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ABSTRACT
Acquisition of instrumental gestures in musical performances
is an important task used in different fields ranging from
acoustics and sound synthesis to motor learning or electroa-
coustic performances. The most common approach for ac-
quiring gestures is by means of a sensing system. The direct
measurement involves the use of usually expensive sensors
with some degree of intrusivity and generally entails com-
plex setups. Indirect acquisition is based on the processing
of the audio signal and it is usually informed on acousti-
cal or physical properties of the sound or sound production
mechanism. In this paper we present an indirect acquisi-
tion method of violin controls from an audio signal based on
learning of empirical data that is previously collected with
a highly accurate sensing system. The learning consists of
training of statistical models with a database of multimodal
data from violin performances. The database includes au-
dio spectral features and instrumental controls (bow tilt,
bow force, bow velocity, bowing distance to the bridge and
played string) and is designed to sample most part of the
violin performance control space. We expect that once the
indirect acquisition system is trained, no sensors should be
required, so the indirect acquisition becomes a low-cost and
non-intrusive acquisition method.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing ; I.6.1 [Simulation and modelling]: Model Validation
and Analisys; J.5 [Arts and Humanities]: Music

General Terms
Experimentation, Algorithms
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1. INTRODUCTION
During a musical performance a performer transforms a

musical idea or score into a sequence of instrumental ges-
tures that control the instrument, which in turn, produces
the sound. In this manner, the musical idea is transformed
into different representation domains: the musical score, the
gesture and the sound domain (see Figure 1). In the field
of music computing, the translation from score to gestures
or sound is known as synthesis (gesture and sound synthe-
sis), and the other way round is called (music) information
retrieval (IR). In this work, we are predicting instrumental
controls (i.e. gesture domain) from an audio recording and
we denominate it ‘performance information retrieval’.

Score Gestures Sound 

Performance synthesis 

Performance IR 

Figure 1: Typical representation domains for a musi-

cal performance: score, gestures and sound. Prediction

of sound (or gestures) from a musical score is known

as sound (or gesture) synthesis and extraction of infor-

mation from an audio signal is commonly referred to as

music information retrieval. In this work, we are pre-

dicting instrumental controls (i.e. gesture domain) from

an audio recording and we denominate it ‘performance

information retrieval’.

The acquisition of musical gestures and particularly of in-
strumental gestures, from a musical performance is a field
of increasing interest with applications in performance tran-
scription [23], performance modelling [11], mapping strate-
gies between gestures and sound [22] or sound synthesis [14]
among others. The direct way for the acquisition of such
gestures is by measurement of physical variables with sen-
sors on the instrument or on the performer and we have seen
an important development of technologies related to sensors
and gestural interfaces in the recent years. The direct mea-
surement involves the use of usually expensive sensors with
some degree of intrusivity and generally entails complex se-
tups.

An alternative way is by indirect acquisition from analy-
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sis of an audio signal as it is our case. Indirect acquisition
has a handful of advantages such as the simplicity and non-
expensiveness of the acquisition, the possibility of extracting
features from old audio recordings and it is a not intrusive
technique. The main difficulty is to be able to build robust
detection algorithms to be as accurate as the sensors. There
are different approaches for indirect acquisition from audio
signal, all of them having in common their need for measure-
ments and observation previous to the acquisition. A typical
approach is by informing the audio analysis with physic-
acoustical properties of the instruments (physically based),
as for example a technique for estimating the reed pulse from
the pressure signal recorded at the bell of a clarinet [17] or
the use of digital waveguides to exploit the asymmetry of the
guitar body’s admittance in order to provide an estimate of
the plucking angle of release [16]. Other common approach
is based on previous knowledge about the perceptual influ-
ence of instrumental gestures on the sound (perceptually
based). For instance, overblown flute fingerings can be de-
tected from the residual noise spectrum [20]. In the case of
the violin, there are reports for the extraction of the notes,
the string it was played on, whether the instrument was
bowed or plucked and the location of the bowing or pluck-
ing point [9]. For the bass guitar, the plucked string [1] and
the plucking style [2] can be automatically extracted. Also
mixed approaches combining physical and perceptual knowl-
edge there can be found, as in [18], where authors estimate
the plucking position in guitar playing. Finally, there can
be found methods based on data mining of empirical data
without using any previous knowledge. For instance, blow-
ing pressure in a recorder can be estimated from spectral
descriptors (pitch and MFCCs)[21] by learning data with
feed-forward neural networks and also flute fingerings corre-
sponding to harmonic notes can be extracted [8].

In this paper we present a method to extract gestural
information from an audio signal. More specifically, we are
extracting violin instrumental controls, namely, string being
played, finger position in the string being played, bowing
force, bowing velocity, bowing distance to the bridge and
bow tilt. The research is based on the mapping study from
gestural to sound parameters by Perez [14]. Analogously,
here we propose to do the mapping in the opposite direction,
that is, from sound features to control parameters. In fact,
it should be easier to predict a few control parameters from
a large set of spectral parameters than the other way round.

The main contribution of this work is that we are pre-
dicting continuous instrumental controls, including bowing
controls, which are directly related to the sound production.
In the literature we find methods able to acquire discrete
basic control parameters such as pitch, fingering, plucking
position, string being played [9], bowing technique [3] or vi-
brato features [10].

In this work, we are using our own developed sensing sys-
tem to collect control and sound signals [12]. A clear advan-
tage of our approach is the use of sensors for the learning
as in [19] as we do not rely on previous knowledge or mea-
surements from others and large amounts of data can be
collected. Once the acquisition is learned we do not need
the sensors anymore.

The training is based on machine learning techniques,
among them Tree-based algorithms and Multilayer Percep-
trons. We used the WEKA [7] framework for the learning
process.

2. LEARNING DATABASE
The learning process it based on the acquisition of data

based on sensors. A set of musical scores was designed with
the aim of sampling most part of the violin controls space
(i.e. combinations of bowing force, velocity, and bow dis-
tance to the bridge, at different strings). Performances of the
scores are recorded with a measuring system able to capture
gestural and audio data. This data is aligned and segmented
into notes and a set of spectral and gestural descriptors is ex-
tracted to train the models. The dataset consists of around
9x105 analyzed temporal frames.

Audio is recorded by means of a commercial pickup con-
sisting of a transducer built into the bridge (Yamaha VNP11)
instead of a microphone, that is, we are analyzing the sig-
nal captured by that specific pickup. The use of a pickup
provides some advantages: 1) it is more convenient for the
data collection as we do not have to be concerned with mi-
crophone or room effects (position, direction, orientation,
reverberation, etc.); and 2) we obtain a clean signal that
is close to the string vibration, minimizing the violin body
resonances, which allows for more accurate prediction.

Motion data was collected by means of a commercial 3D
tracking system 2 that consists of an electro-magnetic field
source and a set of small sensors. It tracks sensor position
and orientation inside the magnetic field, with the coordi-
nate axes being given by the source. The sample rate is
240 Hz and accuracy around 8 ∗ 10−4 m and 0.15 deg. Bow-
ing force was measured with strain gages fixed on a metallic
surface under the hair ribbon in the frog of the bow and
capture the strain of the hairs. More details related to the
setup and calibration are detailed in [5, 6, 12].

3. FEATURE EXTRACTION

3.1 Audio Features
In the first stage of the analysis of the data, basic sound

parameters are extracted from the acoustic signal, through
frequency-domain analysis. The sample rate of the record-
ings is 44100 Hz and the analysis window is a Blackman-
Harris window of size 2048 samples. The data acquisition
rate is determined by the Polhemus system (240 Hz). Each
instance in the dataset is represented by a vector containing
all the spectral and control features in a temporal frame.

Two sets of spectral features are being computed and com-
pared. Both sets contain additionally the fundamental fre-
quency in Hz (pitch), which is estimated from the signal.
The first set is composed of low-level parameters consisting
of harmonic and residual energy in frequency bands com-
puted as follows: the audio signal is separated into harmonic
and residual components in the frequency domain, then a
spectral envelope is estimated for both component and fi-
nally, the energy of the envelopes is computed in 40 overlap-
ping frequency bands with centers following a logarithmic
scale. The selection of the bands is inspired by perceptual
models such as the Mel or Bark scale. More details are found
in [14].

The second set of descriptors is defined in order to take
advantage of the existing knowledge on the effect of the
variation of the instrumental gesture parameters on tim-
bre [14, 15, 4]. This set of parameters include widely used

1http://www.yamaha.co.jp/english/product/strings/v pickup/index.html
2http://www.polhemus.com/?page=Motion Liberty
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spectral features [13], among them, spectral centroid, high-
frequency-content (hfc), zerocrossing rate, kurtosis, skew-
ness and spread of bark bands, spectral energy, spectral
energy in four bands (high, low, middle-high, middle-low),
spectral flatness, spectral rolloff, spectral strongpeak, zero-
crossing rate, inharmonicity, odd-to-even harmonic energy
ratio and tristimulus.

It is known [14, 15, 4] that an increase of bowing force
boosts high frequency, so it is affects the spectral decay,
which is correlated to the features spectral flatness, spec-
tral rolloff, spectral centroid, and the relative distribution
of energy in bands. An increment of bowing velocity in-
creases energy independently of frequency, so it is strongly
correlated with the spectral energy. The main role of the
bowing distance to the bridge is to determine the range of
bowing force and velocity. Regarding the bow tilt, it is very
related to dynamics and also is seems to be highly correlated
to the bowing transversal position 3. The features tristimu-
lus, odd-to-even-harmonics, inharmonicity and zero-crossing
rate seem to have little or no correlation with the gestures
and were discarded in many of the trainings.

3.2 Instrumental controls
The instrumental controls that we expect to extract from

the audio, include the parameters that more influence the
sound produced as found in the classic literature about bowed
strings [4, 15] (i.e. bow force, bow velocity and bowing dis-
tance to the bridge) as well as the string being played, the
finger position (on the playing string) and the bow tilt. The
bowing parameter’s computation is based on an initial esti-
mation of the string being played as explained in [12]:

• velocity (vB). This parameter is the bowing speed in
m/s in absolute values. It is computed as the abso-
lute value of the smoothed derivative of the bow po-
sition (xB), vB = | d

dt
xB |. Bowing speed is positive

when playing downbow and negative when playing up-
bow, however bowing direction should not affect the
sound [4]. In this study we use the absolute values of
the bowing speed to make the learning independent of
the bowing direction. This feature is highly correlated
with sound energy [14].

• force (fB). This parameter is the force in Newtons
exerted by the bow on the string. It is obtained with
strain gages as explained in [5]. The main effect of the
force on the sound is that is boosts high frequencies,
so it is highly correlated with the energy, the spectral
centroid and the spectral decay [14].

• tilt (tB). The tilt is the angle in degrees between the
plane defined by the bow hairs and the string being
bowed. It is a meassure very correlated to the width
of bow-hairs in contact with the string and in perfor-
mance terms it is very correlated to dynamics. In our
database it is also highly correlated on the bowing po-
sition 3 [14] . This width is very difficult to measure,
but can be indirectly estimated by measuring the bow
tilt.

3 The training database was recorded by a single violinist, so
the correlation between the tilt and the bow position could be a
particularity of that performer.

• fingerpos (xF ). Finger position is the length of the
playing string (in cm) between the bridge and the fin-
ger stopping it. It is obtained as

xF =
Lsfs
f0

, (1)

where Ls is the string length and fs is the fundamental
frequency in Hz of the open string being played.

• beta (β). This parameter represents the bow-bridge
distance relative to string-length in vibration (stop-
ping a string with the finger makes it shorter). It is
calculated as

β = xBB/(Ls − xF ), (2)

where Ls is the length of the string, xF is the position
of the finger in the playing string and xBB is the bow-
bridge distance, that is, the length (cm) of the segment
of the playing string between the bridge and the bow
hairs.

4. DATA MINING
Two different training datasets were compared for the

learning of the instrumental controls with different types of
classifiers. The first dataset is based on the low-level set of
descriptors (40 harmonic and 40 residual energy bands plus
the pitch). The second approach makes use of the percep-
tual descriptors set plus the pitch. The training is based on
widely known machine learning techniques, obtaining higher
prediction results with pruned tree-based algorithms (J48,
Random Forest) and Multilayer Perceptrons (MP) with one
hidden layer containing half the neurons as the number of
inputs. We used the WEKA [7] framework for the learning
process. The scheme for the prediction of the instrumental
controls is shown in Figure 2 and is as follows (numbering
refers to steps in the figure): There are 17 models, the first
one ‘String prediction’ (step 1) predicts the playing string
given the spectral features as input. After the string predic-
tion a hysteresis function is applied in order to avoid rapid
fluctuations in the string prediction caused by an error (i.e.
a change in the string that last only a few consecutive frames
and then goes back to the previous string value indicates an
error in the prediction). This smoothness is making the tem-
poral evolution of the prediction stable and corrects most of
the errors. This is shown in Figure 3. In blue is the predic-
tion of the model, in black with a thick-dashed line is the
corrected prediction after the hysteresis and in red we can
observe the actual value of the string. The function is imple-
mented as an averaging filter of size 25 samples (it computes
the closest integer of the average). Once the string is pre-
dicted, finger position is directly computed from the pitch
(step 2) as described in equation 1. The blocks in the fig-
ure labeled String1 to String4 (steps 3,4,5,6), represent each
four models (so, in total the 16 remaining models), which
predict the four remaining instrumental controls (force, ve-
locity, beta and tilt) given a specific string.

5. RESULTS
Here we present the numerical results for the prediction

of the models, comparing the two training datasets and dif-
ferent classifiers. A summary of the results for the best per-
forming classifier (MP) is shown in table 1. Models trained
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Figure 2: Schema for the prediction of the instrumental controls. Audio is analyzed in a frame-by-frame basis and

spectral features computed. Then, the bowed string is predicted (1) and corrected by means of a hysteresis function

from which the finger position is computed (2). Finally, force, velocity, beta and tilt are predicted (3, 4, 5 and 6) using

as inputs the spectral features and the string predicted in step (1).

with the low-level descriptors show higher prediction rates
than the perceptually informed. For the correct interpreta-
tion of the results some details have to be taken into account:
1) the results correspond to isolated models, so for an error
estimation of the whole process of prediction (Figure 2), we
have to take into account the error propagation (i.e. if there
is an error in the string extraction, then the other 4 pre-
dicted controls in the following steps will have an error too);
2) the high prediction rate is due to the high percentage of
frames from note sustains, where prediction works better;
3) the models are static in the sense that they do not take
into account time evolution of the parameters, except for
the hysteresis function applied to the string prediction; and
4) the controls are predicted independently, although it is
known that there is a correlation among them [15].

Prediction accuracy for the string is given in percentage of
correctly classified instances (temporal frames) and for the
other controls we indicate the correlation coefficient. Mod-
els for velocity, force, beta and tilt correspond to a specific
string, so the indicated correlation values correspond to the
average among the four strings. The evaluation is computed
as an average over 10-folds of the training data.

Applying an attribute selection before the training, e.g.
Principal Component Analysis, is a convenient way to make
models simpler (e.g. from 40 energy bands we obtain a set of
5 eigenvectors, covering 95% of the data variance). However,
prediction result rates decrease.

An graphical example of the instrumental control predic-
tion for a performance of the preludium (two first phrases)
of the Czardas by Monti is shown in Figures 3 and 4. Fin-
ger position is not shown as its prediction is exactly as the
string prediction if we assume that pitch computation is al-
ways correct.

• string. The highest string prediction results are ob-
tained with the low-level dataset descriptors (including
the pitch) by means of a MP with a 98% of correctly
classified instances. If only harmonic bands are used
(and pitch) we obtain a rate of 97% and if only resid-
ual bands (and pitch) we achieve the 97.74%. With a
Random Forest algorithm we obtain 97.34% and with
a J48-Tree 96.1%. Using the perceptual features train-

ing dataset (and pitch) with a MP we obtain a 90%.
The most relevant perceptual features for the string
prediction are the spectral centroid, the spectral flat-
ness and the hfc, which can correctly classify a 89% of
the instances.

• fingerpos. Finger position on the played string is ob-
tained as described in equation 1, so prediction results
are the same as for the string, assuming that pitch is
always correct.

• velocity. Prediction of the velocity with the low-level
training dataset (harmonic and residual bands plus
pitch for a specific string) and a MP classifier achieves
an average (among the 4 strings) correlation coefficient
of 95%. Using only harmonic bands and pitch we can
get a 92% and with only the residual bands a 90%. If
we predict the signed velocity (sing indicating the di-
rection of the bow) the prediction rate decreases until
a 82%. By using perceptual features (spectral cen-
troid, spectral flatness, hfc and spectral energy) as the
training dataset with a MP we can reach the 87%.

• force. Prediction with the low-level training set and a
MP classifier we can achieve an average correlation co-
efficient of 93.5 %. If we only train with the harmonic
bands (and pitch) only 83% is reached and with only
the residual bands a 84%. If the training is done with
the perceptual attributes, we obtain only a 80%.

• beta. With the low-level training set and a MP classi-
fier we obtain a correlation coefficient of 97.8%. With
only harmonic bands 88% and only taking into account
the residual 96%. By training with perceptual param-
eters we decrease to a 88%.

• tilt. Based on the low-level training set and a MP clas-
sifier we obtain a correlation coefficient of 89%. By
using only the harmonic bands the correlation is the
73% and with only the residual bands a 65%. Tilt pre-
diction can be reinforced by including in the training
dataset the bow position, obtaining until a 95%. Bow
position can be computed as the integral of the velocity
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plus a constant representing the position at time zero
(the start) but it is not yet implemented. By training
with perceptual parameters we obtain around 50% and
if we reinforce with the bow position, we can achieve
a 85%

Table 1: Prediction rates for the models isolated with

a MP classifier. String rate is in percentage of correctly

classified instances and for the rest of controls the corre-

lation coefficient is indicated. Finger position prediction

is equal to the string assuming that pitch is always cor-

rect. Tilt prediction rate is for the model reinforced with

bowing position in the training.

Control Low-level Perceptual
string, fingerpos 98% 89%
velocity 95% 87%
force 93.5 % 80%
beta 97.8% 88%
tilt 95% 85%
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Figure 3: string extraction (blue) of a recording of the

preludium of the Czardas by Monti, correction after the

hysteresis function (thick-black-dashed line) and actual

string (red). The hysteresis function helps having a more

stable and accurate string prediction.

6. CONCLUSIONS
We presented a method to extract violin instrumental con-

trols from an audio signal. The extraction is based on learn-
ing by means of direct measurement with sensors. The ex-
tracted descriptors are bowing velocity, bowing force, bow
tilt, bowing distance to the bridge, string being played and
finger position in the played string. The training is carried
out by commonly used machine learning techniques. Two
types of spectral training descriptors are compared, low-level
spectral descriptors and a set of higher level (perceptual) de-
scriptors on which the instrumental controls have a known
direct effect. The combination of low-level descriptors with
pitch and multilayer perceptron as the classifier seems to
give the better prediction results.

Sound analysis is based on a signal captured with a violin
pickup, which is a signal close to string vibration and is al-
most not affected by the resonances of the violin body. The
main application of this work is for the indirect acquisition
of violin controls of an already trained violin without the
need for the sensors. Applications of this work are many,

for instance, as a tool for score transcription, during artis-
tic performances or for the acquisition of gestures in special
environments where the possibility of having the sensors is
not possible (e.g. cost, sensor interferences with the environ-
ment, availability). Automatic acquisition from any violin
recording would be more difficult as the specific violin and
recording would have particular spectral properties so there
should be necessary a calibration.

Some steps for the future are 1) study a similar procedure
with acoustic recordings, 2) explore time-aware algorithms
such as feedback networks, Markov models or dynamic pro-
gramming that would bring out more reliable and stable
models and 3) take into account the interdependence of the
predicted variables.
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