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Abstract

The Two-Higgs Doublet Model is a well studied extension of the Standard Model
of particle physics. Most notably, it predicts the existence of five Higgs particles,
three of which are electrically neutral (h1, h2, and h3), a charged particle H+,
and its anti-particle H−. Contributions of the basis-independent CP-violating
Two-Higgs Doublet Model to the oblique parameters S, T, U, V, W, X were cal-
culated. Relationships between the oblique parameters and the five Higgs parti-
cles were determined numerically. The effects of adjusting the theoretical upper
bounds for Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23), Im(Z5e
−2iθ23), Z34,

and Z3 by factors of 1
10 , 1

2 , 2, and 10 were studied. Using the original theoretical
upper bounds, correlations between S-V-W-m1, S-V-W-mH± , T-U-X-m1, and
T-U-X-mH± were sonified using the sound synthesis program SuperCollider.
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Chapter 1

Introduction & Motivation

1.1 Extending the Standard Model

The Standard Model (SM) of particle physics, the operational theory of funda-
mental particles and their interactions, is not expected to provide a complete
description of nature. It must be superseded by a theory which incorporates
gravitational interactions near the Plank scale (1019 GeV), but may also break
down at relatively lower energies. Therefore, although the SM has thus far been
an effective theory at the energy scale of 1 TeV, it is not expected to be valid
for some high energy scale. Various extensions of the SM have been proposed
as explanations for observations such as dark matter and theoretical problems
such as Grand Unification.

The most popular of these extensions is supersymmetry which provides a
mechanism for the source of dark matter. Incorporating supersymmetry into
the Standard Model requires doubling the number of particles because each
fundamental particle needs a super-partner. In order to account for the lack of
experimental evidence for super-partners, theorists have moved towards more
complicated versions of supersymmetry. The simplest possible supersymmetric
model that is consistent with the SM is the Minimal Supersymmetric Standard
Model (MSSM). It requires two Higgs doublets in its scalar sector.

The Two-Higgs Doublet Model (2HDM) is a model of low-energy particle
interactions that is equivalent to the Standard Model except for the addition
of one extra-Higgs doublet. Although it is implied by MSSM, it functions in-
dependently as well. For this and other reasons, it is one of the most studied
extensions of the Standard Model. The extended Higgs sector would appear ex-
perimentally as five Higgs particles, whereas the Standard Model predicts only
one.

1



2 CHAPTER 1. INTRODUCTION & MOTIVATION

1.2 Electroweak Symmetry Breaking in the Stan-
dard Model

The nature of electroweak symmetry breaking (EWSB) is one of the most im-
portant questions in theoretical particle physics. Although the Standard Model
has a mechanism for dealing with EWSB, it has not received experimental con-
firmation. For reasons addressed in section 1.4, other ways of implementing
EWSB are of theoretical interest.

The Standard Model of particle physics is constructed by applying local
symmetries to the interactions of fundamental particles. At energies far above
the electroweak scale (≈90 GeV), the symmetry group is SU(3)×SU(2)×U(1).
SU(3)×SU(2)×U(1) summarizes the symmetries of the SM in group theoret-
ical notation. SU(3) refers to the three-fold (red/green/blue) color symmetry
of the strong force. SU(2) × U(1) refers to the symmetries of the electroweak
force. SU(2) comes from the doublet structure of the particles subject to the
weak force, and U(1) is the phase symmetry of electromagnetism which arises
after EWSB. Typically, these symmetry groups require a massless gauge boson
(force-carrying particle) corresponding to each generator of the symmetry group.
Thus the SU(2)×U(1) symmetry group requires 4 massless force-carrying par-
ticles. However, when the universe evolved to lower energies, this symmetry was
spontaneously broken producing masses for the three gauge bosons of the weak
nuclear force (W±, and Z0), and leaving the force carrier for electromagnetism
(the photon) massless.

Thus, spontaneous symmetry breaking requires the existence of a field (the
Higgs field) that permeates space and has non-zero vacuum energy. A particle
acquires mass when it interacts with this field. This process is known as the
“Higgs Mechanism.” The energy associated with this interaction is the vacuum
expectation value v. If this scalar field exists, it can be used to explain why
particles such as fermions have mass.

1.3 Generating Fermion Masses

The fundamental problem of electroweak symmetry breaking is the nature of
mass within the fermion sector. Fermions (i.e., electrons, neutrinos, and quarks)
are the elementary particles associated with matter, but without the Higgs
mechanism there is no known mechanism which would allow these particles to
be massive within the framework of the Standard Model. The Higgs field couples
with the massless quark and lepton fields generating mass. By generating masses
for the fermions (and gauge bosons), the Higgs mechanism provides the Standard
Model with an explanation for the data observed in current particle accelerators.

The effects of electroweak symmetry breaking are evident in the fermion
sector. In addition to other intrinsic properties, fermions experience either a
left-handed or right-handed helicity. Helicity h is the projection of the spin ~S
onto the direction of momentum p̂ defined by
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h = ~S · p̂. (1.1)

By convention, particles with a negative helicity are “left-handed,” and particles
with positive helicity are “right-handed.”

The effects of electroweak symmetry breaking are different in the lepton and
quark sectors. In the lepton sector, after electroweak symmetry breaking left-
handed leptons always appear in SU(2) doublets, while right-handed leptons will
always appear in singlets. This creates a problem for calculating mass terms
from the Lagrangian. To illustrate the problem, mass terms for the electron
will serve for an example. In the Lagrangian, left-handed electrons will always
appear in SU(2) doublets:

EL =
(
νe
e−

)
L

. (1.2)

where νe is the neutrino and e− is the electron. However, there are no right-
handed neutrios, so right-handed electrons eR are singlets. Because there are no
right-hand doublets, terms in the Lagrangian which we would expect to generate
mass terms, such as

meēReL +meēLeR (1.3)

where me is the mass of the electron, are strictly forbidden. Therefore, to
generate the mass of these leptons, one needs a scalar SU(2) doublet φ that
interacts with left and right handed leptons. This doublet φ is the Higgs doublet.
Mass terms in the Lagrangian would therefore become

ηEĒL · φeR + h.c. (1.4)

where ηE is a dimensional coupling constant, and h.c. stands for hermitian
conjugate. After φ acquires a vacuum expectation value v, a mass term can be
read from the Lagrangian

v√
2
ηE ēLeR + h.c., (1.5)

where me = 1√
2
ηEv. This model can be extended to all three generations of

leptons (electron-like particles). In summary, it is not possible to have a mass
term for fields with a doublet structure without the Higgs doublet.

In the quark sector, it is possible to have a right handed doublet, but without
the Higgs field, there is an apparent asymmetry in the masses. Experimentally,
quarks of different flavor have different masses despite being of the same gen-
eration. For example, the up quark has a mass of 1.5-3.3 MeV and the down
quark have a mass of of 3.5-6.0 MeV. However, with the Higgs field, an anal-
ogous calculation to Eqn. (1.5) can be made for quarks. Using an expanded
3-dimensional model which takes into account the mixing of quark generations,
the mass of the up quark MU and down quark MD can be written
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MU =
v√
2
ηU MD =

v√
2
ηD †, (1.6)

where ηU and ηD † are matrices that give the strength of the interaction between
the Higgs particle and the quarks. The vacuum expectation value for the Higgs
particle is therefore a feature of the mass terms of all fermions.

1.4 The CP-Violating Two-Higgs Doublet Model

CP (Charge-Parity) symmetry states that the laws of physics would be the same
if a particle was switched with its anti-particle and left and right handedness
were also exchanged. A theory without this property violates CP. In 1964, CP-
violation was experimentally verified through the decay of neutral kaons into
their antiparticles [7]. Experimenters James Cronin and Val Fitch noticed that
the transformation did not occur with exactly the same probability in both
directions, showing that nature does not treat left-handed particles the same as
right-handed anti-particles.

It has been shown that the Standard Model can explain CP violation by in-
corporating complex values into the CKM (Cabibbo-Kobayashi-Maskawa) ma-
trix. The CKM matrix is a numerical 3x3 matrix whose values are experimen-
tally determined. Each element of the CKM matrix Mij represents how strongly
an up-like quark qi interacts with a down-like quark qj . It can be used to explain
theoretically why the top quark is more likely to decay into a bottom quark than
to a down or strange. A CKM matrix with strictly real values will exhibit no
CP-violation.

By adopting complex values for the CKM, the Standard Model provided a
sufficient theoretical explanation for the experimental evidence of CP-violation.
However, an underlying problem of the SM is that it is not believed to be suf-
ficient to explain antimatter. The universe contains far more matter than anti-
matter and the CKM matrix is only a small feature of the Standard Model. The
solution to this apparent radical asymmetry is one of the great unsolved prob-
lems in contemporary particle physics. The Two-Higgs Doublet Model provides
a possible source for CP-violation and, paired with a theory of supersymmetry,
provides a dark matter candidate as well.

Although supersymmetry requires a multi-Higgs doublet model, the Two
Higgs Doublet Model is independent of supersymmetry. It is identical to the
Standard Model in all respects except the inclusion of one extra Higgs doublet.
While the Standard Model’s single Higgs doublet is sufficient to explain elec-
troweak symmetry breaking, it does not allow for CP-violation. The 2HDM not
only explains EWSB, but also provides another possible source for CP violation.



Chapter 2

The Basis-Indpendent
CP-Violating 2HDM

2.1 Basis-Independent Formalism

The following section summarizes the work of Haber and O’Neil [1].
As featured in the MSSM, the two Higgs doublets can be described by a

parameter tanβ,

tanβ ≡ v2
v1
≡ 〈Φ

0
2〉

〈Φ0
1〉
, (2.1)

which describes how much of the vacuum expectation value v1, v2 is in the
first doublet and how much is in the second. However, in the most general
2HDM, this quantity is not well-defined because one can perform a basis trans-
formation that changes how much of the vacuum expectation value appears in
each doublet. Therefore, it is important to define the parameters of the theory
so that they are “invariant,” meaning that they do not depend upon the basis
choice of the Higgs doublets. In this section, the details of the basis-independent
2HDM will be developed.

Different bases in the 2HDM have varying distributions of the vacuum ex-
pectation value between the doublets. For the 2HDM independent of MSSM,
there is no way to tell in advance what the symmetries are that will constrain
the scalar sector and the definition of physical parameters must be defined in
the most generic implementation of the 2HDM. To explain experimentally ob-
served quantities in terms of the physical parameters of the general model, one
needs a way to relate ambiguous or pseudo-invariant parameters to invariant pa-
rameters. Only invariant parameters can be candidates for observable quantities
because observables should not depend upon the choice of basis (the distribution
of the vacuum expectation value).

Without loss of generality a drastic simplification is to place the vacuum
expectation value in the first Higgs doublet. Therefore we define H1 and H2

5
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such that
< H1 >=

v√
2
, < H2 >= 0, (2.2)

where v is the vacuum expectation value. Defining generic doublets as H1 and
H2, under a generic U(2) transformation they transform to another pair H ′1 and
H ′2 as

H ′1 = H1 , H ′2 = eiχH2 , (2.3)

where χ parameterizes the phase of the class of Higgs basis being used. Specif-
ically the unitary matrix

UD ≡
(

1 0
0 eiχ

)
(2.4)

transforms any unprimed Higgs basis to a primed basis. As desired, H1, the
doublet which contains the vacuum expectation value, is invariant of basis, while
H2 is pseudo-invariant.

Using H1 and H2, it is possible to write the most general gauge invariant
scalar potential as

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H†1H1)2

+ 1
2Z2(H†2H2)2 + Z3(H†1H1)(H†2H2) + Z4(H†1H2)(H†2H1)

+
{

1
2Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
,(2.5)

where Y1, Y2, and Z1,2,3,4 are invariant quantities and Y3 and Z5,6,7 are pseudo-
invariants. Notice that the coefficients for the quadratic and quartic terms for
the doublets are invariant whereas the other terms are pseudo-invariant. The
invariant coefficients are all real whereas the pseudo-invariants are potentially
complex. The freedom of phase (χ) in Eqn. 2.3 results in other pseudo invariants
in the scalar potential. The substitution

Y1 = − 1
2Z1v

2 , Y3 = − 1
2Z6v

2 , (2.6)

is a result of minimizing the scalar potential (Eqn. 2.5). Only invariants can be
candidates for observable quantities. However, combining two pseudo invariant
quantities results in an invariant. For example,

|Z5| =
√
Z5Z∗5 =

√
Z5eiχZ∗5e

−iχ =
√
|Z5|2, (2.7)

which is independent of phase χ.
From the pseudo-invariant coefficients, one can form four independent real

invariants |Y3|, |Z5,6,7| and three invariant relative phases arg(Y3Z
∗
5 ), arg(Y3Z

∗
6 )

and arg(Y3Z
∗
7 ). Including the 6 invariants from Eqn. (2.5), this leaves eleven

invariant quantities in the basis-independent 2HDM parameter space. One of
these is the vacuum expectation value v.
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2.2 The Physical Higgs Mass-Eigenstates

The Two-Higgs Doublet Model has five observable Higgs particles regardless of
whether it is CP violating or conserving. The doublet scalar fields of the Higgs
basis are parametrized as

H1 =
(

G+

1√
2

(
v + ϕ0

1 + iG0
) ) , H2 =

(
H+

1√
2

(
ϕ0

2 + ia0
) ) , (2.8)

with hermitian conjugates

H†1 =
(
G− 1√

2

(
v + ϕ0

1 + iG0
) )

, H†2 =
(
H− 1√

2

(
ϕ0

2 + ia0
) )

,

(2.9)
where G± is the charged Goldstone boson pair and G0 is the CP-odd neutral
Goldstone boson. Before EWSB, the Goldstone bosons were observable as prop-
agating particles. However, at this point in the evolution of the universe, the
Goldstone bosons are observable only indirectly as the masses of the Z0 and
W± bosons. The neutral Goldstone boson G0 becomes the mass of the Z0

boson while G± becomes the mass of the W± particle. If the Higgs sector is
CP-conserving, then a0 will be a mass eigenstate. If the Higgs sector is CP-
violating, then ϕ0

1, ϕ0
2, and a0 mix to form three additional physically observable

particles. Because H± do not mix with ϕ0
1, ϕ0

2, and a0 in Eqn. 2.5, H± will
become manifest as mass eigenstates regardless. Mass eigenstates will appear
as states of definite mass and therefore observable particles. ϕ0

1, ϕ0
2 will always

mix, and therefore cannot be mass eigenstates or states of definite mass.
To determine the mass of these particles, one needs to first examine the

terms of the scalar potential (Eqn. 2.5) that are quadratic in the scalar fields.
Quadratic and linear terms are relevant because the requirement that the coef-
ficient for linear terms vanishes corresponds to minimizing the scalar potential
and results in the simplification used in Eqn. (2.6). Furthermore, because no
quadratic terms involving the Goldstone bosons survive, we know that the Gold-
stone is massless. The charged Higgs boson mass is also very easily determined
to be

m2
H± = Y2 + 1

2Z3v
2 . (2.10)

The three neutral fields mix and the neutral Higgs squared-mass matrix in the
ϕ0

1–ϕ0
2–a0 basis becomes

M = v2

 Z1 Re(Z6) −Im(Z6)
Re(Z6) 1

2 [Z34 + Re(Z5)] + Y2/v
2 − 1

2 Im(Z5)
−Im(Z6) − 1

2 Im(Z5) 1
2 [Z34 − Re(Z5)] + Y2/v

2

 ,

(2.11)
where Z34 = Z3 + Z4 and from complex analysis, the simplification

Im(z) =
z − z̄

2i
Re(z) =

z + z̄

2
(2.12)

is implied.
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M is not invariant because of the χ dependence of Z5 and Z6. However, the
eigenvalues and normalized eigenvectors are invariant. This is made apparent
through the following mathematical argument. By computing the characteristic
equation,

det(M− xI) = −x3 + Tr(M)x2 − 1
2

[
(TrM)2 − Tr(M2)

]
x+ det(M) , (2.13)

where I is the 3× 3 identity matrix. Unpacking this equation, we see

Tr(M) = 2Y2 + (Z1 + Z3 + Z4)v2 ,

Tr(M2) = Z2
1v

4 + 1
2v

4
[
(Z3 + Z4)2 + |Z5|2 + 4|Z6|2

]
+2Y2[Y2 + (Z3 + Z4)v2],

det(M) = 1
4{Z1v

6[(Z3 + Z4)2 − |Z5|2]− 2v4[2Y2 + (Z3 + Z4)v2]|Z6|2

+4Y2Z1v
2[Y2 + (Z3 + Z4)v2] + 2v6Re(Z∗5Z

2
6 )} (2.14)

Because all of the coefficients in the mass matrixM are invariant, the physi-
cal Higgs masses will be basis-independent as well. It is necessary to diagonalize
M so that only the eigenvalues lie along the diagonal and only the squared-mass
terms are present. By diagonalizing the mass matrix, we are identifying the
physical particles since physical particles are states of definite mass.

RMRT =MD ≡ diag (m2
1 , m

2
2 , m

2
3) , (2.15)

where RRT = I and the m2
k are the eigenvalues of M. R is expressed

R = R12R13R23

=

 c12 −s12 0
s12 c12 0
0 0 1

 c13 0 −s13
0 1 0
s13 0 c13

 1 0 0
0 c23 −s23
0 s23 c23



=

 c13c12 −c23s12 − c12s13s23 −c12c23s13 + s12s23

c13s12 c12c23 − s12s13s23 −c23s12s13 − c12s23
s13 c13s23 c13c23

 , (2.16)

where for the sake of simplification, cij ≡ cos θij and sij ≡ sin θij .
The three new neutral Higgs mass-eigenstates are denoted h1, h2, h3 such

that  h1

h2

h3

 = R

 ϕ0
1

ϕ0
2

a0

 . (2.17)

These are the neutral Higgs particles that would actually be observed with
masses m1, m2, and m3. Without loss of generality, it is convenient to order hk
such that m1 ≤ m2 ≤ m3.

It is not immediately obvious that Eqn. (2.15) is invariant. The M mass
matrix depends upon the choice of Higgs basis because of the χ dependence of
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Z5 and Z6. However, because θ12 and θ13 (modulo π) are U(2)-invariant and
Z5 e

−2iθ23 , Z6 e
−iθ23 and Z7 e

−iθ23 are U(2)-invariant, MD can be rewritten as

R̃M̃ R̃T =MD = diag(m2
1 , m

2
2 , m

2
3) , (2.18)

where

M̃ ≡ R23MRT23

= v2

 Z1 Re(Z6 e
−iθ23) −Im(Z6 e

−iθ23)
Re(Z6e

−iθ23) Re(Z5 e
−2iθ23) +A2/v2 − 1

2 Im(Z5 e
−2iθ23)

−Im(Z6 e
−iθ23) − 1

2 Im(Z5 e
−2iθ23) A2/v2

 ,

(2.19)

and

R̃ =

 c12c13 −s12 −c12s13
c13s12 c12 −s12s13
s13 0 c13

 . (2.20)

All terms in the M̃ are invariant because Eqn. (2.7) recalls that two pseudo-
invariant quantities generate an invariant quantity when multiplied. Therefore,

R̃M̃ R̃T =MD = diag(m2
1 , m

2
2 , m

2
3) , (2.21)

and R̃, M̃, and R̃T are invariants.
For the sake of simplicity, Table 2.1 represents the conventional substitu-

tions for the neutral Higgs mixing angles. These angles can be thought of as

Table 2.1: The invariant quantities qk` are functions of the the neutral Higgs
mixing angles θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij taken from
reference [1].

k qk1 qk2
1 c12c13 −s12 − ic12s13
2 s12c13 c12 − is12s13
3 s13 ic13
4 i 0

representing the pseudo-invariant nature of the generic 2HDM within a specific
and invariant model. As will be shown, the invariant angles qk` are used to
write expressions for physical quantities in basis-independent form.



10 CHAPTER 2. THE BASIS-INDPENDENT CP-VIOLATING 2HDM



Chapter 3

Phenomenology of the
2HDM

3.1 The Oblique Parameters

The basis-independent Two-Higgs Doublet Model has implications for the values
of many experimental parameters. The Large Hadron Collider is optimized
to make discoveries at the electroweak scale and should provide experimental
evidence for the existence or non-existance of the Higgs particle. As the LHC has
become operational again as of the 20th of November 2009, refining experimental
predictions and constraints for the 2HDM is a pressing research goal. For this
purpose the “Oblique Parameters,” S, T, U, V, W, and X are experimentally
accessible values which can constrain or disprove a theory. The 2HDM predicts
values for the oblique parameters which may or may not be compatible with
those measured experimentally.

The S, T, U, V, W, and X parameters are the link between theory and
experiment. Experimentally, these parameters can be determined only indi-
rectly through the determination of constants such as mz, mw, and decay rates.
Burgess and London [6] have defined these parameters such that

αS

4s2w4c2w
=

[
δΠZZ(M2

Z)− δΠZZ(0)
M2
Z

]
− (c2w − s2w)

swcw
δΠ ′Zγ(0)− δΠ ′γγ(0),

(3.1)

αT =
δΠWW (0)
M2
W

− δΠZZ(0)
M2
Z

, (3.2)

αU

4s2w
=

[
δΠWW (M2

W )− δΠWW (0)
M2
W

]
− c2w

[
δΠZZ(M2

Z)− δΠZZ(0)
M2
Z

]
−s2wδΠ ′γγ(0)− 2swcwδΠ ′Zγ(0). (3.3)

11
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Additionally,

αV = δΠ ′ZZ(M2
Z)−

[
δΠZZ(M2

Z)− δΠZZ(0)
M2
Z

]
, (3.4)

αW = δΠ ′WW (M2
W )−

[
δΠWW (M2

W )− δΠWW (0)
M2
W

]
, (3.5)

αX = −swcw
[
δΠZγ(M2

Z)
M2
Z

− δΠ ′Zγ(0)
]
. (3.6)

The parameters α, sw, cw are constants and are defined in section 3.2.1. The
vacuum polarization tensors Πij are functions calculated using the Feynman
rules corresponding to possible vertices of the 2HDM. These are derived and
displayed in [3].

3.2 Analytical

This section represents original results. The derivations for Eqns. 3.16-3.31
were determined using Mathematica or drawn from integral tables.

To produce numerical results, it is necessary to evaluate B22(q2;m2
1;m2

2),
B0(q2;m2

1;m2
2), and A0(q2;m2

1;m2
2) functions which appear in Eqns. 3.52-3.60.

The functions B22 and B0 are defined in ref. [4] and come from the evaluation
of two-point integrals. They can be evaluated using the following formulae of
ref. [2]:

B22(q2;m2
1,m

2
2) =

1
4

(∆+ 1)[m2
1 +m2

2 −
1
3
q2]

− 1
2

∫ 1

0

dxX ln(X − iε), (3.7)

B0(q2;m2
1,m

2
2) = ∆−

∫ 1

0

dx ln(X − iε) , (3.8)

A0(m2) = m2(∆+ 1− lnm2) , (3.9)

where X ≡ m2
1x + m2

2(1 − x) − q2x(1 − x) and ∆ ≡ 2
4−d + ln(4π) − γ, in d

space-time dimensions. These equations are evaluated as the limit ε → 0 and
d → 4. As d → 4, there are apparent infinities which arise in the first terms of
Eqns. 3.7-3.9. However, when explicitly adding the Feynman diagrams which
contribute to each vacuum polarization tensor Πij of Eqns. 3.1-3.6, it was found
that these infinities annihilate. In practice, with the additional constraint that
ε→ 0, Eqns. 3.7-3.9 become
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B22(q2;m2
1,m

2
2) = − 1

2

∫ 1

0

dx
(
m2

1x+m2
2(1− x)− q2x(1− x)

)
ln
[
m2

1x

+m2
2(1− x)− q2x(1− x)

]
, (3.10)

B0(q2;m2
1,m

2
2) =

∫ 1

0

dx ln
[
m2

1x+m2
2(1− x)− q2x(1− x)

]
, (3.11)

A0(m2) = m2(− lnm2). (3.12)

Expanding these integrals turns Eqns. 3.10 and 3.11 into a linear combination
of three distinct integrals namely:

F0[q2,m2
1,m

2
2] =

∫ 1

0

ln(q2x2 +m2
1x+m2

2)dx, (3.13)

F1[q2,m2
1,m

2
2] =

∫ 1

0

x ln(q2x2 +m2
1x+m2

2)dx, (3.14)

F2[q2,m2
1,m

2
2] =

∫ 1

0

x2 ln(q2x2 +m2
1x+m2

2)dx, (3.15)

which evaluate to

F0[a, b, c] = ln(a+ b+ c) +
1
2a

(
− 4a+ b ln

(a+ b+ c

c

)
+4(ac− b2)G0[a, b, c]

)
, (3.16)

F1[a, b, c] =
1

4a2

(
2a2 ln(a+ b+ c)− 2a2 + 2ba

+(2ac− b2) ln
(a+ b+ c

c

)
+b(b2 − 4ac)G0[a, b, c]

)
, (3.17)

F2[a, b, c] =
1
3

(
ln(a+ b+ c)− 2

3
+

b

2a
− b2 − 2ac

a2

+
b

2a3
(b2 − 3ac) ln

(a+ b+ c

c

)
+

c

2a2

(
5b2 − 4ac− b4

ac

)
G0[a, b, c]

)
, (3.18)
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where G0[a, b, c] varies such that

G0[a, b, c] =
2√

4ac− b2

[
arctan

( 2a+ b√
4ac− b2

)
− arctan

( b√
4ac− b2

)]
if b2 < 4ac, (3.19)

G0[a, b, c] =

(
−2

2a+ b+ 2
b

)
if b2 = 4ac, (3.20)

G0[a, b, c] =
1√

−4ac+ b2
ln

(
b+ 2c+

√
−4ac+ b2

b+ 2c−
√
−4ac+ b2

)
if b2 > 4ac.(3.21)

However, in cases where a = 0, we need three additional integrals:

F00 = −1− c ln(c)
b

+ ln(b+ c) +
c ln(b+ c)

b
if b 6= c,

F00 = −1 + ln(2) + ln(2c) if b = c, (3.22)

F10 =
−1
4

+
c

2b
+
c2 ln(c)

2b2
+

1
2

ln(b+ c)− c2 ln(b+ c)
2b2

, (3.23)

F20 =
−1
9

+
c

6b
− c2

3b2
− c3 ln(c)

3b3
+

ln(b+ c)
3

+
c3 ln(b+ c)

3b3
. (3.24)

Using these functions it is now possible to define Eqns. 3.10-3.11

B22[a, b, c] =
−1
2

(
aF2[a, b− a− c, c] + (b− c− a)F1[a, b− a− c, c]

+cF0[a, b− a− c, c]
)
, (3.25)

B0[a, b, c] = −F0[a, b− a− c, c]. (3.26)

The substitution “b” = b− a− c into Eqns. 3.16-3.18 is a result of the fact that

X = m2
1x+m2

2(1− x)− q2x(1− x)
= m2

2 + (m2
1 − q2 −m2

2)x+ q2x2 (3.27)

For the cases when q2 = 0, Eqn. 3.10 remains the same if b = c. However,
when b 6= c

B22[a, b, c] =
A0[c]

2
. (3.28)

In addition, for all values of b and c

B0[a, b, c] =
A0[b]−A0[c]

b− c
. (3.29)

It is also necessary to define the derivative ∂B22[a,b,c]
c = B′22[a, b, c] and ∂B0[a,b,c]

∂a =
B′0[a, b, c]. These partial derivatives are complicated when a 6= 0. However,
when a = 0,
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B′22[0, b, c] = − 1
72(b− c)3

[
− b3 − 9b2c+ 9bc2 + c3 − 6b2(b− 3c) ln(b)

+(6c3 − 18bc2) ln(c)
]

if b 6= c (3.30)

B′22[0, b, c] =
1
12

[1 + ln(c)] if b = c. (3.31)

The B′0[a, b, c] function is not necessary for a = 0.

3.2.1 Constants

To use the above functions, it is also necessary to define constants. Constants
were derived in such a manner that their definition depended solely on the most
precise observable quantities available. These fundamental constants are

GF = 1.16637× 10−5GeV−2, (3.32)
MZ = 91.1876GeV, (3.33)

α =
1

137.035999
, (3.34)

where GF is Fermi’s coupling constant, MZ is the mass of the Z-boson, and α
is the dimensionless fine structure constant. Using these observable quantities,
it is possible to derive the remainder of the constants necessary for our analysis.
The weak mixing angle θW was derived using the equation:

cos(θW )2 sin(θW )2 = απ

√
2

2GFM2
Z

. (3.35)

The derived value for θW was 0.48673. In order for the Higgs mechanism to
work, the Higgs field requires a non-zero vacuum expectation value. The vacuum
expectation value v for the Higgs field is derived:

ν = (
√

2GF )−
1
2 (3.36)

= 246GeV.

The gauge coupling parameter g is derived:

g =
√

4πα
sin(θW )

(3.37)

= 0.657449,

and is by nature dimensionless. Using the value of θW , one determines that:

cW = 0.887607 (3.38)
sW = 0.460602. (3.39)
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The constants c2W and s2W are defined using the identities

c2W ≡ c2W − s2W , (3.40)
s2W ≡ 2sW cW . (3.41)

Lastly, the mass of the W-boson W± was determined using the equation:

MW = cos(θW )MZ . (3.42)

3.2.2 Defining mi

Because the values for m1, m2, m3, and mH± have not yet been observed
experimentally, it is necessary to arbitrarily vary the constants in the matrix
of Eqn. 2.11. The values of Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23),
Im(Z5e

−2iθ23), Z34 = Z3 + Z4, and Z3 were arbitrarily varied according to
Table 3.1.

Table 3.1: The theoretical limits of the parameters Z1, Re(Z6e
−iθ23),

Im(Z6e
−iθ23), Re(Z5e

−2iθ23), Im(Z5e
−2iθ23), Z34 = Z3 + Z4, and Z3. These

values were varied arbitrarily to produce values for m1, m2, m3, and mH± . The
values for these theoretical upper bounds were found in [3].

Theoretical Upper Bound
|Z1| < 4π
|Z3| < 8π

|Z3 + Z4| < 8π
|Re(Z5e

−2iθ23)| < 2π
|Re(Z6e

−iθ23)| < 2π
|Im(Z5e

−2iθ23)| < 2π
|Im(Z6e

−iθ23)| < 2π

Using Eqn. 2.15, the mass of m1, m2, m3 can be determined, with the results

m1 =
√
ν2λ1, (3.43)

m2 =
√
ν2λ2, (3.44)

m3 =
√
ν2λ3, (3.45)

where λ1, λ2, λ3, are the eigenvalues of the mass matrix from Eqn. 2.15, ordered
such that λ1 < λ2 < λ3. The charged Higgs mass, mH± can be determined using
Eqn. 2.10.

From [1], the invariant quantities qkl as displayed in Table 2.1 can be deter-
mined using the equations:
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q211 = 1− q221 − q231, (3.46)

q221 =
(Z1ν

2 −m2
1)(Z1ν

2 −m2
2)− (Im(Z6)2 + Re(Z6)2)ν4

(m2
2 −m2

1)(m2
3 −m2

2)
, (3.47)

q231 =
(Z1ν

2 −m2
1)(m2

3 − Z1ν
2)− (Im(Z6)2 + Re(Z6)2)ν4

(m2
3 −m2

1)(m2
3 −m2

2)
, (3.48)

and

q212 = q231 + q221, (3.49)
q222 = q211 + q231, (3.50)
q232 = 1− q231. (3.51)

3.2.3 The Vacuum Polarization Tensors

Having defined the necessary constants and variables as well as all possible
cases for Eqns. 3.7-3.9, the last necessary step is to explicitly define numerical
values for the vacuum polarization tensors δΠij(a) from Eqns. 3.1-3.6. They
are defined:

δΠZZ(M2
Z) =

α

4πs2w

{
−m2

Z

(
q211B0[m2

Z ,m
2
Z ,m

2
1] + q221B0[m2

Z ,m
2
Z ,m

2
2]

+q231B0[m2
Z ,m

2
Z ,m

2
3]
)

+ q211B22[m2
Z ,m

2
Z ,m

2
1]

+q221B22[m2
Z ,m

2
Z ,m

2
2] + q231B22[m2

Z ,m
2
Z ,m

2
3]

+q221B22[m2
Z ,m

2
1,m

2
3] + q211B22[m2

Z ,m
2
2,m

2
3]

+q231B22[m2
Z ,m

2
1,m

2
2] + c22wB22[m2

Z ,m
2
H± ,m

2
H± ]

−1
2
(
A0[m2

1] +A0[m2
2] +A0[m2

3]
)

(Standard Model Contribution)

−
(
−m2

ZB0[m2
Z ,m

2
Z ,m

2
1] +B22[m2

Z ,m
2
Z ,m

2
1]
)}
, (3.52)
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δΠZZ(0) =
α

4πc2ws2w

{
−m2

Z

(
q211B0[0,m2

Z ,m
2
1] + q221B0[0,m2

Z ,m
2
2]

+q231B0[0,m2
Z ,m

2
3] + q211B22[0,m2

Z ,m
2
1] + q221B22[0,m2

Z ,m
2
2]

+q231B22[0,m2
Z ,m

2
3] + q221B22[0,m2

1,m
2
3] + q211B22[0,m2

2,m
2
3]

+q231B22[0,m2
1,m

2
2]

−1
2
(
A0[m2

1] +A0[m2
2] +A0[m2

3] +A0[m2
H± ]− c22wA0[m2

H± ]
)

(Standard Model Contribution)

−
(
−m2

ZB0[0,m2
Z ,m

2
1] +B22[0,m2

Z ,m
2
1]
)}
, (3.53)

δΠ ′ZZ(M2
Z) =

α

4πc2ws2w

{
−m2

Z

(
q211B

′
0[m2

Z ,m
2
Z ,m

2
1] + q221B

′
0[m2

Z ,m
2
Z ,m

2
2]

+q231B
′
0[m2

Z ,m
2
Z ,m

2
3]
)

+ q211B
′
22[m2

Z ,m
2
Z ,m

2
1]

+q221B
′
22[m2

Z ,m
2
Z ,m

2
2] + q221B

′
22[m2

Z ,m
2
1,m

2
3]

+q211B
′
22[m2

Z ,m
2
2,m

2
3] + q231B

′
22[m2

Z ,m
2
1,m

2
2]

+q231B
′
22[m2

Z ,m
2
Z ,m

2
3] + c22wB

′
22[m2

Z ,m
2
H± ,m

2
H± ]

(Standard Model Contribution)

−(−m2
ZB
′
0[m2

Z ,m
2
Z ,m

2
1] +B′22[m2

Z ,m
2
Z ,m

2
1]
)}
, (3.54)

δΠWW (m2
W ) =

α

4πs2w

{
−m2

W

(
q211B0[m2

W ,m
2
W ,m

2
1] + q221B0[m2

W ,m
2
W ,m

2
2]

+q231B0[m2
W ,m

2
W ,m

2
3]
)

+ q211B22[m2
W ,m

2
W ,m

2
1]

+q221B22[m2
W ,m

2
W ,m

2
2] + q231B22[m2

W ,m
2
W ,m

2
3]

+q221B22[m2
W ,m

2
1,m

2
3] + q211B22[m2

W ,m
2
2,m

2
3]

+q231B22[m2
W ,m

2
1,m

2
2] + c22wB22[m2

W ,m
2
H± ,m

2
H± ]

−1
2
(
A0[m2

1] +A0[m2
2] +A0[m2

3]
)

(Standard Model Contribution)

−(−m2
WB0[m2

W ,m
2
W ,m

2
1] +B22[m2

W ,m
2
W ,m

2
1]
)}
, (3.55)
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δΠWW (0) =
α

4πs2w

{
−m2

Z

(
q211B0[0,m2

W ,m
2
1] + q221B0[0,m2

W ,m
2
2]

+q231B0[0,m2
W ,m

2
3]
)

+ q211B22[0,m2
W ,m

2
1]

+q221B22[0,m2
W ,m

2
2] + q212B22[0,m2

H± ,m
2
1]

+q222B22[0,m2
H± ,m

2
2] + q232B22[0,m2

H± ,m
2
3]

+q231B22[0,m2
W ,m

2
3]

−1
2
(
A0[m2

1] +A0[m2
2] +A0[m2

3] +A0[m2
H± ]

)
(Standard Model Contribution)

−
(
−m2

WB0[0,m2
Z ,m

2
1] +B22[0,m2

W ,m
2
1]
)}
, (3.56)

δΠ ′WW (M2
W ) =

α

4πs2w

{
m2
W

(
q211B

′
0[m2

W ,m
2
W ,m

2
1] + q221B

′
0[m2

W ,m
2
W ,m

2
2]

+q231B
′
0[m2

W ,m
2
W ,m

2
3]
)

+ q211B
′
22[m2

W ,m
2
W ,m

2
1]

+q221B
′
22[m2

W ,m
2
W ,m

2
2] + q231B

′
22[m2

W ,m
2
W ,m

2
3]

+q212B
′
22[m2

W ,m
2
W ,m

2
1] + q222B

′
22[m2

W ,m
2
W ,m

2
2]

+q232B
′
22[m2

W ,m
2
W ,m

2
3]

Standard Model Contribution

−
(
−m2

WB
′
0[0,m2

Z ,m
2
1] +B′22[0,m2

W ,m
2
1]
)}
, (3.57)

δΠZγ(m2
Z) =

α

2πs2w

(c22w
c2w

(
B22[m2

Z ,m
2
H± ,m

2
H± ]

−B22[0,m2
H± ,m

2
H± ]

))
, (3.58)

δΠ ′Zγ(0) =
α

π

(
B′22[0,m2

H± ,m
2
H± ]

)
, (3.59)

δΠ ′γγ(0) =
α

2πs2w

(
B′22[0,m2

H± ,m
2
H± ]

)
. (3.60)

Eqs. 3.52-3.60 produce real-valued numerical results for varying values ofm1,2,3,H± .
These numerical results exhibit relationships between the six oblique param-

eters (S, T, U, V, W, and X) and m1,2,3,H± some of which display correlation.
The relationship of the oblique parameters and m2,m3,mH± to m1 is especially
interesting because m1 is the mass of the lightest neutral Higgs particle and
therefore the most likely to be observed in the LHC.
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Chapter 4

Numerical Analysis

4.1 Generating Numerical Data

To produce values for m1,2,3,H± , and therefore the oblique parameters, the
seven theoretical parameters Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23),
Im(Z5e

−2iθ23), Z34 = Z3 + Z4, and Z3 must be varied arbitrarily between cer-
tain theoretical boundaries. These boundaries are suggested by elements of the
theory and displayed in Table 3.1. Because their particular values are not yet
known, randomness is essential and every value between the boundaries must be
equally probable. The effect of increasing or decreasing these limits uniformly
are discussed in sections 4.3.1 and 4.3.2.

Using Mathematica, values of Z1, Re(Z6e
−iθ23), Im(Z6e

−iθ23), Re(Z5e
−2iθ23),

Im(Z5e
−2iθ23), Z34, and Z3 were varied arbitrarily according to Table 3.1. The

value of Y2 was chosen such that Y2 = 50 GeV2. Although the value of Y2 is
also unknown, this particular value for Y2 was chosen to be consistent with [3].

Some values for Z1, Re(Z6e
−iθ23), Im(Z6e

−iθ23), Re(Z5e
−2iθ23), Im(Z5e

−2iθ23),
Z34, and Z3 produced imaginary values for m1, m2, m3, mH± , V and W . These
results were discarded because they are not physical. In addition, values with
mH± ≤ 50 GeV or m1 ≤ 10 GeV were discarded because they are unrealistically
small. Therefore data sets of the form {m1,m2,m3,mH± , S, T, U, V,W,X} were
kept only if

Im(m1) = Im(m2) = Im(m3) = Im(mH±) = 0, (4.1)
mH± ≤ 50 GeV, and (4.2)
m1 ≤ 10 GeV. (4.3)

Using these constraints collectively, out of 10, 000 potential data sets of the
form {m1,m2,m3,mH± , S, T, U, V,W,X}, one typically produces ≈ 620 realistic
results.

21
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4.2 Correlations

4.2.1 Correlations Between the Oblique Parameters

The oblique parameters are related to observables that can be determined with-
out actually observing a Higgs particle. The 2HDM predicts particular values for
these oblique parameters. If these theoretical values were found to correspond
to experimental values, the 2HDM would be valid.

To analyze the oblique parameters, results were displayed in 2D and 3D
plots using the Mathematica ‘ListPlot’ function with the automatic plot-range.
Although many parameters were not correlated, some displayed correlation. All
of the uncorrelated group had a high density of points near the origin. For the
parameters which displayed correlation, the terms ‘Mild,’ ‘Strong,’ and ‘Direct’
have been used to categorize the level of correlation. This categorization depends
upon the parameter space as displayed by Mathematica using the automatic
plot-range. The most difficult cases to categorize were between ‘no correlation’
and ‘mild correlation.’ In these cases, the entire plot-range was analyzed. My
categorization was verified and concurrent with that of my advisor on the basis
of visual appearance of the parameter space. ‘Direct’ for the purposes of this
experiment means minimal spread. The results for the categorization of the
oblique parameters are displayed in Table 4.1.

Table 4.1: The levels of correlation for comparisons of oblique parameters. Figs.
4.1-4.10 display these levels of correlations.

Correlation Level Parameters
None V-T, W-T, X-T, V-U, W-U, X-V, X-W
Mild T-S, U-S, V-S, W-S, X-S, X-T, X-U

Strong U-T
Direct W-V

All parameters which exhibited correlations are displayed in Figs 4.2-4.10,
except for W because of its direct correlation with V (see Fig. 4.10). The plots
for these figures display the same set of 1233 data points. An example of two
uncorrelated parameters is displayed in Fig. 4.1. Notice the clustering near to
the origin.

The parameters which displayed a ‘mild correlation’ are displayed in Figs.
4.2-4.7. ‘Mild’ is a qualitative assessment used to categorize the correlation
levels between the oblique parameters. As used presently, ‘mild correlation’ is
one degree above ‘no correlation’ and one degree below ‘strong correlation.’

The parameters which displayed a ‘strong correlation’ are displayed in Fig.
4.9. These two sets of parameters where the only set to be categorized as
displaying a strong correlation. As a qualitative assessment, ‘strong correlation’
is one degree above ‘mild correlation’, and one degree below ‘direct correlation’.

The parameters which displayed a ‘direct correlation’ are displayed in Fig.
4.10. These two parameters were the only set to be categorized as displaying
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Figure 4.1: A plot of values generated for V and T. There is not a correlation
between these two parameters, yet there is a clustering of values near to the
origin. Other parameters without correlations include W-T, X-T, V-U, W-U,
X-V, and X-W. Because of the direct correlation of V and W, the plot for W
and T is very similar.

Figure 4.2: A plot of values generated for T and S. There is a mild correlation
between these two parameters.
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Figure 4.3: A plot of values generated for U and S. There is a mild correlation
between these two parameters.

Figure 4.4: A plot of values generated for V and S. There is a mild correlation
between these two parameters. This plot is very similar to W and S because
there is a direct correlation between V and W (see Fig. 4.10).
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Figure 4.5: A plot of values generated for W and S. Although there may not
appear to be a correlation between these parameters, adjusting the plot range
to display the full set of values reveals a clearer correlation between the two
parameters.

Figure 4.6: A plot of values generated for X and S. There is a mild correlation
between these two parameters.
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Figure 4.7: A plot of values generated for X and U. There is a mild correlation
between these two parameters.

Figure 4.8: A plot of values generated for X and T. There is a mild correlation
between these two parameters.
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Figure 4.9: A plot of values generated for U and T. There is a strong correlation
between these two parameters. No other parameters displayed this degree of
correlation.

a direct correlation. As a qualitative assessment, ‘direct correlation’ is the
strongest correlation. It is one degree above ‘strong correlation.’

4.2.2 Correlation of the Oblique Parameters and m1

After establishing the degree to which oblique parameters displayed correlations,
the oblique parameters were compared to the least Higgs mass m1. Using the
theoretical limits from Table 3.1, nine two-dimensional scatter plots with 1200
data points were created displaying S, T, U, V, W, X, m2, m3, and mH± with
m1. As in section 4.2.1, these plots can be categorized into levels of correlation.
In this section, there are two levels of correlation, ‘Mild’ and ‘Strong’. No ‘direct
correlation’ was observed. A list of which parameters displayed correlation is
given in Table 4.2.

Table 4.2: The levels of correlation for comparisons of m1 with m2,3,H± and the
oblique parameters. Figs. 4.11-4.13 display these levels of correlations

Correlation Level Parameters
None T, X, m2, m3, mH±

Mild S, U
Strong V, W

The parameters which displayed mild correlation are displayed in Figs. 4.11
and 4.12.
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Figure 4.10: A plot of values generated for W and V. There is a direct correlation
between these two parameters. No other parameters displayed this degree of
correlation.

Figure 4.11: A plot of values generated for S and m1. As m1 increases, val-
ues for S generally decrease. Analyzing the entire range of values makes this
relationship more clear. These parameters display a mild correlation.
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Figure 4.12: A plot of values generated for U and m1. As m1 increases, the
minimum value for U increases and the maximum value for U stays roughly the
same. These parameters display a mild correlation.

Parameters which displayed strong correlations are displayed in Figs. 4.13
and 4.14. The similarity between these two plots are a result of the direct
correlation of W and V as displayed in Fig. 4.10.

4.2.3 Correlation of the Oblique Parameters and mH±

All parameters were analyzed for correlations. The relationship of the oblique
parameters with m2 and m3 displayed very weak if not negligible correlations.
Although there appeared to be correlations between m1,2,3, these were an arti-
fact of the ordering m1 < m2 < m3. An example of this ‘correlation’ is displayed
in Fig. 4.15.

The charged Higgs mH± displayed no correlation with any of the uncharged
Higgs m1,2,3 but displayed interesting correlations with S, T, U and X. These
correlations are displayed in Figs. 4.16-4.19. To maintain consistency, they have
been categorized into mild, strong, and direct correlations. This categorization
is displayed in Table 4.3.

Table 4.3: The levels of correlation for comparisons of mH± with m1,2,3 and the
oblique parameters. Figs. 4.16-4.19 display these levels of correlations.

Correlation Level Parameters
None m1,2,3, W, V
Mild S

Strong T, U
Direct X
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Figure 4.13: A plot of values generated for V and m1. As m1 increases, the V
decreases exponentially. Because W and V are directly correlated, the plot of
m1-W is almost identical. These parameters display a strong correlation.

Figure 4.14: A plot of values generated for W and m1. As m1 increases, the W
decreases exponentially. Because W and V are directly correlated, the plot of
m1-V is almost identical. These parameters display a strong correlation.
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Figure 4.15: A plot of values generated for m2 and m1. As m1 increases, the
range of values for m2 decreases. This ‘correlation’ is an artifact of the demand
that m1 < m2 < m3.

Figure 4.16: A plot of values generated formH± and S. These parameters display
a mild correlation.
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Figure 4.17: A plot of values generated for mH± and T. These parameters
display a strong correlation.

Figure 4.18: A plot of values generated for mH± and U. These parameters
display a strong correlation.
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Figure 4.19: A plot of values generated for mH± and X. These parameters
display a direct correlation.

The apparent upper boundary for mH± of ≈ 880 GeV as apparent in Figs
4.16-4.19 was found to be related to the theoretical upper bounds of Table 3.1.
This relationship is discussed in greater detail in Section 4.3.2.

4.3 Adjusting the Theoretical Upper Bounds

4.3.1 Effect on the Oblique Parameters

To determine its effect on the oblique parameters, the theoretical upper bounds
for Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23), Im(Z5e
−2iθ23), Z34, and Z3

were adjusted to 1
10 , 1

2 , 2 and 10 the magnitude of their original bounds. The
original unitarity bounds are displayed in Table 3.1. The new unitarity bounds
are displayed in Table 4.4.

Table 4.4: The new applied limits of the parameters Z1, R(Z6)=Re(Z6e
−iθ23),

I(Z6) = Im(Z6e
−iθ23), R(Z5) = Re(Z5e

−2iθ23), I(Z5) = Im(Z5e
−2iθ23), Z34 =

Z3 + Z4, and Z3. They are 1
10 , 1

2 , 2 and 10 of their values in Table 3.1.
1
10

1
2 2 10

|Z1| < 2
5π |Z1| < 2π |Z1| < 8π |Z1| < 40π

|Z3| < 4
5π |Z3| < 4π |Z3| < 16π |Z3| < 80π

|Z3 + Z4| < 4
5π |Z3 + Z4| < 4π |Z3 + Z4| < 16π |Z3 + Z4| < 80π

|R(Z5)| < 1
5π |R(Z5)| < π |R(Z5)| < 4π |R(Z5)| < 20π

|I(Z5)| < 1
5π |I(Z5)| < π |I(Z5)| < 4π |I(Z5)| < 40π

|R(Z6)| < 1
5π |R(Z6)| < π |R(Z6)| < 4π |R(Z6)| < 40π

|I(Z6)| < 1
5π |I(Z6)| < π |I(Z6)| < 4π |I(Z6)| < 40π
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This adjustment produced two noticeable effects. The most clear effect was
a change in the magnitude of values for T, V, W, and X, but not S and U. The
approximate change in magnitude of T, V, W, and X parameters are displayed
in Tables 4.5-4.6 and in Figs. 4.20-4.23. Figs. 4.20-4.23 represent 4 different
data sets of ≈ 620 data points.

The second noticeable effect was that adjusting the theoretical upper bounds
by a factor of 10 caused the ‘direct correlation’ between V and W to go away
completely. This means that their ‘direct correlation’ was an artifact of the
theoretical limits. The effect is clear in the comparison of Figs. 4.10 and 4.23.

Excluding the case of V and W, the general correlation between each pair
of parameters remained almost identical in spite of the change in magnitude
of T, V, W, and X. This effect is clear in the comparison of Figs. 4.2 and
4.24. Furthermore, in spite of a change of 1

10 or 10 times the original the-
oretical upper bounds of Table 3.1, the ratio of potential data sets of the
form {m1,m2,m3,mH± , S, T, U, V,W,X} and realistic results remained con-
stant. Recalling the conditions of Eqn. 4.1, this means that for 10,000 potential
data sets, one typically produces ≈ 620 realistic results.

Table 4.5: The effect of adjusting the theoretical upper limits of the parameters
Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23), Im(Z5e
−2iθ23), Z34, and Z3 on

the range of possible values for T, V, W, and X. These values exhibit the change
of the theoretical limits represented in Table 4.4. These results were generated
from a random set of ≈1200 observables and are displayed visually in Figs. 4.20
and 4.22.

0.1 0.5 1
T (−0.21, 0.74) (−0.55, 4.1) (−1.16, 8.2)
V (−0.0080, 0.12) (−0.0079, 0.040) (−0.0041, 0.040)
W (−0.0016, 0.078) (−0.00043, 0.025) (−0.00021, 0.025)
X (8.4× 10−5, 0.0033) (−1.7× 10−5, 0.0032) (8.35× 10−6, 0.0027)

Table 4.6: The effect of adjusting the theoretical upper limits of the parameters
Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23), Im(Z5e
−2iθ23), Z34, and Z3 on

the range of possible values for T, V, W, and X. These values exhibit the change
of the theoretical limits represented in Table 4.4. These results were generated
from a random set of ≈1200 observables and are displayed visually in Figs. 4.21
and 4.23.

1 2 10
T (−1.16, 8.2) (−1.8, 18) (−8.1, 98)
V (−0.0041, 0.040) (−0.0050, 0.046) (−0.011, 0.0055)
W (−0.00021, 0.025) (8.3× 10−4, 0.03) (−0.031, 0.012)
X (8.35× 10−6, 0.0027) (4.2× 10−6, 0.0014) (8.3× 10−7, 2.1× 10−4)
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Figure 4.20: A plot of values generated for X and T with the theoretical upper
bounds adjusted by a factor of 1

2 . Comparing this to Fig. 4.8 and 4.21, one
sees a change in magnitude of the parameters, but no change in overall shape
in the parameter space.

Figure 4.21: A plot of values generated for X and T with the theoretical upper
bounds adjusted by a factor of 2 . Comparing this to Fig. 4.8 and 4.20, one
sees a change in magnitude of the parameters, but no change in overall shape
in the parameter space.
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Figure 4.22: A plot of values generated for W and V with the theoretical upper
bounds adjusted by a factor of 0.1. Comparing this to Fig. 4.10, one sees a
change in magnitude of the parameters, but no change in overall shape in the
parameter space.

Figure 4.23: A plot of values generated for W and V with the theoretical upper
bounds adjusted by a factor of 10. Comparing this to Fig. 4.10 and 4.22, one
sees a change in magnitude of the parameters. Furthermore, the correlation
between the two parameters is lost. These are the only two parameters to
experience this change.
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Figure 4.24: A plot of values generated for T and S with the theoretical upper
bounds adjusted by a factor of 10. Comparing this to Fig. 4.2, one sees a change
in magnitude of T but not S. However, the general correlation between the two
remain constant. This effect was the same for every pair of parameters except
W and V, wich diverged from their correlation when the theoretical boundary
limits were increased by a factor of 10.

4.3.2 Effect on the Higgs particles m1,2,3,H±

Adjusting the unitary bounds by a factors of 1
10 , 1

2 , 2, and 10 was shown to
have an effect upon the range of T, V, W, and X, and the correlation of W
and V. This effect was discussed in section 4.3.1. However, it was also found
that adjusting the unitary bounds had an effect upon the range of values for
m1,2,3,H± .

This effect was determined by adjusting the theoretical upper bounds by
factors of 1

10 and 10 as displayed in Table 4.4. Overall, these adjustments
changed the range of m1,2,3,H± according to Table 4.8 and 4.9. The original
range of values for m1,2,3,H± is displayed in Table 4.7.

Despite the change in range of the parameters, there was no change in the
shape of the correlation for any pair of parameters except for V-m1 and W-m1.
Comparing Fig. 4.15 with 4.25 displays a change of range of the parameters but
not an overall change in correlation. This recalls the results from Section 4.3.1.
The change of V-m1 and W-m1 as displayed in Fig. 4.26, was attributed to the
change in the V and W parameters rather than m1. This argument becomes
clear in the comparison of W-V as displayed in Figs. 4.10, 4.22, and 4.23.

As mentioned in section 4.3.1, adjustments to the theoretical upper bounds
did not decrease or increase the number of observable data points significantly.
Furthermore, these adjustments did not change the correlations between the
parameters except in the case of V and W.
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Figure 4.25: A plot of values for m2 and m1 with unitarity bounds adjusted by a
factor of 10 as in Table 4.4. Compare this plot to Fig. 4.15 with no adjustment.
There is not change in the overall shape, only in the range of values. Every
parameter except V and W displayed this effect.

Figure 4.26: A plot of values for V and m1 with unitarity bounds adjusted by a
factor of 10 as in Table 4.4. Compare this plot to Fig. 4.13 with no adjustment.
The correlation which previously existed is absent. The effect is similar for
W-m1.
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Table 4.7: The range of values of m1,2,3,H± using the original theoretical upper
bounds of Table 3.1. Compare these values to Table 4.8 and 4.9. This data set
used a random set of 1220 observables.

Higgs Mass Max Value (GeV) Min Value (GeV) Range (GeV)
m1 759.2 18.03 741.1
m2 973.7 231.3 742.5
m3 1114 487.0 626.6
mH± 872.8 51.74 821.0

Table 4.8: The changes to m1,2,3,H± as a result of adjusting the theoretical
upper bounds by a factor of 1

10 . Compare these values to Table 4.7 and 4.9.
This data set used a random set of 1147 observables.

Higgs Mass Max Value (GeV) Min Value (GeV) Range (GeV)
m1 253.14 10.43 243.71
m2 306.4 79.36 227.1
m3 352.4 176.5 175.8
mH± 276.1 50.0 226.1

Table 4.9: The changes to m1,2,3,H± as a result of adjusting the theoretical
upper bounds by a factor of 10. Compare these values to Table 4.7 and 4.8.
This data set used a random set of 1243 observables.

Higgs Mass Max Value (GeV) Min Value (GeV) Range (GeV)
m1 2620 37.63 2582
m2 2980 737.7 2247
m3 3514 1542 1972
mH± 2759 70.30 2689

Recalling the discussion of the upper limit of mH± from Section 4.2.3, ad-
justing the theoretical upper bounds by factors of 1

10 and 10 were shown to
decrease or increase the upper limit of mH± , but the limit itself was always
present. As a point of comparison, adjusting the theoretical upper bounds by a
factor of 100 did not eliminate the upper limit but only increased its magnitude.
A plot of T and mH± is displayed in Fig. 4.27. This plot is roughly identical
to a plot with the original theoretical upper bounds (Fig 4.17) except for a
change in the magnitude and range of values for T and mH± . Consistent with a
previous observation from Section 4.3.1, adjusting the theoretical upper bounds
by a factor of 100 did not change the number and ratio of realistic data points
to potential data points. For Fig. 4.27, for 10,000 potential data points, only
616 matched the conditions from Eqn. 4.1, and therefore could be considered
realistic.
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Figure 4.27: A plot of values for T and mH± with the theoretical upper bounds
of Table 3.1 adjusted by a factor of 100. Comparing this to Fig. 4.17, we see a
change in magnitude of both parameters but not a change in overall correlation.



Chapter 5

Sonification

5.1 Introduction and Motivation

In the discipline of theoretical physics, computer technology has contributed
immensely to rapid data acquisition. For the current experiment, production
of numerical results took only minutes despite incredibly complex computation.
However, the meaning of any set of data can be understood only if it can be
effectively perceived. For this purpose, our visual perception has been used
almost exclusively. Without comparing parameters visually through the use
of two-dimensional list-plots as in Section 4.1, the data would be perceptually
stagnant: approximately 620 sets of 10 numbers {S, T, U, V, W, X, m1, m2,
m3, mH±}.

Visual graphs have developed over time as a simple and accurate means to
express information and have been used effectively in the present experiment.
However, as computer processing power has blossomed within the past 30 years,
new techniques have developed which offer an alternative medium of expression.
Our auditory perception remains a largely untapped resource for this purpose
and may provide a clear advantage in the representation of complex and high-
dimensional data.

In this context, Sonification has emerged as an international field promoting
new and exciting display techniques. Sonification is defined as the use of non-
speech audio to convey information. A simple and well-known example is the
Geiger counter, a device which represents the radiation level in its immediate
vicinity using audible clicks which vary in number and frequency. Although
sometimes Sonification is applied independently of visual display, it also works
very well as a supplement. Among its other functions, it is helpful in the sciences
where complex or high-dimensional data abound. In this environment, as in
others, Sonification brings new insight to data through a unique, complex, and
perhaps more complete experience. In general, its purpose is to facilitate human-
computer interaction through optimal understanding and application of our
aural perception.
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Sonification is an interdisciplinary field drawing on support from computer
science, the physical sciences, psychology and music. Computer engineers de-
velop sound synthesis software for the transformation of numerical data into
sound. In turn, scientists apply these programs as an exploratory tool in data
analysis. Psychologists ask which techniques are most effective given our au-
ditory perception. Musical understanding provides a cognitive structure and
broad palette for creative sonic architecture.

With 10 observable parameters S, T, U, V, W, X, m1, m2, m3, mH± ,
and 7 theoretical parameters [Z1, Re(Z6e

−iθ23), Im(Z6e
−iθ23), Re(Z5e

−2iθ23),
Im(Z5e

−2iθ23), Z34, and Z3], the 2HDM serves as an instance of complex, high-
dimensional data. While it is possible to display high dimensionality visually
(e.g., color, symbol size, shape) it is often difficult to interpret. Sonification
provides the potential of displaying this high-dimensionality as a sonic experi-
ence. At minimum, sonification provides a complementary resource to visual
display. At its best, instead of viewing these 17 related parameters as 136 two-
dimensional list plots, they might conceivably be experienced in a single sound
space.

5.2 Perceptual Resources

Auditory perception functions very differently from visual perception. While
visual perception is used extensively by most humans, human auditory percep-
tion is naturally used to convey complex linguistic content. When thinking of
the somewhat arbitrary collection of sounds which create meaning in a natural
language, a very narrow range of our auditory perception provides easy under-
standing and expression for the majority of linguistic mental content. Although
sound may offer a broad palette of resources to convey data, an understanding
of our auditory perception is fundamental to successful sonification.

In the present experiment, pitch, loudness, spatialization, timbre, duration,
and time scale were manipulated as perceptual resources for data representation.
Table 5.1 links these resources with a corresponding qualitative question to help
understand its use. Although there are undoubtably other resources available
for auditory representation, they were not used. The addition of timbre (tone
color), duration, and time scale offered a considerable step forward from previous
experience [5] and the resources of Table 5.1 were thought to be sufficient for
effective representation of the desired data set.

5.3 Comparing Sonification Programs

Two programs were employed as potential platforms for sonification. ‘Mathe-
matica’ had been used successfully for the sonification of chaotic attractors [5]
and was explored first. However, ultimately ‘SuperCollider’ was chosen because
unlike Mathematica, its primary function is sound synthesis and it therefore
offered more sonic resources.
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Table 5.1: A table of perceptual resources used in the present experiment to
express data through sound.

Perceptual Resource Qualitative Question
Pitch How high or low was the sound?

Loudness How loud or soft was the sound?
Spatialization Where was the source of the sound?

Timbre What did it sound like?
Duration How long did the sound last?

Time Scale How long since the last sound?

Mathematica provides for sound generation through arbitrary waveform syn-
thesis from functions and data: (i.e., the ‘Play’ function), as well as symbolic
note-based MIDI sound synthesis (i.e., the ‘SoundNote’ function). MIDI stands
for ‘Musical Instrument Musical Interface,’ and is essentially a database of in-
strument like sounds. After using each function, certain limitations became
apparent and SuperCollider became the obvious choice for successful sonifica-
tion.

The ‘Play’ function is the more flexible tool for sound synthesis. With this
function, an arbitrary waveform can be generated from any function which
evolves in time. The frequency and amplitude of the waveform are relatively
easy to control and the use of multiple stereo channels is also available. Be-
cause data was generated in the form of lists in the present experiment, it was
necessary to create functions to correspond to the data lists. After attempting
to develop functions which adequately represented the correlations discussed
in Section 4.1, it became clear that these functions were not able to capture
essential information, such as the density of values within a particular region.
Furthermore, not all correlations could be adequately described in terms of func-
tions. An example of a correlation which does not lend itself well to a function
representation is U and S as displayed in Fig. 4.3. This plot has a high density
of points near the origin and the range of values for U increases with S. It is not
clear what function could adequately describe this correlation.

Unlike ‘Play’, the ‘SoundNote’ function is well adapted to create sound
through the use of lists. This feature made it clearly preferable to ‘Play’.
However, there is considerably less flexibility in sound synthesis. ‘SoundNote’
uses MIDI-style sound synthesis, which means that notes will sound music-like.
Although there are certain perceptual advantages to music-like sounds, these
sounds cannot be altered or distorted. This restriction means that the tim-
bre remains constant or varies between certain music-like notes. Either of these
options places restrictions on its use as a perceptual resource. Another disadvan-
tage of ‘SoundNote’ is that it offers no option for multi-channel stereo output.
Therefore, unlike ‘Play,’ the sound synthesis cannot involve spatialization as
a perceptual resource. This restriction means that the sound cannot “move.”
However, perceptual dimensions such as duration, loudness, and pitch could rel-
atively easily be controlled. This made correlations between three parameters
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relatively easy to sonify.

5.4 Experimentation

Although 17 parameters exist, for the sake of simplicity, only the 10 observable
parameters were analyzed. Although these parameters are dependent upon the
theoretical parameters, the observables were the focus of the present experi-
ment. Visual 2-D plots are displayed and discussed in Section 4.1. To find the
correlations between the 10 observable parameters, 45 2-D plots were analyzed
(ie. m1-S, V-W).

The correlation between the parameters SVWm1, SVWmH± , TUXm1, and
TUXmH± were chosen for sonification. These groups were chosen firstly because
of the mutual correlations between the S,V, and W parameters as displayed in
Figs. 4.4 and 4.10, as well as the mutual correlations between T, U, and X as
displayed in Figs. 4.9, 4.8, and 4.7. The variable m1 was chosen because of its
importance as the least Higgs mass, the most likely particle to be observed at the
LHC. The variable mH± was chosen because of its interesting correlations with
the oblique parameters S and T as displayed in Figs. 4.16 and 4.17. Because
m1 lacks correlation with these variables the result was two sound files identical
in some respects but clearly different in others.

Without a specific time dependence of any of the variables, one must be
chosen as a substitute. Unlike visual display, auditory display must have an
explicit time relation. A sonic space must evolve in time or it cannot exist at
all. The the sonic evolution might be stagnant (i.e. a constant tone of arbitrary
duration), but a time relation must exist. The parameters S and T were chosen
as substitutes. Therefore, for the groups SVWm1 and SVWmH± , the values
of V, W, and m1 or mH± evolve in time proportionally to their relation with
S. Similarly, for the groups TUXm1 and TUXmH± , values of U, X, and m1 or
mH± evolve in time proportionally to their relation with T.

5.5 Using SuperCollider

As mentioned in Section 5.3 Mathematica proved insufficient as a tool for soni-
fication of the present data set. The program ‘SuperCollider’ offered the clear
choice for sonification, but was explored only after Mathematica because it re-
quired learning a new programming language. Using the help files, much was
learned. However, lack of programming experience and time constraints pro-
vided clear limitations to its use. Fortunately, Florian Grond of the Ambient
Intelligence Group at Bielefeld University offered an effective and compelling
prototype which was modified and used as the basis for all further sonification.

Lists which ordered SVWm1, SVWmH± , TUXm1, and TUXmH± with re-
spect to S and T were exported from Mathematica as comma-sperated value
(.csv) files. These files were imported by SuperCollider and each variable was
normalized independently to a value between 0 and 1. With these parameters in
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mind, an algorithm for sound synthesis was developed by Florian Grond using
the SuperCollider programming language. All of the resources of Table 5.1 were
employed. Therefore each element of the list (i.e. SVWm1) corresponded to a
sound of particular pitch, loudness, spatialization, timbre, duration, and time
scale.

Although many of the resources of Table 5.1 are relatively easy to explain,
timbre is complex and requires additional discussion. In the SuperCollider
programming language, ‘Unit Generators’ (UGens) are a fundamental tool for
sound synthesis. A simple example of a UGen is ‘SinOsc,’ a perfect sine wave.
Its arguments include frequency of oscillation, phase, and amplitude. These
arguments can be adjusted to vary with time with respect to some variable.

For the present experiment, sound synthesis involved the ‘Formant’ UGen.
This UGen generates a set of harmonics around a formant frequency at a given
fundamental frequency. Formants can be thought of as important to distin-
guishing between particular vowel sounds in human speech and singing. While
keeping a fundamental tone, vowels nevertheless sound different because they
have different formant frequencies. The arguments of the ‘Formant’ UGen in-
clude fundamental frequency, formant frequency, and pulse width frequency.
Although all three of these arguments were used, only formant frequency and
pulse width frequency were considered to correspond to timbre.

5.6 Sonification of the Oblique Parameters and
m1, mH±

Parameters from SVWm1, SVWmH± , TUXm1, and TUXmH± were mapped
onto the perceptual recourses from Table 5.1 in such a way as to maximize
perceptual comprehension of the data sets. This mapping is displayed in Table
5.2. A 3-D list plot generated in Mathematica can be viewed in Figs. 5.1 and
5.2. For sonification, the conditions for Eqn. 4.1 were further restricted so that

mH± < 100, and (5.1)
m1 < 100. (5.2)

This was to limit the number of extraneous data points. Recalling Figs. 4.13
and 4.19, small values for m1 and mH± create values for V, W, and X which
are radically different from the majority of points.

In each case, the difference in the level of correlation between S-m1 and mH±

or T-m1 and mH± was found to be easily perceivable. Although duration was
also used to express m1,mH± (see Table 5.2), the most clear difference in the
soundfiles was the change in timbre over time for S-mH± and T-mH± . There
was no characteristic change in timbre in either S-m1 or T-m1.

The difference in correlation between S-m1 and S-mH± is displayed in Figs.
4.11 and 4.16. The difference in correlation between T-m1 and T-mH± is dis-
played in Figs. 4.17 and 5.3. Because there is no correlation between T and m1,
Fig. 5.3 is not displayed in section 4.1. For Figs. 4.11, 4.16, 4.17, and 5.3, recall
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that SVWm1, SVWmH± , TUXm1, and TUXmH± were ordered with respect to
increasing values of S or T. The difference between SVW and TUX was not as
easy to differentiate, but careful listening could always indicate which was the
correct data set. The most obvious auditory difference between the data sets
is visually apparent in Figs. 5.1 and 5.2. There is a collection of points in the
lower right hand region of SVW that is not present in TUX.

Table 5.2: A table of perceptual resources used in the present experiment to
express data through sound. ‘Mapping’ refers to which parameter of the data
set TUX or SVW corresponds to the perceptual resource (i.e. S or T, V or U)

Perceptual Resource Mapping
Pitch U/V

Loudness X/W
Spatialization T/S

Timbre m1, mH±

Duration m1, mH±

Time Scale X/W

5.7 Perceptual Experiment

Understanding our auditory perception is absolutely necessary for effective soni-
fication. The mapping displayed in Table 5.2 was not believed to be the most
effective sonification of the present data set, but it was thought to be sufficient.
Despite similarities in the shape and contour of SVW and TUX (both occupy
roughly the same space), each sonification was differentiable. Especially clear
was the difference between the data sets SVWm1 and SVWmH± , or similarly,
TUXm1 and TUXmH± . The difference was attributed to the level of correlation
between S or T and m1 or mH .

Recognizing the importance of perception to effective sonification, a very
brief and simple perceptual experiment was undertaken with a group of under-
graduate students in the context of an introductory-level physics class. Although
a rigorous testing of mapping techniques would be desirable, given constraints
in time and experience, this level of perceptual testing was not undertaken for
the present experiment. The purpose of the experiment was to test the effective-
ness of mapping spatialization, pitch, and loudness onto particular parameters.
Therefore, only three parameters were necessary and in the interest of simplic-
ity, the data sets SVWm1, SVWmH± , TUXm1, and TUXmH± were reduced to
SVW and TUX. The six possible mappings of SVW and TUX are displayed in
Table 5.3.

Because the experiment was designed to take place within the timeframe of
10 minutes at the beginning of class, only two mappings from Table 5.3 were
selected, Mapping #2 and #6. These mappings were thought to be the most
effective of the six by myself and Dr. O’Neil. Using these mappings, four ≈ 20
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Figure 5.1: A plot of 343 values for S, V, and W with the original theoretical
upper bounds of Table 3.1. Color is being used to perceptually reinforce the X
parameter. Each parameter in this set was paired with a perceptual resources
from Table 5.1. This mapping is displayed in Table 5.2.
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Figure 5.2: A plot of 343 values for T, U, and X with the original theoretical
upper bounds of Table 3.1. Color is being used to perceptually reinforce the X
parameter. Each parameter in this set was paired with a perceptual resources
from Table 5.1. This mapping is displayed in Table 5.2.
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Figure 5.3: A plot of 343 values for T and m1 with the original theoretical
upper bounds of Table 3.1. Although there is no correlation between these two
parameters, there is a correlation between T and mH as displayed in Fig. 4.17.
Given the mappings of Table 5.2, TUXm1, and TUXmH± will therefore sound
different.

Table 5.3: A table of possible mappings of spatialization, pitch, and loudness
with the data sets SVW and TUX. For the perceptual experiment, only Mapping
#2 and #6 and were tested.

Parameter S, T V, U W, X
Mapping #1 Spatialization Pitch Loudness
Mapping #2 Spatialization Loudness Pitch
Mapping #3 Pitch Loudness Spatialization
Mapping #4 Pitch Spatialization Loudness
Mapping #5 Loudness Spatialization Pitch
Mapping #6 Loudness Pitch Spatialization

second sound files were created- two with SVW using mapping #2 and #6 and
two for TUX using mapping #2 and #6. For each, the timbre, duration, and
time scale were kept constant. The formant frequency and pulse width frequency
were kept at 100Hz each. Each note lasted 0.3 seconds and a new note struck
every 0.05 seconds.

After a brief introduction to the particle physics research and sonification,
Figs. 5.1 and 5.2 were displayed in front of the class. After explaining how SVW
and TUX would sound differently given the particular mapping technique, the
two sound files were played in random order and the class was asked which was
played first. This was done for both mapping #2 and #6. In the end out of 18
students in the class, 11 voted correctly for both #2 and #6.
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The classroom was equipped with stereo speakers so spatialization was thought
to be effectively communicated. However, there may be differences on account
of where a student was sitting in the classroom. Furthermore, there is no con-
sideration of the motivation of each student to provide the correct answer or
listen carefully. Without considering these variables and others perhaps uncon-
sidered, our results may not be significant. Nevertheless, it was surprising that
a clear majority of the class voted correctly twice.

Given the small sample, it may be that this result was due to chance. If a
group of 18 students voted randomly, there is a 24% chance that 11 or more
would guess correctly. This result comes from the binomial expansion:

P(11 or more) =
18!
218

18∑
y=11

1
y!(18− y)!

. (5.3)

Although these results lack the rigor of a psychology experiment, they nev-
ertheless seem to say that neither mapping #2 or #6 were more effective. In
the future, it would be interesting to note which students voted correctly each
time and why. It would also be worthwhile to compare different levels of physics
students to see if experience with visual graphs had any effect on correct an-
swers. For example, Fig. 5.1 has three red points in the upper region of the
graph. Could it be that these three extreme points made the correct answer
obvious for some?



Chapter 6

Conclusions & Future Work

6.1 Conclusion

Theoretical calculations involving the basis-independent CP-violating Two-Higgs
Doublet Model revealed correlations between the oblique parameters and the five
Higgs particles m1,2,3,H± . Changing the theoretical bounds of Z1, Re(Z6e

−iθ23),
Im(Z6e

−iθ23), Re(Z5e
−2iθ23), Im(Z5e

−2iθ23), Z34, and Z3 by factors of 1
10 , 1

2 , 2,
and 10 were found to change the range of T, V, W, X and m1,2,3,H± . However,
these adjustments did not change the general correlations any of the parameters
except in the case of V and W. The correlation of V and W was proven to be
an artifact of the theoretical upper bounds and was lost at some point between
an adjustment factor of 2 and 10. A disproportionate number of correlations
exist between the oblique parameters and mH± compared to m1,2,3.

Sonification was proven to be effective as a means to display correlated data
sets involving four parameters (SVWm1, SVWmH± , TUXm1, and TUXmH±).
The computer program SuperCollider was found to be clearly preferable to
Mathematica as a tool for sonification given this particular data set. A brief
perceptual experiment revealed that particular mappings involving spatializa-
tion, pitch, and loudness were not perceptually more efficient.

6.2 Future Work

The relationships between the seven theoretical parameters Z1, Re(Z6e
−iθ23),

Im(Z6e
−iθ23), Re(Z5e

−2iθ23), Im(Z5e
−2iθ23), Z34, and Z3 and the 10 observable

parameters S, T, U, V, W, X, m1,2,3,H± should be explored and analyzed for
correlations. Although their importance might be secondary to the observables,
the present experiment is not complete without this additional analysis.

The perceptual experiment performed in this project was critically limited by
time constraints. A more thorough and rigorous experiment would be valuable if
not a necessity for better sonification. Further research and inquiry into auditory

51
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perception would provide a more concrete understanding and application of the
perceptual resources of Table 5.1.

The current experiment was also limited by experience with SuperCollider
and Sonification in general. With more time and experience, more sophisticated
sonifications could be created. In addition to displaying our data better, this
level of sophistication would be consistent with that of other researchers.

6.3 Ethical Considerations

It is important to examine the potential risks of research so that unnecessary
harm is avoided. The current research has no foreseeable risk of direct or indirect
harm. Considering these ethical implications, this research is found it to be
acceptable for publication and further inquiry.
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