burtner, M. and Serafin, S. 2002. Spatio-
Operational Spectral (S.O.S.) Synthesis. Proceedings of
the International Conference on Digital Audio Effects
(DAFx-02). Hamburg, Germany.

Torchia, R. H. and Lippe, C. 2004. Techniques for multi-
channel real-time spatial distribution using frequency-
domain processing. Proceedings of the Conference on
New Interfaces for Musical Expression. Hamamatsu,
Shizuoka, Japan. pp. 116-119.

Verfaille, V., Zolzer, U. and Arfib, D. 2006. Adaptive
digital audio effects (A-DAFx): A new class of sound
transformations. IEEE Transactions on Audio Speech,
and Language Processing, 14(5), pp. 1817 – 1831.

Warusfel, O. and Misdariis, O. 2001. Directivity synthesis
with a 3D array of loudspeakers, application for stage
performance. Proceedings of the International
Conference on Digital Audio Effects (DAFx-01).
Limerick, Ireland.

Wilson, Scott (2008). Spatial Swarm Granulation.
Proceedings of the International Computer Music
Conference. Belfast, Ireland.

Wright, M. 2005. Open Sound Control: an enabling
technology for musical networking. Organised Sound,
10(3), pp. 193-200.

Spatial Sound Synthesis in Computer-Aided Composition 19

APPENDIX

Table 2. OMPrisma classes and respective slots (p-fields) for discrete control

 PAN.
STEREO

PAN.
QUAD

PAN.
5.0

DPAN.
STEREO

DPAN.
QUAD

DPAN.
5.0 VBAP RVBAP DBAP AMBI-

SONICS SPAT

Soundfile ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gain ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gain-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Startpos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Xpos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ypos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zpos ✓ ✓ ✓ ✓ ✓
Pan-fun ✓ ✓ ✓ ✓ ✓ ✓
Spread ✓ ✓
Blur ✓
Order ✓ ✓
Atten-fun ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Air-fun ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rev-level ✓
Rev-spread ✓
Rev-feedback ✓
Rev-params ✓
Spk-params ✓
Room-params ✓
Center-radius ✓ ✓ ✓ ✓

Table 3. OMPrisma classes and respective slots (p-fields) for continuous control

PAN.
STEREO

PAN.
QUAD

PAN.
5.0

DPAN.
STEREO

DPAN.
QUAD

DPAN.
5.0 VBAP RVBAP DBAP AMBI-

SONICS SPAT

Soundfile ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gain ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gain-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Startpos ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Xpos-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ypos-env ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zpos-env ✓ ✓ ✓ ✓ ✓
Xpos-freqenv ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ypos-freqenv ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zpos-freqenv ✓ ✓ ✓ ✓ ✓
Pan-fun ✓ ✓ ✓ ✓ ✓ ✓
Spread-env ✓ ✓
Spread-freqenv ✓ ✓
Blur-env ✓
Blur-freqenv ✓
Order-env ✓ ✓
Order-freqenv ✓ ✓
Atten-fun ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Air-fun ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Doppler-fun ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rev-level ✓
Rev-spread ✓
Rev-feedback ✓
Rev-params ✓
Spk-params ✓
Room-params ✓
Center-radius ✓ ✓ ✓ ✓

