A Flexible Tool for the Visualization and
Manipulation of Musical Mapping Networks

Aaron Henry Krajesk:

Department of Music Technology
Schulich School of Music, McGill University
Montreal, Canada

December 2013

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts.

(© 2013 Aaron Henry Krajeski

2013/12/12

Abstract

Most digital musical instruments (DMIs) gather gestural input from musicians by way
of electronic sensors and transform these data into sound through separate synthesis en-
gines. The mapping of control inputs to synthesis parameters is arbitrary, multi-faceted
and extremely important for the effectiveness of DMIs. Software tools exist to aid in
this process and attempt to render the task of musical mapping more transparent, swift
and configurable. This thesis presents MapperGUI, a cross-platform graphical tool for the
manipulation of musical mapping networks.

The libmapper software library, developed at the Input Devices and Music Interaction
Laboratory, creates a standard framework for DMIs to communicate data on a distributed
network and map their signals collaboratively in real-time. MapperGUI presents a graphical
user interface for libmapper networks, allowing non-expert users to manipulate the text-
based system. The interface aims to be flexible, such that it can accommodate the vast
array of musical networks and tasks that must be performed when mapping. To this
end, it provides multiple independent visualizations and interaction modes within a single
framework.

This document explores some of the issues challenging the field of musical mapping and
describes the motivations behind the MapperGUI project in this context. Relevant research
in the fields of data visualization and interface design is summarized and applied to the task
of creating a graphical user interface for libmapper networks. Prior graphical interfaces for
libmapper are examined for successful features that can be incorporated into MapperGUI.
Specific implementation challenges and features of the final program are described. Insight
gained from interviews with users of MapperGUI is presented, along with future work and
possible extensions for the interface.

MapperGUTI is available for free download as a standalone application at www.1libmapper.
org/downloads. All code is open-source and can be accessed at https://github.com/

mysteryDate/webmapper.

ii

Résumé

La plupart des instruments de musique numériques (IMN) assemble les données gestuelles
des musiciens par des capteurs électroniques et transforme ces données en son a travers
de programmes de synthese séparés. Le mappage d’entrées de commandes aux parametres
de synthese est arbitraire, a multiples facettes et extrémement important pour l'efficacité
des IMN. Les outils logiciels existent pour aider ce processus et tentent de rendre la tache
du mappage musical plus transparente, rapide et configurable. Cette these présente Map-
perGUI, un outil graphique multiplateforme pour la manipulation des réseaux de mappage
musicaux.

La bibliotheque logiciel libmapper, développée au Input Devices and Music Interac-
tion Laboratory, crée un cadre standard pour que les IMN communiquent les données
sur un réseau réparti et map leurs signaux en collaboration en temps réel. MapperGUI
présente une interface utilisateur pour les réseaux libmapper, ce qui permet aux utilisa-
teurs non-experts de manipuler ce systeme textuel. L’interface a pour but d’étre flexible,
en sorte qu’elle puisse accommoder la vaste gamme de réseaux et de taches musicales qui
doivent étre complétées en mappant. A cette fin, elle offre plusieurs visualisations et modes
d’interactions indépendantes a l'intérieur d’un seul cadre.

Ce document porte sur quelques un des enjeux qui affrontent le domaine du mappage
musical et décrit les motivations qui sous-tendent le projet MapperGUI dans ce contexte.
De la recherche pertinente dans les domaines de la visualisation des données et la concep-
tion d’interface sont résumées et appliquées a la tache de créer une interface d’utilisateur
graphique pour les réseaux de libmapper. Des interfaces graphiques précédentes pour
libmapper sont examinées pour leurs caractéristiques réussies qui peuvent étre incorporées
a MapperGUI. Des difficultés de mise en ceuvre précises et des caractéristiques du pro-
gramme final sont décrites. Les connaissances tirées dentrevues avec des utilisateurs de
MapperGUI sont présentées, ainsi que des travaux futurs et des extensions possibles pour
I'interface.

MapperGUI est disponible pour téléchargement gratuit en tant qu’application autonome
a www.libmapper.org/downloads. Tout le code est code source libre et peut étre accédé

a https://github.com/mysteryDate/webmapper.

iii

Acknowledgments

Many thanks to my thesis advisor, Professor Marcelo M. Wanderley, who directed me
towards this project and generously offered his boundless expertise during my numerous
bouts of confusion.

The work presented here would certainly not exist if not for the thousands of hours
spent developing libmapper itself, not to mention the prior graphical user interfaces for
libmapper from which MapperGUI inherited the bulk of its features. In this regard I
must effusively thank Joseph Malloch and Stephen Sinclair for their tremendous efforts
and helpful answers, without which I would have had nowhere to start. I also would like
to thank Vijay Ruraraju and his Vizmapper interface from which I drew inspiration.

Thanks to MapperGUI’s users, notably Hakon Knutzen, Mailis Rodrigues, Clayton
Mamedes and Julie René, for they provided feedback which crucially guided the design
process. Their clever projects expanded MapperGUI’s use-cases in ways [myself could
have never imagined.

Finally, I would like to Caitlin Stall-Paquet for lending her expertise in proofreading

and French translation for only the price of a few dinners.

iv

Contents

1 Introduction & Motivation 1
1.1 Context and Motivation L. 2
1.2 Project Overview 4
1.3 Thesis Overview e 5
1.4 Contributions 5

2 Background
2.1 Mapping

2.1.1 Mapping theoryo

2.1.2 Mapping for digital musical instruments 11
2.2 Data Visualization and User Interface Design. 14

2.2.1 Graphical dimensionso 15

2.2.2 Relevant visualization techniques and systems 17

2.2.3 The model-view-controller architecture 20
2.3 SUMMATY v v e 21

3 libmapper 22
3.1 Open Sound Control and libmapper Syntax 23
3.2 Structure of libmapper Networks 25
3.3 Connection Properties 26
3.4 libmapper Bindings 28
3.5 Prior Interfaces for libmapper 29

3.50.1 Maxmapper 29
3.0.2 Vizmapper 30

3.5.3 Webmapper 32

Contents \%
3.6 Evaluation of libmapper Variables as Visual Data 33
3.7 Summary ... e 35
Design & Implementation 36
4.1 Development of a Flexible System 36

4.1.1 MVC architecture 37
4.1.2 Top toolbar 40
4.2 Integration of Interface Features 41
4.2.1 Structure of ListView 42
4.2.2 Display libmapper metadata 0L, 44
4.2.3 Locating devices and signals 44
424 Visual feedback oo 45
4.2.5 Improvements to user interaction 46
4.3 Extension of Control and Visual Elements 49
4.3.1 Multiple selection 49
4.3.2 Accommodating varying window sizes 50
4.3.3 Visual redesign L 50
4.3.4 Alternate views 53
4.4 Other GUI Features 55
4.4.1 Saving & loading oL 55
4.4.2 Creation of a standalone & distribution 56
4.5 SUMMATY o v o e 57
Applications & Discussion 58
5.1 User Feedback 58
5.1.1 General feedback 59
5.1.2 Saving & loadingo 60
5.1.3 Reliability & responsiveness 60
5.1.4 Effectiveness of alternate views, 61
5.2 Improving Program Responsiveness 62
5.2.1 Rate limiting functions 62
5.3 Comparison to Similar Interfaces 64
5.4 Summary & Evaluation of Goals 66

Contents vi
6 Conclusions & Future Work 68
6.1 Summary and Conclusions 68
6.2 Future Work 69
6.2.1 Unimplemented features 69

6.2.2 Possible extensionso 70
References 71

vii

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4
4.5

4.6

A sample of libmapper code L

The function described in Equation 2.1 graphed in two dimensions.

Equation 2.2 projected on the Cartesian plane.
Examples of the final two types of mapping
The four mapping classes
Cleveland and McGill’s rankings for quantitative perceptual tasks.
An example of Tufte’s 1 +1 =3 noise
A dense interconnected network displayed with and without hierarchical edge
bundling techniques

An illustration of Krasner and Pope’s MVC structure

A simple libmapper networko
The Maxmapper interface
The Vizmapper interface

The Webmapper interface

Structure of MapperGUI. Blue arrows show propagation of network changes,
while dashed arrows denote messages requesting a network change.
The upper toolbar
ListView with all devices selected
ListView with device testsend.l selected
Functionality of hiding unconnected elements on a network with many de-
vices and few links.

Multiple selection and row striping in ListView.

10
15
18

19
20

26
30
31
32

38
40
42
43

List of Figures viii

4.7
4.8
4.9

4.10
4.11

4.12

5.1
5.2
5.3

Draggable links and connections. 48
Simultaneous connection of multiple signals 49
Resizing the ListView window. Rows condense, scroll bars appear and the

top menu collapses in the smaller version. 51
ListView before visual redesign 52
GridView. The grid on the left shows network devices and the grid on the

right displays signals and connections. 53
HiveView o o 95
[lustration of a delayed function. 63
STEIM’s JunXion software 64

The OSCulator interface 65

List of Tables

2.1 An example of key/value pairs (countries and currencies)
2.2 Bertin’s graphical relationships L.
2.3 Mackinlay’s graphical rankingso

3.1 libmapper metadata types Lo

4.1 Metadata available in Webmapper versus ListView
4.2 Shortcut keys in ListView 0oL

List of Acronyms

DMI
GUI
IDMIL
API
SWIG
0OSC
MVC
HTTP
HTML
CSS
URL

Digital Musical Instrument

Graphical User Interface

Input Devices and Music Interaction Laboratory
Application Programming Interface

Simplified Wrapper and Interface Generator
Open Sound Control

Model View Controller

HyperText Transfer Protocol

HyperText Markup Language

Cascading Style Sheet

Uniform Resource Locater

Chapter 1
Introduction & Motivation

“In order that our tools, and their uses, develop effectively: (A) we shall have
to give still more attention to doing the approximately right, rather than the

exactly wrong...” (Tuckey 1965)

Throughout the vast majority of human history the term “musical instrument” has
signified both the physical object with which the musician interacted and the direct source
of the sound created: a violin with vibrating strings, a reeded saxophone, a timpani with
its membrane, etc. With the advent of electronic sound in the late 19*" century, it became
possible for interactive objects to be separated from the sound producing devices they
control (Chadabe 2000). As technological development progressed, so did the capacity to
divide musical instruments into independent parts. With digitization it is now not only
possible to arbitrarily connect a control element to any sound synthesis dimension, but also
to modify this association according to the whims of the user. Since mechanical linkages
are no longer necessary in the design of musical instruments, control surfaces can, and often
do, take on a variety of wild and arbitrary shapes and modes of interaction.® All that is
necessary for this process is for control devices to output some kind of electronic signal that
other, sound-producing instruments can accept. With no obvious means of implementation,
the success or failure of these new digital musical instruments (DMIs) often depends on
how artfully their output signals are “mapped” to synthesis parameters.

More and more frequently, the mapping itself becomes a part of the expressive element

nternational Conference on New Interfaces for Musical Expression. [Online]. Available: http://www.
nime.org/. Accessed June 23, 2013.

1 Introduction & Motivation 2

of a musical work (Hunt and Kirk 2000), as it associates itself with both composition and
performance with certain DMIs. Thus is becomes necessary for mapping to be dynamic
and interactive: sometimes poured over in composition studios, or sometimes edited mid-
piece. Musicians are not necessarily computer programmers, thus ideally the act of mapping
should not require computer expertise. This means that on top of the low-level layer of
interactive mapping (simply instructing a machine to connect signals to others in specific
ways), there needs to exist an interface to make such an activity easy, logical, intuitive and
in line with the artistic process.

As the actual act of mapping is as expansive and nebulous as the instruments it hopes
to assist, the design of such a mapping interface presents many interesting challenges. Due
to the tremendously wide variety of possible use cases, several seemingly contradictory
goals emerge: What is the best way to visually represent complex musical networks while
simultaneously allowing for the user to easily manipulate them? How can systems with
many devices and signals be well represented while still allowing in-depth control of small
networks? How can an interface be transparent to non-technical users while still accom-

modating all possible functionality that advanced users may wish to use?

1.1 Context and Motivation

The world of digital musical instruments is still dominated by keyboard type input devices.
Though many novel DMIs currently exist (and many more are being created) these devices
are usually unique and often difficult to use without their creator being present (Cook
2009). Since mapping is such an important feature of DMIs, a means of transparently
editing mappings could inspire more musicians to use novel musical controllers. In response
to this challenge, libmapper, a tool for collaborative mapping, was created at the Input
Devices and Music Interaction Laboratory (IDMIL).

In its most basic state, libmapper takes the form of an application programming in-
terface (API). APIs are primarily a means for different pieces of computer software to
communicate with one another. The only possible way to communicate directly with the
libmapper API is through coded text. For example, the code Figure 1.1 causes a synthe-
sizer to announce itself and begin communicating with other devices on a libmapper-enabled
network (Malloch et al. 2008).

This is obviously inaccessible to users who do not have the time or desire to read

1 Introduction & Motivation 3

#include <mapper.h>

mapper_admin_init();

my_admin = mapper_admin_new("tester", MAPPER_DEVICE_SYNTH, 8000);
mapper_admin_input_add(my_admin, "/test/input","i"))
mapper_admin_input_add(my_admin, "/test/another_input","f"))

// Loop until port and identifier ordinal are allocated.

while (!my_admin->port.locked || !my_admin->ordinal.locked)

{
usleep(10000); // wait 10 ms
mapper_admin_poll (my_admin) ;

}
for ()
{
usleep(10000) ;

mapper_admin_poll (my_admin) ;
}

Fig. 1.1 A sample of libmapper code

through documentation files, or those who have no knowledge of programming semantics.
A steep learning curve is especially a problem for a network tool like libmapper: because
it is primarily a means of communication between instruments, it can only be successful
if it is widely adopted. A libmapper-enabled controller will only be useful if many high
quality libmapper synthesizers exist. In turn, synthesizer makers will only have incentive
to incorporate libmapper into their designs if there are already controllers that use the
system.

An API can be contrasted with a graphical user interface (GUI), an interface that con-
tains abstractions on top of the raw code. These abstractions can be features like buttons,
menus, visual representations of data, etc. In general, GUIs are designed to be familiar
to those who have used digital devices in the past, and thus easy to learn and use. Three
GUIs have previously been created for libmapper (see Section 3.5): a basic interface built
in Max/MSP?, a web-based GUI, and Vizmapper (Rudraraju 2011), a more abstract rep-
resentation of a libmapper network. All of these GUIs have their strengths, yet neither ad-

2MAX: You make the machine that makes your music. [Online]. Available: http://cycling74.com/.
Accessed June 17, 2013

1 Introduction & Motivation 4

equately meets the full range of possible use cases for libmapper. A more flexible approach
is required if the GUI is to be usable in situations with hundreds of signals, transparent
for systems with multi-leveled hierarchical devices, intuitive during performances where
devices output light and haptic feedback as well as sound, and responsive for tasks where
speed of manipulation is an absolutely necessity.

With such an interface in place, libmapper can greatly expand its user base. As a result,
more controller and synthesizer designers may choose to incorporate libmapper into their
devices, and in turn these devices will be easier to learn and use. Hopefully the end result

will be greater adoption of non keyboard-based DMIs in the electronic music community.

1.2 Project Overview

The focus of this project is to create a graphical user interface for libmapper, hereafter
referred to as MapperGUI. This interface aims to be flexible and intuitive, simultaneously
allowing for useful control of the full range of possible libmapper networks while also not
intimidating non-technical users with complexity. The presupposed solution to this problem
is to provide users with multiple independent modes of viewing and interacting with the
network. Certain view modes can excel in providing precise control, while others can
help users understand the structure of complex networks. The idea is to provide multiple

113

imperfect solutions to an unsolvable problem, so that each can be “...approximately right,
rather than exactly wrong” (Tuckey).

This project was structured in four major, non-sequential parts: 1) a review of prior
visualized mapping interfaces, 2) the integration of presently available GUIs for libmapper,
3) the extension of interface features and 4) the collection of user feedback. Results of the
research phase informed implementation and are presented here. Development began by
updating the web-based implementation of the current Max/MSP-based GUI, while inte-
grating functionality from Vizmapper. New view modes were integrated into design while
refining functionality of the previous ones. Throughout the design process, MapperGUI was
provided to potential users who gave feedback on the strengths, weaknesses and potential

avenues for improvement.

1 Introduction & Motivation 5

1.3 Thesis Overview

The remainder of this document is organized as follows. Chapter 2 outlines concepts
necessary for providing context for this thesis project. A wide variety of domains inform
the creation of musical mapping interfaces. Special attention is paid to mapping theory,
data visualization and user interface design. Chapter 3 describes the libmapper API in
detail. Chapter 4 summarizes the design process for MapperGUI. This chapter includes
design decisions made and technical details of implementation. Chapter 4 evaluates results,
both on the empirical level of software performance as well as qualitative user feedback.
Finally, Chapter 5 presents conclusions of the work and suggests further developments for

the software.

1.4 Contributions

The contributions of this thesis are: the exploration of issues related to user interface design
for musical mapping networks, the design and implementation of an interface for libmapper
that aims to improve on usability and flexibility of the system, and this thesis document,

which describes the research and development therein.

Chapter 2
Background

Dynamic mapping has become an increasingly important requirement for digital musical
instruments. This chapter surveys necessary background information for building a tool
that aids in the manipulation of musical networks in real time. The first section presents
a review of mapping itself, both from a theoretical and a musical standpoint. The final
section reviews relevant work in the visual representation of information and user interface

design.

2.1 Mapping

At the most fundamental level, mapping is the act of associating two or more sets of
information. Mappings can be mathematical, computational, linguistic (like translation),
geographic, or even poetic!. Within the context of DMI design mapping is the relationship
between sensor outputs and synthesis inputs. The entire character of a new instrument
can be drastically altered through mapping, even while control surface and sound source
are held constant (Hunt et al. 2003). As a result, the theoretical formalism of mapping

becomes yet another necessary tool in the modern instrument designer’s arsenal.

"'What is metaphor if not the association of unlike things?

2 Background 7

2.1.1 Mapping theory
Mapping as function and mapping cardinality

From the perspective of mathematics, the term mapping is very nearly synonymous with
“function” (Halmos 1970), as both describe how one set of numbers corresponds with
another. The first group is commonly referred to as the “domain” and the second as the

)

“codomain” or “range.” An in-depth review of functions in mathematics is beyond the
scope of this thesis. However, a few fundamental examples will be useful for reference in

Section 2.1.2. The following are instances of two basic types of mathematical functions:

y=2x—1 (2.1)
y = 2° (2.2)

Each function takes a single input value (z) and “maps” that number onto its range (y).
The fact that each of these equations take in only a single number as input and output a
single number in turn means they can be graphed in a two dimensional space. This is not
necessarily the case, as functions can input and output lists of numbers (vectors). Math-
ematically, they are not very interesting, but they represent two fundamentally different

kinds of functions.

Fig. 2.1 The function described in Equation 2.1 graphed in two dimensions.

For Equation 2.1, each input value has one and only one corresponding output value.

The same is true if the function is to be inverted, as each output value corresponds to

2 Background 8

only one input value. The range is simply a scaled and shifted version of the domain. The
mapping’s “one-to-one” nature can clearly be seen in Figure 2.1. To mathematicians, this

is known as the mapping’s “cardinality.”

Fig. 2.2 Equation 2.2 projected on the Cartesian plane.

This is not the case for Equation 2.2, for although each input has only one output,
single positions in the codomain can have multiple corresponding inputs (e.g. both 32 and
—3?% are equal to 9). Thus, Equation 2.2 is an example of a mapping with a “many-to-one”
cardinality. In Figure 2.2, the range of the function is wrapped back onto itself such that
a horizontal line could intersect the curve twice.

Two more mapping cardinalities are relevant to instrument design:

y==+Vr (2.3)
y==xv1—a? (2.4)

They are not considered to be functions by mathematicians?, but are nonetheless im-
portant for our purposes. In Equation 2.3, a single input can result in multiple outputs (an
input of 4 results in the output of both 2 and -2), yet each output has only a single input.
This is simply the inverse function of Equation 2.2, and is an example of a “one-to-many”
mapping. On a graph of such a mapping a vertical line may cross at multiple points. The

final equation is that of a circle centered at the origin with a radius of one. This is a

2In mathematics, a true function can have no more than one output value for every input value.

2 Background 9

“many-to-many” mapping, as both it an its inverse result in multiple outputs from a single

input.

2,,

-2

b) Equation 2.4, a many-to-many mapping.
(a) Equation 2.3, a one-to-many mapping. (b) Eq Y Y mabpiis

Fig. 2.3 Examples of the final two types of mapping

Though a graphical plane is the most common way for mathematicians to visualize
two-dimensional functions, drawing the direct association between input and output will
be more useful going forward. Figure 2.4 provides an illustration of such an approach.
The astute reader will notice a striking similarity between these diagrams and ListView
(described in Section 4.2.1).

Mapping as association

In computer science, a mapping is less commonly referred to as a function and more usu-
ally called an “associative array” or a “dictionary,” though the word “map” is also used
(Mehlhorn and Sanders 2008). This type of data structure is generally the most flexible
way for computers store information. An associative array consists of key/value pairs where
the “value” is the data to be stored and the “key” is the reference to that data.

In Table 2.1, the data is non-numeric and associations between keys and values are
arbitrary (from a mathematical point of view). There exists no distinct function that can
transform a country’s name into the name of its currency, thus the computer must explicitly
remember the associations between the words in the form of a “hash table”. At the lowest

level, computers store information in a gigantic array of zeros and ones, and the value

2 Background 10

y=z"
))
1 > 1
B
0 //>0
/
1 -1

Domain () Range (y) Domain (z) Range (y)

One-to-one Many-to-one
y=+/z y=+v1-a?
))))

1 > 1 1 1

N \><l
0 \\ >0 o o

A

-1 -1 -1 <% -1

— —
Domain (z) Range (y) Domain (z) Range (y)

(

One-to-many Many-to-many

Fig. 2.4 The four mapping classes

Table 2.1 An example of key/value pairs (countries and currencies)

key value
Canada Dollar
France Euro

Bahrain Dinar
Germany FEuro
Angola Kwanza
USA Dollar

“Kwanza” only arises through a non-trivial process of encoding and decoding. In order

to retrieve it, the computer must know where it can be found. The hash table takes the

2 Background 11

input of a key, finds the address for the value and returns it. In this way, the hash table is
literally the association between two sets of data and therefore the mapping between them.

The four mapping classes outlined in the above section are not limited to the functional
domain. The associative array in Table 2.1 is another example of a many-to-one mapping,
as many countries have the same name for their currencies. In this vein, a one-to-many
mapping could be the same keys with values switched to “Former Monarchs” (“France”
would map to both “Louis XVI” and “Napoleon III,” etc.), while a value of “Official
Languages” would be a many-to-many mapping (“Canada” maps to both “English” and
“French” while both “Canada” and “France” map to “French”).

Though most applicably represented in computer science, data structures like associa-
tive arrays appear in many other fields. Library card catalogs (one-to-one), multilingual
dictionaries (many-to-many) and address books (many-to-one) are all very straightforward
instances of key/value pairs. In a library card catalog, the call number even acts as a sort
of hash table. In a large library, a book that is placed in the incorrect position on the
shelves will likely be lost for a very long time. Thus the system must not only remember
the keys (titles) and associated values (the books themselves), but also their positions in

memory (their call numbers).

2.1.2 Mapping for digital musical instruments

With an acoustical musical instrument, a musician must interact directly with the physical
object that produces the sound. In this context, the concepts of “control surface,” and
“synthesis devices” are not very relevant, as they are intrinsically linked. In the case of
an acoustic guitar, the pick could be considered to be a sort of control device (as it is
primarily used for instrumental interaction) with the strings and body acting as the sound-
producing section. The problem with this type of approach is that changing the material
of the pick, perhaps to provide a different feel for the player, will also necessarily modify
the sound produced. The same can be said for modifying nearly any aspect of an acoustic
instrument: it will change both the control interface and the created sound. This coupling
of parameters causes any concept of a “mapping layer” to be irrelevant.

As stated in the introduction, this is not the case for electronic instruments (Hunt et al.
2000). Electronic sensors transduce musical gestures into signals, which are in turn con-

verted into auditory phenomena by amplifiers and speakers. Any arbitrary transformation

2 Background 12

can happen to the signals® in between these two phases. This flexibility is most obvious
with novel instruments like the T-Stick (see Malloch 2008 for a description of this gestural
controller), but is fundamentally true for any electronic instrument. An electric guitar
senses gesture with a magnetic pickup that transforms the signal of a vibrating string into
an electric signal, which is made audible by an amplifier. Though this can happen directly,
more or less reproducing the sound of an acoustic guitar, it is also possible to greatly modify
this signal before it is amplified, creating tones that may be unrecognizable as the original

acoustic instrument.

The mapping layer

In response to the importance of this uncoupling of parameters, electronic instruments are

often conceptualized as having three independent layers (Wanderley and Depalle 2004):

e Gestural Controller: The device with which the musician interacts directly. It gen-
erally has sensors that collect gestural data and actuators that can provide haptic

feedback. The generated signals are output into the mapping layer.

e Sound Generation Unit: This device receives input signals from the mapping layer
and uses them to generate sound. This layer can contain melody generating algo-
rithms, sound modifying effects, physical models of acoustical instruments or any
other construct that is directly used to produce sound as well as other media and

haptics.

o Mapping Layer: The abstract space that receives input signals from the gestural
controller and outputs to the sound generation unit. These signals can be connected

and modified independently of actions in the other two layers.

As can be seen above, the words “output” and “input” become ambiguous depending
on if one is speaking from the perspective of devices (control devices output signals that
are input into the synthesis devices) or the perspective of the mapping layer (the mapping
receives input from the controller, which is output to the synthesizer). This can create
confusion for the detailed analysis of mappings and mapping devices. To avoid this, signals

arriving at the mapping layer from the control surfaces will henceforth be referred to as

3Especially digital signals, which are remarkable for their robustness and mutability.

2 Background 13

“source” signals and signals sent from the mapping layer to the sound generation units will
be called “destination” signals. This follows the nomenclature described in Malloch et al.
(2013) and the libmapper API in general.

Functional versus systems perspective on mapping

Both the more mathematical perspective of mapping as functions and the computer science
standpoint of mapping as association are relevant to DMI design. These two concepts are
referred to as the “functional” and the “systems” points of view for mapping, respectively
(VanNort 2010).

Once two signals are connected, say the position of a knob and the cutoff frequency
of a low-pass filter,? it is very possible that the raw numbers sent from the knob are not
appropriate as input for the filter. It may be that the knob transmits numbers ranging
from 0 - 127 and the filter accepts numbers from 0 - 1023. As a result, the filter will
always be more or less closed no matter how the user turns the knob. To account for
this, the mapping needs to scale the source signal by a factor of 8 to fit the destination
range. This is a functional kind of mapping, analogous to Section 2.1.1. In electronics, this
process is known as “signal conditioning” and includes transformations such as linearization,
amplification and filtering.

The other, higher-level perspective on mapping deals with the actual connection of
source to destination signals. On any mapping network there can exist several devices,
each with numerous signals. The act of associating devices with devices, signals with
signals can drastically change the character of a DMI or group of DMIs. This is known as
the systems perspective on mapping. It is necessary for libmapper and the GUI to be able

to assist with both types of mappings.

Mapping strategies

For expressive musical networks, simple one-to-one mappings are often insufficient. Kvifte
(2008) argues that it is extremely rare to find such associations in acoustic instruments, as
the control parameters are usually tightly coupled with several acoustic dimensions. Inter-

faces with hundreds of knobs and sliders, each one connected to a single sound parameter

4A standard synthesis parameter that controls the brightness of a sound, think of the difference between
the vowel ‘0’ in ‘food’ (low cutoff) and the vowel ‘a’ in ‘sad’ (high cutoff).

2 Background 14

¢

have thus been found to “...hinder rather than help expressive musical behavior” (Kvifte).
An example for clarinet was presented in Rovan et al. (1997). In practical experiments
where mappings of varying complexity are compared, the most complex were generally
found to be the most expressive and useful (Hunt and Wanderley 2002).

However, Goudeseune (2002) states that mappings need to be simple enough for the
performer to comprehend, though simplicity of a mapping is often a function of training

13

and expertise. Goudeseune argues for “...static mappings over dynamic, and simple over
complex” and proposes an algorithmic solution for their computation. These “interpolated
mappings” are generated by associating single points in the source and destination spaces
(i.e. certain performer gestures with certain sounds) and mathematically filling-in the
spaces between. This is relevant to our work as interpolated mapping devices function as
both sources and destinations within libmapper.

One proposed solution to the cognitive complexity of associating many source and des-
tination signals is to create a second mapping layer (Wanderley et al. 1998). Instead
of dealing with raw sensor output, like acceleration and inclination, musicians can inter-
act with more interesting gestural information such as “jab” or “left-arm swing.” These
“cooked” parameters are argued to be more meaningful and useful musical information
than the raw signals. This approach is explored in Momeni and Henry (2006) for mapping
to both audio and visual synthesis. The conventional wisdom is that mappings need to be
complex enough to be interesting yet sufficiently simple as to be transparent and mean-
ingful. This dichotomy points to the necessity of a tool for the intuitive and expressive

configuration of mappings.

2.2 Data Visualization and User Interface Design

The GUI described in this thesis is a purely visual interface. No means of auditory or
haptic response was implemented or even seriously considered. Creating an auditory tool
for controlling musical instruments is obviously problematic and most personal computers
provide no means of producing haptic feedback. This limits the usable dimensions, but also
greatly simplifies the problem of how to best represent the tremendous variety of libmapper
networks.

Fortunately, graphic designers and statisticians have already deeply probed the problem

of how to best display data visually. It is necessary here to briefly review some of this work,

2 Background

15

especially the techniques relevant to the creation of a libmapper GUI and visual systems

from which inspiration was drawn.

2.2.1 Graphical dimensions

The visual dimension can be broken down into many sub-dimensions. These dimensions are

not fully separable, but doing so creates a useful paradigm for understanding and creating

solutions for our visual problem.

Table 2.2 Bertin’s graphical relationships

Marks Points, lines and areas
Positional 1-D, 2-D and 3-D
Temporal Animation

Retinal Color, shape, size, saturation, texture and orientation

Visual presentations use marks to encode informa-
tion by way of their positional, temporal and reti-
nal qualities. Bertin (1983) presents a simple vocab-
ulary for categorizing graphical objects and relation-
ships (see Table 2.2). Retinal properties are so called
because the eye is sensitive to them independently of
their position. Though depth is relevant and would be
useful, it is currently beyond the scope of this research,
not to mention the hardware on which MapperGUI
runs.

Cleveland and McGill (1984) expand on this vocab-
ulary, enumerating further sub-dimensions of marks
and retinal properties. An experiment is described in
which subjects are asked the relative values of various
visual objects (e.g. the first box is 50% larger than the
box on the left), for various visual dimensions. From
the data, they were able to create a ranking of visual
dimensions for quantitative information. In Figure 2.5,
differences between objects are more accurately per-

ceived when the difference is encoded using a variable

Increasing Accuracy Position

A 0
| I —
Length
Angle Slope
Area
®.
Volume
s
Color Density
®O

Fig. 2.5 Cleveland and
McGill’s rankings for quanti-
tative perceptual tasks.

2 Background 16

higher up on the chart. Note that variables like shape, texture and opacity are not included.

Mackinlay (1986) uses this ranking to expand into non-quantitative data sets. Nominal
information is that in which elements can be understood to be similar or dissimilar to
one another, yet have no definite order or value. libmapper uses nominal information
in the form of device, signal, link and connection names, as well as connection modes
and boundary conditions. Ordinal data fits between quantitative and nominal. Ordinal
items are understood to be greater than or less than one another, while having no definite
numerical ratios. If multiple devices of the same class are present on the same libmapper
network, libmapper will append ordinal numbers to the end of their device names (e.g.
tstick.1, tstick.2 and tstick.3).

Table 2.3 Mackinlay’s graphical rankings

quantitative ordinal nominal
position position position
length density color hue
angle color saturation texture
slope color hue connection
area texture containment
volume connection density
density containment color saturation
color saturation length shape

color hue angle length
texture slope angle
connection area slope
containment volume area

shape shape volume

In Table 2.3, items in italics are considered unsuitable by Mackinlay. Though position
is the most accurate dimension for all types of data, dimensions like “length” differ widely.
Through this analysis Mackinlay not only demonstrates the tremendous diversity of visual
variables but also how careful evaluation of data is a necessary step in creating expressive
displays.

For the visualization of libmapper networks, it is often necessary to encode many di-
mensions of data onto a single mark. Devices, signals, connections and links all have a set
of metadata with quantitative, ordinal and nominative information (see Table 3.1). In the

design of an effective GUI it will be necessary to properly associate high-accuracy visual

2 Background 17

dimensions to network properties that require them and reserve low-accuracy dimensions
for those that do not. In this way the problem of this thesis conveniently becomes one
of mapping: how can we best correlate visual dimensions with properties of libmapper

networks?

2.2.2 Relevant visualization techniques and systems
Encoding Color

“Color” itself is a multi-dimensional phenomenon that does much to communicate infor-
mation in modern user interfaces. Since color was previously an uncommon feature of
computer displays neither Bertin (1983) nor Cleveland and McGill (1984) explore its use
in depth. Cleveland and McGill simply state that color is not good for encoding quanti-
tative information. Mackinlay (1986) elaborates on this, separating color into “hue” and
“saturation,” and also upgrading its use for ordinal and nominal data.

Tufte (1990) provides a definite procedure for incorporating color into evidence dis-
plays®. Techniques are gleaned from centuries-old map making and applied to computer

interfaces. Principal rules, summarized and expanded from Imhof (1982) are:

o [irst rule: Bright colors are painful when used uninterruptedly over large areas or
when placed adjacently to each other, but can be extremely powerful when used

sparingly while accompanied by dull tones.

e Second rule: Light, bright colors produce unpleasant results when accompanied with

the color white.

e Third rule: Background and base colors should be muted or neutral. For this reason,

grey is regarded to be the most versatile color.

e Fourth rule: Two or more large, enclosed areas within a single display cause the image
to “fall apart.” Unity can be maintained if the colors of one section are interspersed
throughout the other. “All colors of the main theme should be scattered like islands

in the background color.”

STufte’s favorite term for data-driven graphics.

2 Background 18

Links and causal arrows

For the visualization of networks, the idea of a visual “connection” becomes very im-
portant. This linking action is usually accomplished by an arrow-like object in evidence
displays. Tufte (2006) enumerates numerous guidelines for incorporating line-like objects
into presentations. Again drawing inspiration from map making (an obvious inspiration for
“mapping”), the use of differentiation among linking arrows is greatly emphasized: “Nouns
name a specific something; arrows and links are too often non-specific, generic, identi-

2

cal, undifferentiated, and ambiguous.” The use of many line properties, such as dashing,
arrow-heads and color can better illustrate a variety of influences in a linked chart.

Tufte also cautions against using heavy line weights when unnecessary, as it effectively
decreases display resolution. Thick lines are also more likely to create 1 + 1 = 3 noise, or

the effect of negative space acting as a display feature.

Two lines Negative space of roughly equal size and shape

e =

Fig. 2.6 An example of Tufte’s 1 + 1 = 3 noise

In Figure 2.6 the negative space between the two black lines appears as its own white line
as opposed to simply empty space. In displays with numerous or thick lines, this can cause
negative space to compete with informative features, attenuating the overall effectiveness
of the display. 1+ 1 = 3 noise plagues dense computer user interfaces. Thus borders and
other non-essential display features should be lightened, thinned and removed whenever

possible.

Hierarchical edge bundling

In diagrams with tremendous amounts of connections no amount of thinning and coloration
can create an informative display. The technique of “hierarchical edge bundling” (Holten
2006) groups lines based on “adjacency relationships.” Displays take advantage of hierar-
chical information encoded within the dataset. Linking arrows are curved towards other

arrows that are connected to related elements. Figure 2.7 demonstrates this effect for

2 Background 19

No hierarchical edge bundling With hierarchal edge bundling

Fig. 2.7 A dense interconnected network displayed with and without hier-
archical edge bundling techniques

arbitrary data.’

In a libmapper system, this would mean that connections between signals on the same
device will be pulled towards one another. If a hierarchical structure exists in the naming
convention, connections between related signals will experience an even stronger force be-
tween each other. For example, the connections from signal tstick.1/raw/accelerometer/
1/x will be bundled tightly with connections from signal tstick.1/raw/accelerometer/
1/y, but less tightly to tstick.1/raw/accelerometer/2/x. Any of these connections will

not be pulled at all towards connections from signals on other devices.

Braun

Braun is an application for visualizing OSC data flows on a scrolling graph (Bullock 2008).
Users are presented with options to adjust what dimension is displayed on the y-axis, with
the x-axis being reserved for time. Multiple data flows can be viewed on the same set of

axes and time scales can be set arbitrarily, giving the users an overall impression of trends

6Images courtesy of: mbostock - The d3 visualization library. [Online]. Available: https://github.
com/mbostock/d3/wiki/Gallery. Accessed July 24, 2013

2 Background 20

in OSC messages over their networks. It is an extremely simple visualization, it creates a

sort of oscilloscope for networked OSC data.

2.2.3 The model-view-controller architecture

As computer user interfaces regularly contain many interdependent parts, problems can oc-
cur if the code is not rigorously structured. The model-view-controller (MVC) architecture
(Krasner and Pope 1988) is a system by which interface features can be made modular.
This is especially relevant to the work of this thesis, as we are attempting to create multiple

modular views for the same interface (see Section 4.1.1).

Controller _ View
View messages

USGI' % DlSplay q

interaction | N
elements
handlers Model access Display output

and editing

Xﬂlessages
Data change Aata change
meSSageS

messages
Model &

User input

Abstract data
and program
state

Fig. 2.8 An illustration of Krasner and Pope’s MVC structure

The MVC architecture consists of three main parts: the model, the view and the con-
troller. The model consists of an abstract representation of all that is present in the
interface. It contains data independent of how it is being viewed. The view possesses the
software elements that actually show on the screen. Typically, views use data from the

model to affect their display. The controller is the portion of the software that interfaces

2 Background 21

with the user, relaying messages to the model to change the state of the system. The
three sections communicate with one another through a messaging standard defined by the
designer.

The division between the view and the controller is not always clear, and it is sometimes
beneficial to program in view-controller pairs (Krasner and Pope 1988). These pairs both
display data and accept user interaction, though the data of the model is still treated as a
separate class. What is important is that view-controller pairs are written modularly, such
that many pairs can interact with the same model. This improves program extensibility, if
a new kind of interaction or display is desired, it simply needs to conform to the established

communication standard and it will function properly.

2.3 Summary

Mapping is a theoretical concept grounded in mathematics with meaning across a variety
of disciplines. Specifically, its usage in computer science and DMI design is highly relevant
to this project. Understanding the intricacies of mapping across relevant disciplines and
the specialized vocabulary therein is crucially important to designing MapperGUI and
communicating its features.

Since the goal is to design a tool that allows for the straightforward manipulation of
a range of musical networks, it is first necessary to describe the visual dimension and the
ways that it can be incorporated. Presented in this chapter are graphical design principals
that have informed our design process. These findings can also be used to guide the design
of extensions to the present GUI, possibilities for these new features are discussed in the
final chapter of this document.

A rigorously structured codebase is necessary for modular user interfaces. The MVC
paradigm described here allows programmers to more easily extend and maintain Map-
perGUIL This added flexibility creates an environment where a wide variety of mapping

networks can be easily manipulated and visualized.

22

Chapter 3
libmapper

The McGill Digital Orchestra project! began in 2006 with the aim of helping music tech-
nology researchers and performers work collaboratively in creating hardware and software
solutions for live performance. The libmapper project was started in response to the diffi-
culty of creating dynamic musical mappings in a collaborative setting (Malloch et al. 2008).
In its most basic state, libmapper is a library for connecting things. As described by its

website:

“libmapper is an open-source, cross-platform software library for declaring data
signals on a shared network and enabling arbitrary connections to be made be-
tween them. libmapper creates a distributed mapping system/network, with
no central points of failure, the potential for tight collaboration and easy par-
allelization of media synthesis. The main focus of libmapper development is
to provide tools for creating and using systems for interactive control of media

synthesis.”?

Without libmapper, DMI designers are usually required to “hard-code” mappings into
their designs. This has the disadvantage of being slow to modify, as it might be necessary
to re-compile® code any time a change is made. If the DMI is built in a development

environment like Max/MSP, modifications can be more quickly implemented. Max/MSP

!The McGill Digital Orchestra. [Online]. Available: http://www.music.mcgill.ca/musictech/
DigitalOrchestra/. Accessed July 9, 2013

2libmapper: a library for connecting things. [Online]. Available: 1ibmapper.org. Accessed June, 2013

3A process in which human-readable code is translated into something the computer can understand.
This can take anywhere from a few seconds to days.

3 libmapper 23

is a “high-level” abstraction on top of machine readable code. Max/MSP programs can
be prone to slowness and cross-compatibility issues, inhibiting collaboration (Place and
Lossius 2006). In either implementation, it is difficult for someone other than the original
designer to modify mappings.

As a C library*, libmapper does not introduce many abstractions on top of the data and
can work quickly. Any device that embeds libmapper in its code can communicate with
other devices that have done the same. In a libmapper network, devices communicate with
one another directly, as opposed to through some centralized network device. This means
that less data overall needs to be sent over the network, and failure of a single device (like
the router) will not crash the entire system (Malloch et al. 2013), which is an especially
dire situation during live performance.

Another advantage of libmapper that is especially relevant to this project is the ability
to create an administrative device. These “monitors” can query libmapper devices for data,
and thus collect data on the network overall. Monitors are also able to create, destroy and
modify connections on the network. This allows for external visualization and control of a

libmapper network.

3.1 Open Sound Control and libmapper Syntax

Like any communication, communication between digital devices functions only when the
devices speak the same language. In the Internet age, this becomes particularly relevant:
the vast system of continuously connected devices sending and requesting information would
collapse if every developer coded to his or her own idiosyncrasies. To prevent this, com-
puter scientists make use of various communication “protocols” when creating software.
Hypertext Transfer Protocol (HTTP) is the most famous example of such a system.

At its core, libmapper builds its own language on top of the Open Sound Control (OSC)
protocol, as described by Wright and Freed (1997). OSC defines the format for messages
that are sent between sound-producing devices (as implied by the name), but can also be
used for related multimedia devices such as stage lights or vibrating motors. It provides a

means for flexible, high-resolution communication and was intended to replace MIDI®, the

4An extremely popular, multi-purpose programming language.
SMIDI Manufacturers Association - The official source of information about MIDI. [Online]. Available:
www.midi.org. Accessed July 11, 2013

3 libmapper 24

30-year-old standard for musical instrument communication.
OSC formats messages in arbitrary strings of characters separated by ¢/’ characters,
much like uniform resource locator (URL) addresses. libmapper messages use the message

structure to expose the hierarchy of signals:

e tstick.1l/raw/accelerometer/1/x: The data for the ‘x’ dimension of the first ac-
celerometer of the first instrument of class “tstick” on the network. Here the word

“raw” denotes that no pre-processing has been applied to this signal.

e tstick.l/raw/accelerometer/2/y: A signal transmitting the data for the same

instrument as above, but the ‘y’ dimension of the second accelerometer.

e tstick.1/cooked/accelerometer/2/amplitude: A “cooked” signal. All three di-
mensions of accelerometer 2 are combined to compute the overall acceleration of the

point. These signals can also be cooked to expose angle and elevation as signals.

e granul8.2/filter/evelope/frequency/low: The data for the low-end cutoff for
the shape of the filter for the instrument named “granul8.2” (a granular synthesizer,

thus a destination device).

This structure of signal names aims to be semantically relevant and allows a GUI to
display the hierarchical structure of networks. Any one of the above signals transmits not
only the signal’s value, but also its metadata. Signal metadata usually includes data type,
length (single number vs. vector), units like volts or meters per second, maximum value
and minimum value. Designers can “tag”’ signals with any extra metadata they may wish
to add, such as physical position, color or owner’s name.

To make signal names as coherent and consistent as possible, libmapper makes use of the
Gesture Description Interchange Format (GDIF) (Jensenius et al. 2006), which provides a
standard for gestural data. Structures are given short, semantically relevant names. GDIF
also provides a standard vocabulary for describing motion. Though these standards are
not enforced, as libmapper signals can be given any sort of names by their creators, most

extant libmapper-enabled devices use them.

3 libmapper 25

3.2 Structure of libmapper Networks

In order to maintain internal consistency, libmapper introduces a naming convention of its
own. At the heart of any libmapper network are signals. Signals are defined in Malloch,
Sinclair, and Wanderley (2013) as:

“Data organized into a time series. Conceptually a signal is continuous, however
our use of the term signal will refer to discretized signals, without assumptions

regarding sampling intervals.”

Here Malloch et al. refer to digital as opposed to analog signals (hence the use of the term
“discretized”). Signals are not necessarily numeric by this definition, though non-numeric
libmapper signals are extremely rare. Signals are the only information actually passed from
control surfaces to synthesizers, while all other data structures exist to organize and label
them. “Source signals” are data entering libmapper from control surfaces while “destination
signals” belong to synthesizers and receive data. A “connection” is a bridge between two
signals. Once a connection is created within libmapper, a source signal begins sending its
data to a destination signal. A single source signal can be connected to many destination
signals in a configurable manner (a one-to-many mapping). At the time of the writing of
this document single destination signals cannot receive input from many source signals (a
many-to-one mapping). Justification for this lack of functionality is discussed in Malloch
et al. (2013).

“Devices” are essentially groups of signals. A device often has some kind of physical
entity that makes the grouping logical (e.g. a T-Stick). Signals within these groupings are
known as the “child” signals of the device. Within software, a device is usually a discrete
computer program. In development environments like Max/MSP, users are free to group
signals into devices however they wish. As mentioned previously, libmapper devices do
not send all signal data to some centralized router. Instead, devices work directly with
one another. In order to accomplish this, devices must be explicitly “linked.” Figure 3.1
demonstrates instances of libmapper devices, signals, links and connections.

Devices and signals can carry a variety of “metadata.” Devices usually list the number
of child signals they possess and their location on the network (IP address and port). As
previously stated, users can tag devices and signals with arbitrary metadata. Connections

have a much more specific set of metadata.

3 libmapper 26

link
tstick.1 » granul8.2

connection

=
[
2 %
~ S,
~ =
> o)
C~ S..
= S
8 =
= o
§ <.
> S
o
=)
S~
(V)
connection -~
source device destination device

Fig. 3.1 A simple libmapper network

3.3 Connection Properties

The creation of links and connections is mapping from the systems perspective, but libmap-
per also allows for functional mapping through the modification of connections. This can

be accomplished by altering certain properties possessed by every libmapper connection:

e Expression: A mathematical equation relating the source (x) to destination (y)
values. An expression of y = z will simply pass through source values, while an

expression of y = 3z + 2, will apply a linear transformation to the source data (e.g. a

3 libmapper 27

value of 1 will be output as 5). libmapper supports a variety of expressions, including
exponential functions, trigonometric relations, comparison operators, derivation and

integration.

e Range: An array of four numbers containing the user-specified maximum and mini-

mum values for both the source and destination signals.

e Mode: The type of connection. This influences the effect of the expression and range

properties. Connection modes consist of four categories:

— Linear: libmapper automatically scales the output such that it fits the destina-
tion range based on the source range. For example, if a certain connection has
a source range of [0,1] and a destination range of [5,10] libmapper will auto-
matically apply an expression of y = bx 4+ 5. This way, minimum and maximum
source values will correspond to the minimum and maximum destination values
respectively. A source value outside of this range will result in a destination
value that is also outside of the range. In this mode, the user cannot directly

modify the expression.

— Clalibration: The same functionality as the Linear mode except the source range
parameter is ignored. libmapper instead polls source signals to find their ranges

directly.

— Bypass: Source values are sent through to the destination signal with no trans-

formation, as would happen with an expression of y = .

— Faxpression: The user is able to manually set the expression.

e Boundary: The desired action for data values extending beyond the destination

range. There are four options:

— None: Values are passed through unchanged.

Clamp: Values outside of the boundary are constrained to the closest boundary

value.

Mute: Values outside of the boundary are not passed to the output.

Wrap: Values exceeding the maximum are “wrapped” back to the minimum

bound and vice versa.

3 libmapper 28

— Fold: When the signal passes outside of the boundary it is inverted back onto

the destination range.
e Mute: A boolean value muting and un-muting data sent over the connection.

e Send As Instance: Not all signals on libmapper networks are unique and long
lasting, a good example being a key press on a keyboard. During the key press
data like after-touch and release can be sent, making it a bona fide signal. However,
musicians constantly create and complete key press events during performances with
keyboard instruments. Maintaining every key press as a unique signal with unique
metadata would be tremendously unhelpful for mapping. Also, forcing a user to map

every key press event individually would make live performance impossible.

To support this, libmapper gives connections the “Send As Instance” property. libmap-
per treats connected signals with this property as instances of a general class. New
instances of a signal class will be handled like previous instances and do not need to

be mapped individually.

e Link scope: The only libmapper property specifically for links. By default links
are “scoped” to notify destination devices of the creation and destruction of signal
instances on linked source devices. For intermediate devices (ones that function as
both source and destination), this may not be the desired behavior. If device A is
linked to intermediate device B, which is in turn linked to device C, then C will not
be notified of instance events on A by default. The user can modify the scope of link
B — C to include A if desired.

3.4 libmapper Bindings

A final libmapper feature is its multi-language “bindings.” The C language is often called a
“low-level” language as it is procedural and does not allow for very abstract data structures.
It is extremely flexible, but can be difficult and time consuming to program. To make
libmapper more friendly for different kinds of developers, bindings have been created for

the higher-level Python® and Java’ programming languages. libmapper functions are bound

6Python Programming Language - Official Website. [Online]. Available: http://www.python.org/.
Accessed July 17, 2013
Tjava.com: Java + You. [Online]. Available: java.com/en. Accessed July 17, 2013

3 libmapper 29

to other languages using the Simplified Wrapper and Interface Generator (SWIG)®. SWIG
automatically writes a kind of dictionary that interprets function calls from other languages
to the original C. Automatically-generated files sit in-between the controlling code and the
original library.

Though the concept of mapping itself is extremely abstract, the libmapper API places it
into a concrete context. libmapper is not only a means of organizing networks through the
creation and destruction of links and connections, it is also a tool for customizing responses
through its support for modifying connection properties. In this way, it can serve both
the high-level systems perspective and the low-level functional view of mapping. Though
designed for musical devices, the API’s loose framework could readily be applied to any
type of multimedia system. libmapper is an extremely powerful, flexible tool and requires

a user interface that can elegantly deploy its full range of capabilities.

3.5 Prior Interfaces for libmapper

3.5.1 Maxmapper

At the beginning of this project, the most commonly used GUI for libmapper was a
Max/MSP application designed by Joseph Malloch at the IDMIL, referred to here as
Maxmapper. A list-style interface (see Section 4.2.1), Maxmapper allows users to con-
nect signals by dragging between elements on two tables. All source devices are listed in
an array of tabs above. Clicking on these tabs displays child signals for the device, as well
as child signals for all linked devices. The GUI features a top toolbar for saving, loading
and editing signal behavior. Maxmapper is extremely functional and has been used with a
wide variety of projects, performances and experiments. To many users Maxmapper is the
face of libmapper.

Though Max/MSP works well for creative uses and for prototyping software it has
some well-known limitations that inhibit the functionality of programs like Maxmapper.
All Max/MSP stand alone applications must be bundled with a set of necessary objects from
Max/MSP itself, which leads to much larger programs. Currently, Maxmapper occupies

nearly 16 times as much computer memory as the MapperGUI standalone.® The program

8Simplified Wrapper and Interface Generator. [Online]. Available: http://www.swig.org/. Accessed
July 17, 2013
922.1 megabytes versus 1.4 megabytes.

3 libmapper 30

mapper GUI v2.6.1 (20130713) — requires libmapper version 0.3 — www.libmapper.org

(3 Lo | Save Mu|e| Byp | Line | Calib y=x Source Range: § 1 Dest Range: < (- q ->
All Devices Isource.1 Isource.2 Isource.3 Isource.4 fsource.5 Itestsend.1
Sources (o prefix 3] @ searen) Connections Destinations (noprefix ¢ @ search)

signal |type |\Engm |umts | minimum ‘ i hide L |5\gnal ‘type |Ienglh ‘umls | minimum ‘maximum
/source.2/outsigd f] 1 /dest.2/insig0 f 1 Q
/source.2/outsigl f 1 [s] 1 /dest.2/insigl f 1 0
/source.2/outsig2 f 1 0 1 /dest.2/insig2 f 1 0 1
/source.2/outsig3 f 1 0 1 /dest.2/insig3 f 1 0 1

4 of 4 signals 3 of 3 connections (1 selected) 4 of 4 signals Network interface: eni1 &

Fig. 3.2 The Maxmapper interface

is also relatively slow to launch and requires a larger share of computer resources than other
implementations. Due to the dependent nature of the code it is also difficult to maintain
and extend Maxmapper, as updates to Max/MSP can cause errors for the program.

The greatest limitation of Maxmapper, and the principal motivation for this project, is
the cross-incompatibility of Max/MSP. The program does not run on Linux systems, and
cannot be ported to mobile applications. For the creators of libmapper this is seen as a
fatal flaw. For libmapper to be successful, it must be widely adopted and to dis-include all

non-Widows or Macintosh users is unacceptable.

3.5.2 Vizmapper

List-style views for libmapper do not scale well for large and complex networks. To
address this need, the Vizmapper provides a novel visualization tool for libmapper net-
works (Rudraraju 2011). Devices and signals are symbolized by circles distributed around

the perimeter of a central screen. Unlike other interfaces, Vizmapper allows the user

3 libmapper 31

view . q
—E signal fiices

fsource. |

fsource 2

‘somrce.3

fsource 4

fsomree 5

festsend. | input signals

Fig. 3.3 The Vizmapper interface

to zoom in on particular groups of signals if their names imply some kind of heirarchi-
cal structure. For example, the signals tstick.1/raw/accelerometer/1/x and tstick.
1/raw/accelerometer/1/y are displayed as two different circles within the larger circle
tstick.1l/raw/accelerometer/1. By clicking on this element, the view redraws the dis-
play to only show signals that are sub-signals of the T-Stick’s first accelerometer.

In this way, Vizmapper is capable of displaying all connections on a network simul-
taneously, giving the user a better impression of overall structure. Unfortunately, many
functionalities of Maxmapper are not included in Vizmapper. Notably, the user can only
form connections and links by navigating menus and editing text (as opposed to dragging
between nodes). To benefit from the visualization of Vizmapper and the interaction of
Maxmapper, a user would need to run both programs simultaneously, hence our motiva-
tion to integrate approaches. Vizmapper’s whole network visualization is mimicked in the

HiveView visualization for MapperGUI, as described in Section 4.3.4.

3 libmapper 32

3.5.3 Webmapper

Load Save websocket open z

[All Devices 1 /source.5 l /source.1 J

| Connect || Disconnect |

-

Line ‘ Calib‘ ‘ Expr ‘ y=x Source Range: o L Dest Range: 0 =

By |

/source.5/outsig0
/source.5/outsigl
/source.5/outsig2
/source.5/outsig3

/dest.1/insig0
______-____’______————— /dest.1/insig1

/dest.1/insig2
/dest.1/insig3

/dest.3/insig0
/dest.5/insig0

===
== =] =

=== ===
JESY Yy gy g

Fig. 3.4 The Webmapper interface

Work on this project began with a moderately-featured, little-used GUI for libmapper
known as Webmapper. The interface was created by Stephen Sinclair at the IDMIL as a
multi-platform replacement for the Max/MSP GUI. It was thought that a browser-based
approach would greatly simplify the process of creating cross-compatibility with all major
operating systems and perhaps even mobile devices.

Webmapper utilizes the Python bindings for libmapper by registering an administrative
monitor to communicate with a libmapper network. The monitor can create and modify
connections or links, as well as query the network about what devices, signals, links and
connections are present. The Webmapper code creates a server and attempts to open
Google Chrome! on the host computer. If Google Chrome is not present, the user must

navigate directly to the server using a specific web address. The monitor communicates

0Chrome Browser. [Online]. Available: https://www.google.com/intl/en/chrome/browser/. Ac-
cessed July 17, 2013

3 libmapper 33

with the libmapper network and the local server. The browser is able to see messages the
monitor posts to the server (such as ‘new device’) and respond to them appropriately. The
browser in turn can send messages to the server (such as ‘connect’) that will propagate up
to libmapper itself, eventually resulting in a message cascading back down to the browser
reflecting the change to the network (such as ‘new connection’).

The interface itself is written using the scripting language JavaScript!! to control web-
standard HyperText Markup Language (HTML) elements and Cascading Style Sheets
(CSS). Figure 3.4 displays the look of the interface before this project began. Users are
able to perform all libmapper functions: connecting, linking and modifying connections.
Only the simplest of feature sets is included. In order to form a connection, the user must
click on a source signal, click on a destination signal and then click on a button labeled
“connect.” Many useful features of Maxmapper, such as column headers, table sorting,

drawing connections and search filtering, are not present.

3.6 Evaluation of libmapper Variables as Visual Data

In order to examine different possibilities for visually encoding libmapper data, we have
compiled a list variables and their categories as described by Mackinlay (1986). The list in
Table 3.1 is by no means a complete set, as libmapper may yet expand to include data like
device position and owner’s name.

A fourth data category, “boolean,” has been added to specify data that has only two
values (true or false), as it is a common metadata feature. Boolean information is not
covered in the Mackinlay paper. Going forward, it will be treated more or less as ordinal
data, as true obviously has a relationship to false, even though there is no quantitative

value associated with them.

" JavaScript — MDN. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
JavaScript. Accessed July 17, 2013

3 libmapper

34

Table 3.1: libmapper metadata types

Devices

quantitative

ordinal

nomainal

number of inputs

number of outputs

device ordinal

device name

ip address
port
Signals
quantitative ordinal nominal
length direction parent device name
minimum value signal name
maximum value data type (float, inte-
ger, etc.)
sampling rate units
Links
quantitative ordinal nominal
link name
source device name
destination name
scope
Connections
quantitative ordinal nominal boolean
source minimum instance number boundary modes mute

source maximum
destination minimum

destination maximum

connection mode
destination data type
mute

expression

send as instance

3 libmapper 35

3.7 Summary

This chapter reviewed the main functionalities of libmapper as they are necessary for under-
standing the work presented here. Most important are the structure of libmapper networks
and the vocabulary used for libmapper features. Source devices link to destination devices
while source signals connect to destination signals. Signals have a specific set of metadata

that users can modify. Previous GUIs for libmapper were also reviewed for useful features.

36

Chapter 4
Design & Implementation

The development of a graphical user interface for libmapper creates a unique challenge.
Obviously such an interface is a practical tool, and yet it must also work in concert with
DMIs, which are inherently designed for creative use. For the purposes of this project, the
assumed solution to this innate paradox is to provide the user with multiple independent
control modes. libmapper itself is an extremely flexible API that makes few assumptions
about the network of devices and signals or how they are mapped. It is thus fitting that a
GUTI for libmapper would be equally flexible. In lieu of a single perfect solution for network
visualization and interactivity, providing users with various independent views offers a good

compromise.

4.1 Development of a Flexible System

Prior GUIs for libmapper have been used successfully for some time, but all have failed to
become a standard for the same reason: they cannot accommodate all possible use-cases
of libmapper. List based views like Maxmapper and Webmapper do not show hierarchies,
while the cluster view implemented in Vizmapper can be overly cumbersome for interaction
with simple networks. With so much work already completed on prior GUIs, it was more
suitable to integrate different approaches into a single GUI, rather than to begin work on
some new, hopefully superior approach that would likely prove to be flawed like all others
that came before.

MapperGUI integrates multiple views via a drop-down menu on the upper corner of

the window. Options on this menu represent available visualization modes. By selecting a

4 Design & Implementation 37

new visualization mode the GUI drastically changes its appearance, replacing nearly every

visual element in the display.

4.1.1 MVC architecture

Because we require a modular design, the Model-View-Controller architecture! was used
as a general framework for structuring the application. In fact, the whole-scale swapping
of independent visual modes is a very straightforward implementation of MVC. Unfortu-
nately, the 1ibmapper — pythonmonitor — browser implementation complicates matters
slightly.? A few layers of abstraction are added to take into account the monitor, the
network itself and control features independent from the view (see Section 4.1.2), but the

general MVC architecture is maintained.

Independent communication

First and foremost, it is essential that data on the screen reflect data on the network. This
is not entirely straightforward, as asynchronous messages are constantly relayed between
MapperGUI and libmapper. In a truly distributed system, data on the libmapper network
changes continuously as other users add devices and modify mappings. Our system insulates
the actual libmapper network, the displayed data and user interaction elements from one
another (Figure 4.1). For example, a user command to link the two devices source.1 and
dest.1 will cause the controller to send the following message to the python monitors:

{"cmd":"1link", "args":["/source.1","/dest.1"]}

Meaning: a linking command is sent to source.1 and dest.1.® After this, the display
does not change, as it has not yet been notified of a new link. The monitor then relays this
message to the libmapper network. If the link is successful, the monitor receives notice,
and sends a message to the model:

("new_1link",{"src_name":"/source.1l", "dest_name":"/dest.1"})

This states that a new link has been formed between the source device source.1 and the
destination device dest.1. Only then does the GUI respond to the change on the network.
Signal data itself is not available to MapperGUI in any way, as libmapper networks are
designed to prevent this kind of bandwidth clutter (Malloch et al. 2013).

!Described in Section 2.2.3.
2Compare Figure 4.1 with Figure 2.8.
3The message itself is a python dictionary.

4 Design & Implementation

38

User input | : .
e . P ' main J avaScript file
) \ i
I . ! |
. libmapper '

!)
|) i
I 1] Top Toolbar
i network : : (a view-controller pair)
! l
e ! : - connection modification
/T\ ! - administrative actions
requests ! . .
network I 4 modify connection | saving/loading
changes " petwork modification | < reload display
! Nt
l 7 s /I
m—————— il Rl bbb bbb -
Z network
. hanges The Model
thon monitor ¢
Py \L» (stored GUI data)
- devices

/1\ - signals
|

- links

network- I MapperGUI - connections
controls |
(connect, —_}
disconnect) |
| requests for data update_ display
|
|
The Controller The View

>

(GUI interactions) (on-screen display)

non-network controls
(scrolling, filtering, etc.)

view - controller pairs

User input Display Output

Fig. 4.1 Structure of MapperGUI. Blue arrows show propagation of network
changes, while dashed arrows denote messages requesting a network change.

.

4 Design & Implementation 39

The model

The model consists of an abstract copy of the libmapper network. Independent views
can consult these data, but cannot directly modify it. Messages from the python monitor
announce new links, modifications to connections, or any other changes on the network to

the model which records these changes into four data structures:

e model.devices: Storage of all present devices and device metadata.
e model.links: A record of all links on the network.

e model.signals: Monitors signals on the network, but only those that are currently

visible in the GUI. This is done to save bandwidth and processing power.

e model.connections: All connections and connection metadata between signals cur-

rently in the model.

It is possible that previously viewed signals will persist in the model, but their connec-

tions will not be updated.

View-controller pairs

All interaction handlers (responses to mouse clicks and key presses) and visualizations are
stored in modular, view-controller pairs, as recommended by Krasner and Pope (1988).
Each view-controller pair corresponds with a single view mode. Pairs can have any combi-

nation of UI handlers and visual features, but must implement the following four functions:

e view.initialize(): Calls upon the view to create its visual elements and add its

individual interaction handlers.

e view.get_focused_devices(): Returns whichever devices are currently visible in
the view. This is used for populating the model.signal and model.connection

data structures, as well as for saving and loading.

e view.cleanup(): Causes the controller to remove all interaction handlers.

4 Design & Implementation 40

e view.update_display(): Called whenever the model changes. The view is not made
explicitly aware of what has changed, but only that a change has occurred. In each
view mode, this call causes visual features to be cleared and re-drawn. Though
this creates more processor overhead (see Section 5.2), it allows for much greater
flexibility in designing new views. The model does not need to be aware of any

specific informational requirements for each view.

4.1.2 Top toolbar

It is sensible to include certain tasks and information providing structures across visualiza-
tion modes. In light of this, a single view-controller pair runs continuously in MapperGUI
in the form of a toolbar at the top of the window. As a part of the code structure, it com-
municates independently with the monitors and other view-controller pairs. This toolbar

contains all administrative controls and connection modification fields.

Load/Save Buttons Connection Mode Selectors Refresh Button
\- Visual Mode Selection \ FEzxpression Editor l
v / & ‘ \
Load Save | List 7 3 Byp Line Calib EXPr y=exp(x)+x O
Src Range:| o© 10 DestRange: | o |
! f > N
Logo Source Range Editor Destination Range Editor

Boundary Mode Selectors

Fig. 4.2 The upper toolbar

o Administrative controls

— Load/Save Buttons: These elements respond to clicks to save and load mappings,

as discussed in Section 4.4.1.

— Visual Mode Selection: A drop-down menu containing all view modes for user

selection.

— Refresh Button: When clicked, all data residing on the model is erased and
re-gathered. This is useful if the monitor somehow desynchronizes with the

network.

4 Design & Implementation 41

e Connection modification: The following controls are only available when the user

selects a single connection.

— Connection Mode Selectors: An array of buttons allowing the user to choose

between available connection modes.

— Faxpression Editor: Here the user can input a custom expression if the selected
signal is in the Ezxpression mode. In other connection modes this field displays

the connection’s expression but is not editable.

— Source Range Editor: These two numbers display the maximum and minimum
values of the input signal. These fields is only editable in the Line connection

mode.

— Destination Range Editor: Same as above but for destination signals. Due to

boundary conditions these fields are useful in all modes.

— Boundary Mode Selectors: Two buttons that cycle through the five boundary
modes for the maximum and minimum destination values. A small graphic

represents each mode.

All interface features not present in the top toolbar are part of the current visualization
mode and reside in a “container” element below, occupying the remainder of the window.
The file and communication structure described in this Section allows for quick mod-
ification and extension of the interface. All components are modular, so developers can
program new visual modes relatively easily. Hopefully this will eventually lead to a GUI

with many useful view modes that can accommodate nearly every use-case for libmapper.

4.2 Integration of Interface Features

Development began by unifying features of the Maxmapper onto the Webmapper code.
Webmapper was selected as a starting point because of the cross-platform nature of a web-
based implementation. The general two-table structure of Maxmapper and Webmapper

created the first view mode of the interface: ListView.

4 Design & Implementation 42

4.2.1 Structure of ListView

Of all currently available views, ListView provides the most straightforward way to visualize
and interact with libmapper. Two tables dominate the visible area listing source elements
on the left and destination elements on the right. Bézier curves sit on a central canvas
and form lines between associated list elements on each side. Because these curves do not
always represent the same data structure, the lines themselves are referred to as arrows by
the GUI code and by this document.

oee mapperGUI "
o~ loadSave (s s Byp Line Calib Expr Src Range Dest Range @]
All Devices Jtestsend.1 /source.3 fsource.2 Jsource.1 /source.5
Sources Links Destinations
name outputs IP port hide unconnected name inputs IP port
fsource.5 2 142.157.160.268 18842 ftestrecy. 1 4 142.157.160.268 19314
fsource.4 3 142.157.160.28 18365 fdest.5 2 142.157.160.28 15605
ftestsend. 1 4 142.157.160.28 1217 fdest.1 3 142.157.160.28 17294
fsource.3 3 142.157.160.28 19996 fdest.2 3 142.157.160.28 18961
fsource.2 2 142.157.160.28 12699 fdest.4 2 142.157.160.28 11679
fsource.1 1 142.157.160.28 14392 /dest.3 4 142.157.160.28 10873
6 of 6 devices 5 of 5 links 6 of 6 devices websocket open

Fig. 4.3 ListView with all devices selected

The view itself is divided into two major modes: “All Devices” and linked devices.
Switching between these modes is accomplished through tabs that appear at the top of the
container. In the All Devices tab, ListView lists network devices, as in Figure 4.3. Source

devices inhabit the left table, while the right table lists destination devices. Intermediate

4 Design & Implementation 43

devices* will be listed in both tables. The view displays device metadata as columns of
each table. Here arrows represent links between devices. Since no connections or signals
are shown, most of the top bar (see Section 4.1.2) is disabled in the All Devices tab. Saving

and loading are also disabled.

06e mapperGUI ",
"\, Load Save | List ¢ Byp Line Calib Expr y=x*(2.7)+(-5) Src Range:| o 10 DestRange: X| -5 22 || O

All Devices ftestsend.1 /source.3 /source.2 fsource.1 /source.5

Sources Connections Destinations dest
name type length units min max hide unconnected name type length units min max
/dest.&finsigd f 1 undefined 0 1
/dest.Bfinsig1 f 1 undefined 0 1
/dest.&finsig2 f 1 undefined 0 1
ftestsend. 1/outsig_3 f 3 undefined O 10 /dest Bfinsig3 f 1 undefined 0 1
/dest.Sfinsigd f 1 undefined 0 1
/dest.Bfinsig1 f 1 undefined 0 1
/dest. 10finsig0 f 1 undefined] 1
/dest. 10finsig1 f 1 undefined 0 1
/dest. 10¥insig2 f 1 undefined 0 1
/dest. 11finsig0 f 1 undefined 0 1
ftestsend. 1/outsig_1 f 1 Hz 0 10 /dest. 11finsig1 f 1 undefined 0 1
/dest. 11finsig2 f 1 undefined 0 1
/dest. 11finsig3 f 1 undefined 0 1
/dest. 12finsig0 f 1 undefined 0 1
/dest. 12finsig1 f 1 undefined 0 1
/dest. 13finsig0 f 1 undefined 0 1
/dest. 13finsig1 f 1 undefined 0 1
ftestsend. 1/outsig_2 f 1 mm 0 10 /dest. 14finsig0 f 1 undefined 0 1
/dest. 15finsig0 f 1 undefined 0 1
/dest. 15finsig1 f 1 undefined 0 1
/dest. 16finsig0 f 1 undefined 0 1
/dest. 16finsig1 f 1 undefined 0 1
/dest. 16finsig2 f 1 undefined 0 1
/dest. 16finsigd f 1 undefined 0 1
ftestsend. 1/outsig_4 f 1 undefined O 10 /dest. 17finsig0 f 1 undefined 0 1
/dest. 17finsig1 f 1 undefined 0 1
/dest. 17finsig2 f 1 undefined 0 1
4 of 4 signals 7 of 10 connections 27 of 31 signals websocket open

Fig. 4.4 ListView with device testsend.l selected

MapperGUI draws a tab for every source device with at least one link to a destination
device. Clicking on any of these tabs will redraw both tables. The left table now shows all
child signals for the selected source device, while the right table displays child signals for
every destination device linked to that source. In this mode, arrows represent connections

that can be modified using the top toolbar.

4Devices with both inputs and outputs, such as implicit mappers described in Goudeseune (2002).

4 Design & Implementation 44

4.2.2 Display libmapper metadata

Tables in the original Webmapper interface have no headers. Without these queues, only

a small amount of metadata is provided (see Figure 3.4).

Table 4.1 Metadata available in Webmapper versus ListView

webmapper ListView

Devices Signals Devices Signals
name name name name

IP address data type IP address data type
port vector length | port vector length

number of inputs units
number of outputs maximum value
minimum value

By incorporating a useful feature of Maxmapper, column headers have been added to
the ListView. New pieces of device and signal metadata are also included, as listed in Table
4.1. Tables support additional metadata, as they are filled by a generic function that will
include any data found in the model.

In general, MapperGUI tries to keep possible extensions to libmapper like this in mind.
Very little is assumed about the network itself. In turn, the only device metadata that must
exist is the device name and number of inputs/outputs. MapperGUI uses the number of
inputs/outputs to place a device into either the source or destination tables. For signals,
MapperGUI takes vector length into account when deciding whether two signals are com-
patible and can be connected. However, not including length in the signal metadata will

not result in an error.

4.2.3 Locating devices and signals

In networks with lengthy arrays of devices or signals, it can be difficult to find particular
objects. Three features from Maxmapper were adapted for use with ListView to aid in
such tasks.

First, regular expression® supporting search-bars are now present at the top of each

table. If the user types an expression of any kind into either of these fields, ListView will

®Regular-Expressions.info - Regex Tutorial, Examples and Reference - Regexp Patterns. [Online]. Avail-
able: http://www.regular-expressions.info/. Accessed August 2, 2013

4 Design & Implementation 45

filter elements displayed in the table beneath. Table rows can be filtered not just by the
names of the signals/devices, but also by length, units, IP address or any other piece of
information in the table row. To make the filter more responsive the code runs with every
key press such that the table is dynamically modified as the user inputs characters to the
search field.

A common use-case for Maxmapper was a large list of signals with only a handful of
connections that needed constant modification. Obviously scrolling through a list with
hundreds of rows, only to repeatedly select between the same handful of connections can
be very tedious. To assist these users Maxmapper features a “hide-unconnected” button
that was incorporated into ListView as well. The button sits in a previously unused piece
of screen above the central canvas (see Figures 4.3 and 4.4). When clicked, the GUI hides
all signals not currently connected to any others, the text on this button then changes to

“show-unconnected.”

AlDevices | fsources fsourced AlDevices | sourco§ fsourced
Sources Links Destinations Sources Links Destinations

namo. outputs 3 pot hide unconnocted namo show unconnected name. inputs 3 port

E
3

- 1 27001 e — et 4 127001 19

122001 18233 Isoucos 1 121001 B 2 127001 10617

20f2links 360f36 devices 777 websocket open 20136 devices 20i2links 20136 devices websocket open

(a) list view with 72 devices and 2 links (b) same network, filtered using "hide unconnected" button

Fig. 4.5 Functionality of hiding unconnected elements on a network with
many devices and few links.

Finally, tables can sort themselves by individual columns. Signals and devices are
initially placed into the table in whichever order they appear in the model. Upon a click to
any column header, the table sorts the information “descending” (lexicographically) by that
column. A second click on the same header will re-sort the information in an “ascending”

fashion. Users can sort table rows by any column appearing in the table.

4.2.4 Visual feedback

User feedback was a very important part of the design process (see Section 5.1). One

observation re-iterated by nearly all users of MapperGUI and prior GUIs was that it became

4 Design & Implementation 46

extremely frustrating when the display became out of sync with the network or when it
seemed like the GUI might be out of sync. To ameliorate these difficulties, MapperGUI
incorporates a few Maxmapper features entirely for visual feedback.

At the very bottom of the window is a bar displaying the number of elements on the
network versus the number currently visible. For example, if there are 36 source devices on
the network, but the user has filtered out all but two, then the field below the source table
will read “2 of 36 devices” (as in Figure 4.5). These data are also shown for destination
devices, links, connections and signals. This is done in order to help the user diagnose
technical problems. If a desired signal does not appear, perhaps the device has become
unresponsive or the user has encountered an error in MapperGUI. If the user has simply
filtered out the signal somehow, it is much more straightforward to see this immediately
than to begin searching for possible technical problems.%

The top toolbar automatically reflects metadata for selected connections. Expressions,
connection modes and ranges can be observed simply by clicking on the arrow representing
a connection. The toolbar displays non-editable fields (depending on connection mode) as
slightly more transparent. Arrows are re-drawn with dashed lines for muted connections,
as in Figure 4.4.

Large tables are more easily navigable when rows have “zebra” striping. The display
re-calculates this alternate row striping any time a user filters the view. Rows highlight
themselves when selected. Any number of rows on either table can be selected simultane-
ously. Row highlighting works in combination with row striping (see Figure 4.6).

By incorporating popular visual feedback elements from Maxmapper, we were able to
make the display more robust and useful. Though difficulties with interaction can still
occur (missing devices, unresponsive connections, etc.), good visual feedback should allow

users to more quickly diagnose and solve these problems.

4.2.5 Improvements to user interaction

The most common user complaint about Webmapper was the nature of its interaction. In
order to form a connection, a user must click on a source device, then a destination device

and then finally click a “connect” button. Even for simple mappings, this was seen as

6libmapper and MapperGUI are both at a stage of development where bugs are an inevitable part of
the user experience. We like to call them “features.”

4 Design & Implementation 47

000 mapperGUI e
.\. Load Save | List 3 Byp Line Calib Expr y=x*0.1)+-0) Src Range:| o 10 DestRange: -| o 1 | O

All Devices Jtestsend. 1

Sources Connections Destinations

name type length units min max hide unconnected name type length units min max
ftestsend. 1foutsig_1 f 1 Hz 0 10 ftestrecy. Vinsig_1 f 1 undefined o 1
testsend. 1/outsig_2 f 1 mm 0 10 ftestrecy. 1finsig_2 f 1 undefined 0 1
ftestsend. 1foutsig_3 f 3 undefined 0 10 ftestrecv. 1/insig_3 f 3 undefined 0 il
[testsend. 1/outsig_4 f 1 undefined o 10 ftestrecv. 1finsig_4 f 1 undefined 0 1

4 of 4 signals 3 of 3 connections 4 of 4 signals websocket open

Fig. 4.6 Multiple selection and row striping in ListView.

overly cumbersome. In order to make MapperGUI useful, we clearly need to improve on

interaction speed. Fortunately UI features in Maxmapper help solve this problem.

Draggable links and connections

The drag-to-connect-gesture is common among similar interfaces (Robillard 2011, Bullock
et al. 2011) and it is featured in Maxmapper as well. Though more advanced to program
than the improvements listed above, it was seen as necessary to get libmapper users to
switch from Maxmapper to our GUIL

The user can click on any table row and drag onto the central canvas. Upon doing
so, a slightly thicker Bézier curve begins to follow the mouse pointer about the canvas.
Incompatible signals become transparent. Once the mouse pointer comes within 50 pixels
of the other table, the drawn arrow snaps to the nearest row if it is compatible, highlighting
that device or signal. The user can then scroll the mouse up and down the rows of the

target table and the drawn arrow will continue snapping to the nearest available row. Once

4 Design & Implementation

48

@ Chrome File Edit View History Bookmarks Window Help

O @ o= uuais

®& Chrome File Edit View History Bookmarks Window Help

Bos t @ =144 Qi

oo

o Load
AlDevicos ostsend.1
Sources

name type lengih

Hestsond.toutsig_1 [

fresisend. Youtsig 4 [

4of4signals

(a) Drawing begins by dragging from any row.

units

e

mapperGUI

Connections

max hide unconnected

00f0 connections

Destinations

name tpe lengh unis min max
' dived 0

Restrees s [wived 0

[' 1 e 0 1

4of4signals websor

000
o< __ Loadsawe
AllDevices hestsend 1
Sources
mo type _lengt

estsane Yoz 4 '

4of4signals

te o
o o

a o
]

mapperGul

Connections

n max hide unconnected

Destinations

IS

o T~ pesteontinsa 1

000 connections

st insia 4

4of4signals

type

lenginunit min max
delved 0 1
defined
' e 0 1
ocke!

(b) Drawn arrows "snaps" to nearby compatible signal.

& Chrome Fie Edit View History Bookmarks Window _Help HO6s5 @ o= uuaiE & Chome file Edt View History Bookmarks Window Help 05 1 @9 = 1m Qs
eoo apperGul 0 mapperGll)
o~ LoaaSave (U + I¢) o~ LoaaSave i 8yo [l Cailo Exr - StcRange: 5 [10] Destiange: <[& T T |+ I¢)
AlDovices Rostsena AlDovces Hostsend
Sources Connections Destinations Sources Connections Destinations
namo oo longh unto mn max oo uncomectod namo oo lngn uis mn max namo T S e — namo yeo logn us mn max
e o w \ — o aired o remsemaosmgbil IR p— et wadood 0 1
testsend. Youtsig_2 t mm o 10 hestrecy. Vinsig_2. 1 1 defined o 1 hestsend. t/outsig_2 m o 10 S~ Hhestrecy. /insig_2 f 1 undefined o 1
wos o o s e wes -

Yousi © a0 w0 e wiived 0 Hestsard hosa ¢ : a0 0 e s wieived 01

4otasignals 00t0 connecions 4ot 4signals websocket open otésignais 1011 conneciions 4otasignals wabsockstopen

(c) Drawn arrow snaps to desired signal.

(d) Connection is formed on mouse up.

Fig. 4.7 Draggable links and connections.

the user releases the mouse button, MapperGUI sends a message to libmapper asking either

to connect the appropriate signals or link the appropriate devices.

ListView does not draw the final linking/connecting arrow until a confirmation message

is received from the monitor by way of libmapper itself. Figure 4.7 demonstrates a dragged

connection starting from a source signal and ending on a destination signal, though the

same gesture is possible beginning with destination elements.

Keyboard shortcuts

To further accelerate GUI operations, some keyboard shortcuts were added:

For PC users, the “select all” key command is “control + a.” Tab changing is meant

to further mimic functionality of web browsers.

4 Design & Implementation 49

Table 4.2 Shortcut keys in ListView

key combination action from Maxmapper?
¢ Connect/link selected rows no
delete Disconnect /unlink all selected yes
command + a Select all visible connections/links yes
alt + tab Change tab to the right no
alt + shift + tab Change tab to the left no
m Mute all selected connections/links yes

4.3 Extension of Control and Visual Elements

With the new web-based framework up and running, it is fairly easy to extend interface
features beyond that of Maxmapper. Requested features that would have been very difficult
to implement in Max/MSP were added to MapperGUI. Also, two new view modes were

created, taking advantage of the modular, MVC-style codebase.

4.3.1 Multiple selection

Unlike in Maxmapper, it is possible in our GUI to select table rows with a mouse click.
Any combination of rows can be selected on either table. This allows for multiple signals
or devices to be connected/linked simultaneously by pressing the ‘¢’ key. This particular

command connects all selected source to all selected destination elements.

B s ————— 2 i e ————— G,
o LomdSave [t 5] o Line Call & sehe Dest Range () e~_ LoadSave (uw | Byp 8 Celb Expr StcRenge: 0 | 1| DestRange: < o | 1 > ¢}
MiDevess fsouca 1 fearced Mioevcss fsouce 1 fearced

Sources Connections Destinations Sources Connections Destinations
name po lengh unis min max hido uncomociod name Yoo lengn wts mn max name oo lengh units min max hide uncomeciod namo oo lengn uts mn max

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

wraeinza 0

nnnnnnnnnnn

wddived 0 1

des: 297nsigs 1 weed 01 L geszieigs f 1 uwdeed 0 1

4of4signals 0010 connections 6ofGsignals websooket 0pen 4ofasignals 6016 connections 6016 signals websocke! o pen

(a) Multiple rows selected (b) After pressing the ‘¢’ key

Fig. 4.8 Simultaneous connection of multiple signals

Users can also depress the “shift” key to select multiple rows simultaneously, a func-

tionality common in other list interfaces, like the Windows and Macintosh file browsers.

4 Design & Implementation 50

Clicking anywhere in the container, except for the tables, deselects all currently selected

rows and arrows.

4.3.2 Accommodating varying window sizes

One notable shortcoming of the Maxmapper GUI is its inability to resize the application
window. This creates problems for users with small screens, or those who would like to run
Maxmapper side-by-side with other applications. MapperGUI can be resized in the same
fashion as any other application, supporting windows as small as 100 x 124 pixels (about
3cm x 3cm).”

Upon resizing, the size and shape of various on-screen elements change dynamically
to fit the new window size (see Figure 4.9). The two device/signal tables always occupy
two-fifths of the container area each, with the central canvas filling the remaining fifth. The
container itself fills the entire window not occupied by the top bar. It will expand to fill
any size, but has a programmed minimum height of 150 pixels (about 4cm) and minimum
width of 700 pixels (about 18cm). Upon hitting these minimum dimensions, the GUI adds
scroll bars to allow the user to view the entire display. Elements within the top menu fold
onto multiple lines to accommodate narrower windows.

Maxmapper table rows have fixed height. Unless many devices or signals are present
large parts of the display are often empty. ListView instead calculates table elements to
fill the available space, as can be seen in most of the figures of this chapter. Minimum row
heights are set to 17 pixels. Once there is not enough space to accommodate all necessary

rows, MapperGUI adds a scroll bar to the appropriate table.

4.3.3 Visual redesign

Keeping in line with visual guidelines summarized in Section 2.2, we overhauled the look
of the Webmapper interface to reduce visual noise, make better use of color and generally
improve its aesthetic appeal.

First, much of the display area was wasted for simple networks, leading to the dynamic
row sizing described above. The display was plagued by 1 + 1 = 3 noise, causing negative

space like the central canvas to attract the eye and making the display seem much more

7 All physical screen sizes quoted in this Section are for a 72 pixel-per-inch hi-res display. Lower resolution
displays will result in larger windows.

4 Design & Implementation

51

000

.\ Load Save [List 3

All Devices Isource.26 /source.33

Sources

name outputs IP port.
ftestsend. 1 4 192.168.0.108 12329
[source.35 2 192.168.0.108 12986
/source.33 4 192.168.0.108 10862
/source.32 4 192.168.0.105 18457
fsource.31 1 192.168.0.108 12871
/source.30 1 192.168.0.105 16357
/source.28 1 192.168.0.108 13787
/source.27 4 192.168.0.105 19788
[source.26 2 192.168.0.105 10618
/source.25 3 192.168.0.105 12793
/source.23 3 192.168.0.108 18443
/source.22 2 192.168.0.105 19717
/source.20 3 192.168.0.108 17558
[source.19 2 192.168.0.108 13058
/source. 17 4 192.168.0.108 13800
/source. 16 2 192.168.0.105 14839
/source. 14 3 192.168.0.108 12022
/source.13 4 192.168.0.105 17704
/source. 11 1 192.168.0.108 16722
[source.9 3 192.168.0.105 14767
fsource.7 2 192.168.0.108 14824
/source.B 3 192.168.0.105 16332
/source.4 4 192.168.0.108 12489
/source.3 3 192.168.0.105 16186
fsource.2 4 192.168.0.108 18730
[source.1 2 192.168.0.108 18748

26 of 26 devices

All Devices /source.26

Sourct

name outputs
frestsend.1 4
/source.35 2
/source 33 4
/source.32 4
/source.31 1
/source.30 1
/source.28 1
/source.27 4
/source.26 2
/source.25 3
/source.23 3
/source.22 2
/source.20 3
/source 19 2

4

lemirra 17

26,0126 device

Links

hide unconnected

2 of 2 links

(a) List view at 1280 x 760 pixels

mapperGUI

IP

182.168.0.105
182.168.0.105
182.168.0.105
192.168.0.105
182.168.0.105
182.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
182.168.0.105
192.168.0.105
182.168.0.105
192.168.0.105
102 160 N AN

13000

mapperGUI

/source.33

Links

hide unconnected

2012 links

Destinations

name

[dest.1

/dest.2

/dest.3

/dest.7

/dest. 10
/dest.12
/dest. 13
/dest. 14
/dest. 16
/dest. 16
/dest. 17
/dest.19
/dest.20
/dest.21
/dest.22
/dest.23
/dest.25
/dest.26
/dest.27
/dest.28
/dest.30
/dest.31
/dest.32
/dest.34
/dest.35

ftestrecv. 1

inputs
3

WO oW R BB

w

w

B

26 of 26 devices

Destin

name inputs 1P

/dest.1 3 192.168.0.108
/dest.2 2 192.168.0.108
/dest.3 4 192.168.0.108
[dest.7 1 192.188.0.108
fdest.10 2 192.168.0.105
fdest.12 4 192.168.0.105
fdest.13 4 192.168.0.108
fdest.14 2 192.168.0.108
fdest.15 4 192.168.0.108
/dest.16 1 192.168.0.108
/dest.17 1 192.168.0.108
[dest.19 2 192.168.0.105
fdest.20 1 192.168.0.108
/dest.21 1 192.168.0.105
Irast 22 A 100 1/A N 105
26 of 26 drsw open

(b) Same view

resized to 650 x 450 pixels

IP

192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105
192.168.0.105

port

19017
10060
14747
19884
11801
17837
12857
12088
12748
16851
19087
12116
17717
16462
18134
16063
13006
11449
1813
19838
14877
13185
16875
10978
19997
12356

websocket open

Fig. 4.9 Resizing the ListView window. Rows condense, scroll bars appear
and the top menu collapses in the smaller version.

4 Design & Implementation 52

[N Ns) mapperGUI e
[Load Save | List = |[Byp Line Calib Expr [y-0 j [Saurce Range: o 1] [Dasl Range: = [0 1 +] :‘“‘Dm‘“mw
[All Devices T Isource.26 T /source.33]

Sources Connections Destinations

name type length units min_ max hide unconnected name type length units min max
Isource.28/outsig0 { 1 undefined 0 1 ———____‘_____ /{dest.1/insigD f 1 undefined 0 1
Isource.28/outsig1 f 1 undefined 0 1 {dest.1/insig1 f 1 undefined 0 1

Jdest. 1/insig2 f 1 undefined o] 1
2 of 2 signals 1 of 1 connections 3 of 3 signals

Fig. 4.10 ListView before visual redesign

complex than necessary. All black borders were removed and font weight was lightened for
all text, drastically reducing visual noise. Arrows now display with one-half of the stroke
weight. This too reduces visual clutter and also differentiates arrows that are in the process
of being drawn.

The pink background, though whimsical and popular at the IDMIL, was deemed too
bright to be used effectively over such a large area. It also distracted from the red color
used to highlight selected connections and links. A neutral white was selected for the
background, both to blend with input areas and to cause more contrast with row striping
and highlights. Aside from the red for selected arrows, all colors are now a variation of an
unobtrusive gray-blue. This contributes to the visual uniformity of the display, but also
allows us to make visual distinctions between odd rows, even rows, selected rows, table
headers and table footers without using borders.

Finally, a logo was added to the upper left-hand corner of the display. The logo is a

simplified version of the overall libmapper logo® with a white background. The red color

8Can be seen at www.libmapper.org

4 Design & Implementation 53

for highlighting is maintained to match highlighted links and connections.

4.3.4 Alternate views

Jon Wilansky, a fellow master’s student at the IDMIL, created two new views for Map-
perGUIL. These took advantage of the new MVC architecture for the program. With these
views in place it finally became possible to test our foundational hypothesis that a variety
of displays would aid in mapping tasks. Wilansky (2013) presents a much more detailed

description of these views.

GridView

006 mapperGUI %)
o~ LoadSave [Grid ¢ Byp Line Calib V=x'x SrcRange: o | 1 | DestRange: <« o | 10 ||| @)
e I = Y e)

|'801n08/
01"80unos
L190un0s;
Z100n08;
£1-e0inos/
1-80inos/
9}'92In0S/
061s1n0/0 | '81N0S/
161sIn0/0 }"29n0s/
0Bisinojg | e0inosy
Bisinoyg |"@2inos;
26isinojg | e0inosy

/dest.1 | /dest.10/insig0

Idest10 J— —] I —
Idest.10finsigt

/dest.11 | |

/dest.10/insig2

Idest.12 | |
/dest.14/insig0
/dest.13 | |

. /dest.14/insig1 ..
Idest.14 — _|_ — | — —
/dest.14/insig2 .

~080 vk | g o] <] ox] ~@80 - |] 00

websocket open

/dest.15 | |

/dest.14/insig3

Fig. 4.11 GridView. The grid on the left shows network devices and the
grid on the right displays signals and connections.

First programmed and implemented was the “grid” view. The network is represented
with two m-by-n grids. The leftmost grid lists source devices on the horizontal axis and

destination devices on the vertical axis. Links are formed by clicking on the square at

4 Design & Implementation 54

the intersection of the desired source and destination devices. The second grid represents
signals and connections. Signals must be explicitly added to this grid from the device grid
by selecting the intersection or labels and clicking “add,” or by pressing the “a” key.

Both grids are fully filterable using text input fields below, which borrow code from
ListView. Grids are also zoom-able using the endpoints of the scroll bars. Either grid can
be hidden, allowing the user to focus the entire display on a single grid. Because this view
is more customizable than ListView, the designer added an option to save view settings,
causing GridView to remember which devices have been added to the signal grid.

GridView provides visual feedback by highlighting the associated row and column when
the user places the cursor over a grid intersection. Text of the relevant devices/signals
is also highlighted in this situation. Colors are designed to match the gray-blue style
in ListView, hopefully creating the feel of a unified interface for MapperGUI. GridView
highlights selected grid squares with the same red color as the one used in ListView and
the logo.

The top bar looks and functions in the exact same fashion for GridView as in ListView.
MVC architecture allows us to create modular view-control elements like this to be used

with a variety of other view-controller pairs.

HiveView

The “hive” view attempts to address the problem of visualizing entire networks simulta-
neously. This visualization borrows many techniques from Vizmapper (see Section 3.5.2).
Solid black lines emanating from the center of the view signify network devices. Source
devices are placed in the top half of the display, destination devices on the bottom. Small
circles representing child signals are distributed throughout each line. Thin blue curves
flow between these circles, signifying connections.

On the left side of HiveView, a menu displays an expandable and collapsible list of
all network devices. Expanded entries in this list display child signals. Connection lines
highlight to red when clicked, and the bottom bar (colored our standard blue) presents the
names of the connected signals. Placing the mouse cursor over device lines highlights all
connections to that device. The same is true for mousing over individual signals or any
item in the list on the left.

A text filter in the bottom right will filter the namespace on the left side of the screen.

4 Design & Implementation 55

00806 mapperGUI =]

—_ Load Save | Hive : Byp Line Calib Expr Src Range Dest Range o
Show Al Hide All

Expand Al Collapse All

Sources

+ #isource.1

- #source.10
- foutsig0

+ #isource.11
+ #isource.12
+ #isource.13
+ #isource.14
+ #isource.16

Destinations
+ @idest1
+ idest10
+ idest11
+ idest12
+ idest13
+ idest14
+ idest15

Source/Destination Fiters

el /source.10/outsig1 /dest.10/insig2

tl websocket open

Fig. 4.12 HiveView

Connection lines can also be hidden by toggling check-boxes in the device list on the left.

HiveView is not yet as interactive as the other two views. As of the writing of this
document it is not yet possible to form connections or links by any means, though a
dragging-type interaction like the one in ListView would be most desirable. It is possible
to modify selected connections using the top toolbar, as the MVC structure preserves this

functionality across views.

4.4 Other GUI Features

4.4.1 Saving & loading

Saving and loading presents an interesting problem for libmapper networks. Upon clicking

the “save” button, connection information is serialized into a JSON? file that the user

9JavaScript Object Notation. A human-readable data-interchange format. [Online]. Available: www.
json.org. Accessed July 30, 2013

4 Design & Implementation 56

is asked to name. Only visible connections, ones that are present in the selected tab in
ListView, are recorded to the save file. Saving is not yet fully supported for GridView or
HiveView.

A “naive” interpretation of loading mappings is implemented here. Though device in-
formation is encoded into the save file, it is not considered in the loading process. Mappings

are loaded for all applicable signals. For example, in the following situation:

e Devices tstick.1, tstick.2 and granul8.1 all exist on the network

e Both tstick.1 and tstick.2 have child signals named raw/accelerometer/1/x
(they both should, as they are both t-sticks)

e A mapping is loaded that contains a connection tstick.1/raw/accelerometer/1/x

— granul8.1/filter/envelope/frequency/low

For the above case, the single connection will be loaded for both t-sticks, creating two
total connections to granul8.1’s low filter envelope. If two instances of the granul8 syn-
thesizer exist, then the connection will be loaded four times, one for each iteration of t-stick
— granul8.

This naive implementation is used to maintain a modularity for mappings such that
similar devices and equivalent devices with different names can share mappings. This
makes sense for libmapper networks, as they are ideally collaborative, and ordinal numbers

appearing after device names are arbitrary.

4.4.2 Creation of a standalone & distribution

Though it is already in use, we would like for MapperGUI to be quickly adopted by a
greater number of users. This would assist us in debugging and improving the interface. It
would also hopefully bring a new set of users to libmapper itself, encouraging use of the API
and its implementation into new DMIs. Unfortunately, to get libmapper and MapperGUI
up and running from the source code requires installing package management software and
compiling multiple dependencies. This is rather time-consuming and well beyond what
should be expected of a non-programmer.

To aid in ease-of-use and adoption, a “standalone” version was compiled for MapperGUI.

It is presently available for free download at www.libmapper.org/downloads under the

4 Design & Implementation 57

name Webmapper!®. The standalone includes libmapper code and can therefore be run on
a machine that does not have libmapper explicitly installed. To the user, it looks like any
other Macintosh application: an icon on which to double-click.

The current version is still very much in test phase and includes a readme file describing
likely bugs and the non-ideal startup method.!! It presently supports Macintosh OSX only,

though Linux and Microsoft Windows releases are planned.

4.5 Summary

Work on MapperGUI began with the Webmapper interface described in Section 3.5.3. An
MVC structure was built around the code to make the program more extensible and to
easily integrate of multiple views. Missing features from Maxmapper were incorporated into
the main view mode, ListView. ListView was extended in various ways, taking advantage of

the new codebase. Two new view modes, GridView and HiveView,!?

were then integrated
into the main GUI. Finally, the code was compiled together as a standalone application

ready for wide distribution.

10The name has not yet been officially changed.
HRunning the program and navigating to localhost:50000 in the Google Chrome browser.
12Both designed by Jonathan Wilansky at the IDMIL

58

Chapter 5
Applications & Discussion

This chapter presents a discussion of MapperGUI’s software design and its consequences
for musical mapping, as well as revisions made to the code since its initial release. The
interface’s features are explored in an attempt to evaluate the successes and failures of
the design. Feedback from users was gathered throughout the project as well as through
informal interviews after the software’s release. This feedback is summarized and presented
here. A modification to the code, motivated by feedback from users, is also described.
MapperGUI is then compared to similar interfaces, analyzing especially new features that
could be incorporated into our flexible framework. Finally, the system is evaluated overall

with respect to the project’s initial goals.

5.1 User Feedback

The entire MapperGUI project began with user feedback for prior libmapper GUIs. Through-
out the design process, functional versions of MapperGUI were provided to libmapper users
at the IDMIL. Their feedback was crucial to the evolution of the software. After the first
official release of MapperGUI, long-term users were informally interviewed. These users
were questioned specifically about their particular applications of MapperGUI.

Even at this early stage of release, users have already incorporated MapperGUI into a
wide variety of projects. This reflects our initial assumptions that a successful GUI must
be flexible. Throughout development, MapperGUI was used as an experimental tool and

aid in designing DMIs. The interface was used in concert with motion capture systems,

5 Applications & Discussion 59

vibrotactile feedback and even was loaded onto a Raspberry Pil. During this process, users
encountered problems, had ideas for extensions and used the GUI in ways we could not

have anticipated.

5.1.1 General feedback

Most of our users had experience with libmapper and had attempted to compile and use
the library from scratch. Many commented on how well MapperGUI lowered the barriers to
entry for non-technical users. Users who had never used libmapper before pointed out how
much time had been saved in their work flow, as opposed to using hard-coding mappings.

The best reviewed feature of MapperGUI was the automatic linear scaling control found
in the top bar. Some users previously detected signal minima and maxima by hand, then
directly calculated and applied linear scaling functions. With MapperGUI, the task is
trivially easy: one must simply enter the desired destination range and set the connection
to the Calibrate mode. Most of the “magic” in this feature is the result of the libmapper
API, but providing users access through an easy-to-use GUI is also important. One user
expressed frustration because she was not aware this feature existed and instead continued
to painstakingly condition her signals in Max/MSP. She was very impressed with how much
time was saved by switching this workload to libmapper and MapperGUI.

Use of the other connection modes was rare. Users found the expression input box
difficult and opaque. Directly calculating the appropriate mathematical expression was
seen as too abstract. This is a sensible problem to have, as difficult text-based input
is precisely the thing that MapperGUI is designed to avoid. One user suggested a two-
dimensional graphical tool, showing the transposition from input to output would help
with this task.

Some users requested that signal values themselves be available in MapperGUI. This
would create a lot of bandwidth clutter, as all devices would need to constantly send data
to the GUI. It was suggested that the user could be able to query signal data by clicking

or placing the mouse cursor over signal names.

'Raspberry Pi — An ARM GNU/Linux box for $25. Take a byte! [Online] Available: http://www.
raspberrypi.org. Accessed August 1, 2013

5 Applications & Discussion 60

5.1.2 Saving & loading

Nearly all users made use of the saving and loading features in some way. For both experi-
mental and design-based setups, returning to prior mappings is very useful as it avoids the
tedium of performing the same tasks repeatedly.

We received criticism for the naive loading system. One user found it counterintuitive
that mappings would accumulate when loading multiple files, as he required rapid switching
between the same few mappings for his experiment. Once these mappings were created,
there was little that needed modification. For the experiment, it became tedious to erase
a previous mapping before loading a new one. In a live-performance context the amount
of delay inherent in this task would be unacceptable.

Another user wished to switch between mappings in his work, but required some kind of
intermediate space between the states. Each mapping represented a phase of a performance
with a novel DMI. For this application, loading would ideally have the option of blending
between two mappings such that the transition is not perceived as too sudden or harsh.
To maintain this functionality, the actual saving and loading of patches was transferred to
Max/MSP for his project, significantly reducing the utility of MapperGUI.

In a situation with many devices of the same class, loading a single mapping can be
somewhat absurd. Because each connection will be loaded m * n times (where m is the
number of similarly named input devices and n is the number of relevant output devices),
certain simple mappings can result in hundreds of unwanted connections upon loading.
Perhaps some kind of staging area wherein the user can explicitly designate devices to use
could solve this problem.

Another user asked for some kind of mapping preset that could be created and loaded
whenever the program is opened. With this feature, if the same experiment is conducted

repeatedly, the user would simply need to launch MapperGUI and begin to work.

5.1.3 Reliability & responsiveness

Multiple users commented on the frustrating nature of interacting with MapperGUI when
it became out of sync with the libmapper network. As one user stated, “The program is
not useful if you do not trust the display.” In this way small errors (devices not appearing,
signals not accepting connections, delays in operations, etc.) become a very big issue for

user satisfaction. Users reviewed the refresh button very favorably. If something seemed

5 Applications & Discussion 61

amiss with the GUI or the network and refreshing the display solved the problem, then
trust in the display was restored.

Some problems were due to errors in the libmapper code and were out of the domain
of MapperGUI. Others were created when MapperGUI code started to make assumptions
about the libmapper network. For example, with the original drag-to-connect gesture, the
drawn arrow persisted upon release of the mouse button. MapperGUI assumed that a
connection would be made and kept the arrow to avoid delays. Occasionally, the signals
were not connected due to dropped messages or incompatibility. In these instances the
faulty arrow, representing nothing, became very confusing. Due to negative feedback,
the code was changed such that a drawn arrow disappears immediately after the drawing
gesture. If the connection is successful, it is redrawn. This results in a slight flicker as the
arrow is erased and re-drawn, but this was much more popular than potential erroneous
arrows persisting in the display.

Some heavy operations, like scrolling and forming multiple connections, could create
significant delays in MapperGUI. Users responded very negatively to such delays, as they
were accustomed to computer programs responding much faster. Generally, multi-second
delays were thought to be errors, thus reducing the user’s trust in the application. We

explore solutions to this problem in Section 5.2.

5.1.4 Effectiveness of alternate views

GridView and HiveView have only recently been included into the program. As a result,
most of our users were much more familiar with ListView. Users reported that while
the alternate views were interesting, ListView was the most straightforward for creating
mappings. It was reported that GridView could be interesting once most of the mapping
was completed, as one could notice patterns that were not apparent in ListView. The
limited functionality of HiveView meant that, to most users, it was simply a visualization
tool. It was also extremely common among our test users for use cases to include very few
devices with many connections, meaning that the “whole-network” view in HiveView was
not advantageous.

Wilansky (2013) evaluates the three separate views by five criteria: time to learn, speed
of signal identification, speed of mapping creation, rate of errors, ability to visualize large

networks and subjective satisfaction. Evaluation was performed with a small group of new

5 Applications & Discussion 62

libmapper users and experienced users of prior GUIs. As in this research, it was found
that the ListView was the fastest for concrete tasks like signal identification but was by
far the least useful for manipulation of large networks. The HiveView provided the easiest
learning experience, while the GridView was fastest for creating specific mappings from
scratch. Interestingly, there was negligible difference between error creation in the three

views.

5.2 Improving Program Responsiveness

The extension of interface features discussed in Section 4.3 leads to some control possibilities
that could be difficult for MapperGUI to handle. The addition of shortcut keys and multiple
selection allows users to create and delete hundreds of connections with a single key press.
Naive saving and loading produces situations where dense mappings will accidentally be
applied to several instruments at once.

Though the view.update_display technique works extremely well for code modularity,
it generates awkward situations when dealing with massive network operations. Since the
system updates the entire display with each change to the network, deleting 100 links (if the
user is clearing a large network) results in 100 independent delete_link messages arriving
at the monitor. For each one of these messages, the display will fully re-draw itself. In
the case of ListView, all arrows will be cleared and redrawn with one fewer present, as if
the links are being deleted one by one. In total, 4950 arrow drawing operations? will occur
when deleting 100 objects, resulting in a significant delay.

As reported by users in Section 5.1.3, any GUI operation that takes more than a few
moments without some kind of visual feedback (like a “loading” bar) leads to frustration
and mistrust of the program. If the GUI is going to support these kinds of massive network

manipulations, there needs to exist some way to keep them under control.

5.2.1 Rate limiting functions

In order to prevent thousands of unnecessary display re-draws, a “waiting” period was
added to certain critical functions (Silberschatz et al. 2003). These functions no longer

execute immediately once called. Instead, a delay timer starts. If the function is called

2004+ 98 + 97+ ... +2+1 = w. Note that % arrows will be drawn for any n number of
connections or links.

5 Applications & Discussion 63

again during this delay, the delay timer simply restarts. The function is only executed once
the delay timer finishes. This way, if a function is called 100 times simultaneously, it will

only execute once after a short delay. Figure 5.1 shows the effect of the waiting period.

«

update display() function call update display() function call
Y timer starts timer starts 1
I |
I | .
VY timer completes timer restarts §<——function call
|
|
. 1
function

executes timer completes *

function
executes

Fig. 5.1 [Illustration of a delayed function.

Exactly how much time this delay should be set to is not obvious. If the delay is
too short, it is possible for massive network operations to still cause multiple redundant
display updates. A delay that is too long means that users may perceive the delays for
simple actions, like creating a single arrow. Another consequence of a long delay is that a
process which calls the delayed function at a regular interval could continuously restart the
tomer. In this case, the function will never execute, a situation known as “starvation.”

After some informal tests of delays between 17 and 1000 milliseconds, a delay of 33
milliseconds was selected for both functions. Substantial improvement in execution speed
was observed for even very short delays, as often hundreds of function calls would reach
the view.update_display pracitcally simultaneously. With delays closer to one second,
we saw little improvement in response to massive network operations and the delay itself
became noticeable. 33 milliseconds is in the range where nearly every operation results in
a single function execution and is imperceptible to a human user. The number 33 itself

was selected because it is the length of two screen refreshes on a 60 Hz display (a measure

5 Applications & Discussion 64

recommended by Silberschatz et al.).

5.3 Comparison to Similar Interfaces

Other systems exist to help non-programmers map control inputs to sound synthesis pa-

rameters. This section compares this research to these systems, some of which are paid

junXion File Edit Window Options O M f = 4 G (=1 (99%)
r T
800 0SCemoteCarageVideo.j4xml
- 1 [Patches | Actions Tables Variables |
~ =
Inputs [Video Events B o
Name valve | 13
i e
Detoc 12700 Input Sensors Action Output oo |
e 54 Input Sensors — Output __Solo_
X-pos center 51.59 el) XP1/1CTR 1 39
Y-pos center 71.44 | store A velocity :]
Width 88.30 [store B velocity ™
[stop last A =) XPL/ 1NON 69 0 L |
[update last A B} [Software Instrument | Master Track |
= e ™ T
[notes B + XPL/ 1NON 71 27 e rv
[H JXPL/ 1NON 55 0
[stoplasts 4] atiees ——
| update last B] Organs | Fili Afterglow
tL] ["sync seq. B Piancs and Keyboards » | Fontelina Fifths ‘
= + ['] Gorai Atmosphere
N /b [stop .¢] Sound Effects P
. _ - — Strings | | imperia Pad
) Video Object Edit [TR 7126 Synth Basics Inhaca Pulse
_— P Synth Leads i | | Ithaca Vox
Name: iPhone light View point: = Object Tracking \:] Video Filters r Synth Pads | | 1zmir Ambience
t Synth Textures » | | Kotu Chords
i Threshold 1 black | white | Woadwinds ¥ Lalaria Pad
¥ Details
Instrument Generator:
Interval —
— [Hybrid Basic +) » [Default B3
[Color Table 1 blend —
Effects:
R T 2 =TS
L RO O O :¥ Compressor Manual 2 (2]
: clear = & [Track Ecno)b [Manual 2 3
1 Despeckle = [_None e (#)
O — et —
T =01 [(Hone B (7]
T ;o TE— =
.......... Bt S0 [(Nene ——— t)» (7)
Z ST —
- = - Viswal EQ [Manual 33
Object Size Range e —
Minm ¥ Echo 0 e———100
T T B T [y = SE——
Maxm

DaleveInstranent (save Instrument...)

1.00 1/

Fig. 5.2 STEIM’s JunXion software

The Studio for Electro-Instrumental Music (STEIM) distributes JunXion (STEIM 2004),
a software application for controlling MIDI and OSC-based systems. JunXion automati-
cally detects input devices like computer mice and USB video-game controllers. The user is
able to drag child signals from these controllers onto one of 25 possible inputs. From there

users can switch to the “actions” tab, where destinations and connection properties can be

5 Applications & Discussion 65

customized. The program stores connection properties in groups that populate drop-down
menus in the central column. JunXion features a very interesting “state” system similar to
MapperGUT’s saving and loading. Once a successful mapping is created, users can change
the state, which starts a new mapping. With multiple mappings, users can quickly switch
between states. JunXion also has a very interesting graphical signal conditioning editor.
The program presents a two dimensional field and the user can draw, generate curves and
set bounds. Incorporating such a feature into MapperGUI would assist users who are

unimpressed by textual expression input.

@00 Untitled L
i v it g v Vouchalsaletaoidh b Ve
| J Default +
"u) 8000 LT R . 5:87} Q » "o N Start Pairing | | Reset Selection |
Pause OS5C input port Fresets Quick Look Parameters Filter - §
[Me & Event T Val Chan. & Arldress |
ssage vent Type alue an. - .
= 00=le=a9=6b=64=6
M ¥ jwiif2/accel/pry - 5 - . - z “ I N 1 M
V] pitch MIDI Note Channel Velocity G o 00-17-ab-26-eb-18 2
"
1: roll MIDI CC BT g 5 o R
2 yaw - E v v g 4 %
3: accel - H = z W 5 &
fwii{2/button/A MIDI Note H v v :
- . . « | Outputs
Swii /2 /button/B MIDI Note - ¥ -
—] AT ™ Pitch, Rall, Yaw] Raw Accels
: pit = -
it sl G [IR (x, y) [Raw IR
IR sensitivity: | 0 =N
[MotienPlus: b
[Continuous Mode s | [l Angular velocities
Smoothing
Accels = =
R —_ 1o
MotionPlus - 9,] 50

|| Sync LEDs with Preset #

[Battery Level 46%
P ————

mini @.0

Fig. 5.3 The OSCulator interface

The OSCulator system (Wildora 2012) is very similar to JunXion. Compatible con-
trollers appear automatically and can be mapped to MIDI or OSC signals. OSCulator
also relies on a drop-down menu based interface for selecting where and how the output

will be routed. As in JunXion, the idea of a “connection” is not emphasized. Instead,

5 Applications & Discussion 66

a MIDI or OSC message is simply sent on a specific channel (the receiving end must be
notified on which channel to receive messages). As can be seen in Figure 5.3, OSCulator
displays a real-time oscilloscope-like visualization for selected signals. A similar feature
would improve MapperGUI’s visual feedback, though it would require actual signal data
from libmapper.

The Eaganmatrix (HakenAudio 2013) partly inspired GridView in MapperGUI. The
signals of a single control and synthesis device are displayed on the x and y axes of a
grid display. Connections between the two are made by clicking on the intersections.
The Patchage interface (Robillard 2011) contains an interaction very similar to ListView:
objects containing lists of signals can be connected by dragging gestures. Max/MSP and
Integra Live (Bullock, Beattie, and Turner 2011) also feature this interaction, but neither

are necessarily for creating mappings.

5.4 Summary & Evaluation of Goals

A set of goals for the software was established at the beginning of this document. These
were to create an interface for libmapper that was easy to use and to make this interface
modular and multi-platform. Creating a system that was flexible and intuitive was of
primary concern. We also intended to unite features of the three prior GUIs, both to
capitalize on work already completed and create a single, standard graphical interface for
libmapper.

Our GUI currently exists in a distributable form, allowing Macintosh users to down-
load and use the software easily. Unfortunately, standalone applications for non-Macintosh
platforms are not yet available. Most features from prior interfaces were integrated into
a cross-compatible web-based system. A modular codebase was created for the applica-
tion, greatly improving the processes of maintaining and extending this GUI versus prior
interfaces. Two new view modes were integrated into the display, though it is too early to
conclude as to whether they significantly contribute to the flexibility of the system.

The software was provided to users, and thus tested in a variety of contexts. MapperGUI
was able to handle most use cases in its present state. All shortcomings were recorded and
those that have not yet been addressed are listed along with possible solutions in Section
6.2. Though it has not yet been the case, MapperGUI will likely be used to handle mappings

in live performance contexts in the future. This will give us a new perspective on how the

5 Applications & Discussion 67

software performs in a situation where instant reactivity is a necessity and errors can be

disastrous.

68

Chapter 6

Conclusions & Future Work

This chapter summarizes the work presented this thesis, presents conclusions and summa-

rizes possible avenues for further research.

6.1 Summary and Conclusions

This thesis began by exploring issues relevant to musical mapping interfaces. DMI designers
typically hard-code mappings into their designs, making collaboration, cross-compatibility
and modification difficult. Certain tools exist to aid these designers and their users, but
they are often inaccessible laypersons. Our work was motivated by this situation in mapping
software. MapperGUI aimed to lower the barriers to entry for those who wished to use
libmapper, a software library for collaborative and configurable musical mapping. The GUI
was designed to allow for quick and straightforward manipulation of musical networks.

Techniques from data visualization and user interface design were presented to illustrate
general principles used in MapperGUTI’s design. The ideas and structure of libmapper were
summarized to describe the requirements for the GUI. Prior user interfaces for libmapper
were described, as ideas and code were borrowed from them for the creation of MapperGUI.

The final GUI takes the form of a modular interface. Various independent view modes
can be used interchangeably, making MapperGUI useful for a wide variety of libmapper
networks. The code itself was structured in a modular fashion such that extensions could
be created more easily. The program was made accessible to libmapper users throughout
this project, and their feedback became a crucial factor in design decisions.

MapperGUI has met many of the goals set out at the beginning of this thesis work.

6 Conclusions & Future Work 69

Most importantly, interface is available, functional and very accessible. In this distribution
the majority of libmapper variables can be accessed and manipulated, with the notable ex-
ceptions of libmapper instances and link scopes. Within ListView, the most fully developed
visual mode, connection and linking are easy and intuitive. The program presents Grid-
View and HiveView for networks and tasks where list-type views are cumbersome, though
both are not yet as fully featured as ListView. Users can save and load mappings, although
these features have some notable shortcomings. The current release of MapperGUI is still
in a test phase, a number of issues need to be resolved before the software can be adopted

as a standard GUI for libmapper.

6.2 Future Work

6.2.1 Unimplemented features

A few features present in Maxmapper have not yet been implemented in MapperGUI.
Most importantly, MapperGUI currently does not support sending a signal as an instance.
Instances are one of the true strengths of libmapper. To design a way (even an inelegant
one) to allow the user to take advantage of this libmapper feature is a high priority for
MapperGUT’s next release. Users are also unable to edit link scopes in the current version.
Support for this is in the process of being implemented via a drop-down menu on the top
bar and extensions to the python monitor.

Our search functions, though usable, are not yet quite as powerful as those found in
Maxmapper. Maxmapper allows users to filter signals for common prefixes through a drop-
down menu. MapperGUI also forces users to remain a single network for each session. In
the case where multiple networks are available, it would be a good extension to allow users
to select and switch between them. Finally, MapperGUI’s expression editing was poorly
reviewed by users. When double clicking the Ezpression button, Maxmapper displays a
palette with all possible expression syntax (to create exponential functions, averages, etc.).
Incorporating this feature would be a good start for extending the usefulness of custom

expressions.

6 Conclusions & Future Work 70

6.2.2 Possible extensions

With the MVC architecture and some alternate views in place, our group has planned
extensions to MapperGUI that will be interesting. Firstly, HiveView should be made fully
interactive, allowing the user to create links and connections with a dragging gesture. The
hierarchical edge bundling technique described in Section 2.2.2 would be very useful for
this view, as connection lines are currently drawn somewhat arbitrarily. Attempts were
made to integrate Vizmapper into MapperGUI as a single view, because it was an initial
goal of the process. Unfortunately, idiosyncrasies in the Vizmapper code made this more
difficult than originally anticipated. In the future we hope to restructure the Vizmapper
code so that it might be included, as it is a useful network visualization.

The research from Section 2.2.2 could also be applied through a new “area” view mode.
In this mode. network elements would be displayed as shapes on a Cartesian plane with
each axis being user-mappable to quantitative metadata. Other metadata could be visually
mapped to these objects’ colors, orientations, shapes, opacities, etc. This would be an
attractive way to analyze the findings of Mackinlay (1986) and may be the topic of a future
project.

Machine learning mapping systems have already been created for libmapper. Unfortu-
nately none of the present view modes are particularly intuitive for devices that necessarily
handle both source and destination signals. The list, grid and hive views all work with bi-
dimensionality in a way that makes intermediate devices difficult to visualize. New views
or modifications to old views will need to be designed if we hope to truly support machine
learning algorithms for mapping.

The saving and loading features of MapperGUI obviously need improvement. Work has
already begun on a preview process for loaded mappings such that saved mappings are only
loaded for the desired devices. Upon loading the GUI will display a “staging” area that
shows all applicable devices for a selected mapping. This feature could then be extended
to truly take advantage of libmapper’s modularity. Perhaps a user could create a library
of reusable mappings for browsing, combination and to be shared with other users of the
same (or similar) devices.

Finally, standalone support for Windows and Linux systems is definitely required for
future releases of MapperGUI. It would also be interesting to begin work on mobile versions

of the software, though that would be a much more time-consuming process.

71

References

Baalman, M., V. de Belleval, C. L. Salter, J. Malloch, J. Thibodeau, and M. M. Wan-
derley. 2010. Sense/stage - low cost, open source wireless sensor infrastructure for

live performance and interactive, real-time environments. In Proc. of Linux Audio
Conference, 242-249.

Bau, O., A. Tanaka, and W. E. Mackay. 2008. The a20: Musical metaphors for interface
design. In Proc. of International Conference on New Interfaces for Musical Ezxpres-
ston, 91-96.

Bertin, J. 1983. Semiology of Graphics. The University of Wisconsin Press.

Booth, G. 2010. Inclusive interconnections: Towards open-ended parameter-sharing for

laptop ensemble. Master’s thesis, University of Huddersfield, Huddersfield, England.

Bullock, J. 2008, March. Braun. Last accessed June, 19 2013, http://sourceforge.
net/projects/braun/.

Bullock, J., D. Beattie, and J. Turner. 2011. Integra live: a new graphical user interface
for live electronic music. In Proc. of International Conference on New Interfaces for

Musical Fxpression, 387 — 392.

Chadabe, J. 2000, February. The electronic century part i: Beginnings, electronic musi-

cian. Electronic Musician: 74-90.

Cleveland, W. S., and R. McGill. 1984, September. Graphical perception: Theory, ex-
perimentation, and application to the development of graphical methods. Journal of
the American Statistical Association, 79 (387): 531-554.

Cook, P. R. 2009. Re-designing principles for computer music controllers: a case study
of squeezevox maggie. In Proc. of the International Conference on New Interfaces for
Musical Fxpression, 262-263.

References 72

Corry, M. D., T. W. Frick, and L. Hansen. 1997. User-centered design and usability
testing of a web site: An illustrative case study. Fducational Technology Research
and Development 45 (4): 65-76.

Goudeseune, C. 2002. Interpolated mappings for musical instruments. Organised Sound 7
(2): 85-96.

HakenAudio. 2013, April. Eagan matrix. Last accessed June 19, 2013, http://www.
hakenaudio.com/Continuum/eaganmatrixoverv.html.

Halmos, P. R. 1970. Native Set Theory. Springer-Verlag.
Hollerer, T., J. Kuchera-Morin, and X. Amatriain. 2007. The allosphere: A large-scale

immersive surround-view instrument. In Proc. of Workshop on Emerging Displays
Technologies, 21 — 28. ACM Press.

Holten, D. 2006, September/October. Hierarchical edge bundles: Visualization of adja-
cency relations in hierarchical data. IEEE Transactions on Visualization and Com-
puter Graphiscs 12 (5): 741-748.

Hunt, A., and R. Kirk. 2000. Mapping strategies for musical performance. In M. M.
Wanderley and M. Battier (Eds.), Trends in Gestural Control of Music, 231-258.

Ircam Centre Pompidou.

Hunt, A., and M. M. Wanderley. 2002. Mapping parameters to synthesis engines. Or-
ganised Sound 7 (2): 97-108.

Hunt, A., M. M. Wanderley, and R. Kirk. 2000. Towards a model for instrumental
mapping in expert musical interaction. In Proc. of International Computer Music
Conference, 2-5.

Hunt, A., M. M. Wanderley, and M. Paradis. 2003, December. The importance of pa-
rameter mapping in electronic instrument design. Journal of New Music Research 32:
429-440.

Imhof, E. 1982. Cartographic Relief Presentation. ESRI Press.
Jensenius, A. R., T. Kvifte, and R. I. Godgy. 2006. Towards a gesture description in-

terchange format. In Proc. of the International Conference on New Interfaces for
Musical Fxpression, 176-179.

References 73

Kling, R. 1977, December. The organizational context of user-centered software designs.

MIS Quarterly 1 (4): 41-52.

Krasner, G., and S. Pope. 1988. A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80. Journal of Object-Oriented Programming 1 (3):
26-49.

Kvifte, T. 2008. On the description of mapping structure. Journal of New Music Re-
search 37 (4): 353-362.

Mackinlay, J. 1986, April. Automating the design of graphical presentations of relational
information. ACM Transactions on Graphics 5: 110-141.

Malloch, J. 2008, February. A consort of gestural musical controllers: Design, construc-

tion, and performance. Master’s thesis, McGill University, Montreal, Canada.

Malloch, J., S. Sinclair, and M. M. Wanderley. 2008. A network-based framework for
collaborative development and performance of digital musical instruments. In Proc.
of Computer Music Modeling and Retrieval, 401-425.

Malloch, J.; S. Sinclair, and M. M. Wanderley. 2013. Distributed tools for interactive

design of heterogenous signal networks. In Multimedia Tools and Applications.
Mehlhorn, K., and P. Sanders. 2008. Algorithms and Data Structures: The Basic Toolboz.
Springer.
Momeni, A., and C. Henry. 2006. Dynamic independent mapping layers for concurrent

control of audio and video synthesis. Computer Music Journal 30 (1): 49-66.

Place, T., and T. Lossius. 2006. Jamoma: A modular standard for structuring patches
in max. In Proc. of International Computer Music Conference (ICMC 20006).

Robillard, D. 2011, January. Patchage. Last accessed June 19, 2013, http://drobilla.
net/software/patchage/.

Rovan, J. B., M. M. Wanderley, S. Dubnov, and P. Depalle. 1997. Instrumental gestural
mapping strategies as expressivity determinants in computer music performance. In

Proc. of Kansei - The Technology of Emotion Workshop.

Rudraraju, V. 2011, December. A tool for configuring mappings for musical systems using

wireless sensor networks. Master’s thesis, McGill University, Montreal, Canada.

References 74

Schulze, A. N. 2001. User-centered design for information professionals. Journal of Edu-
cation for Library and Information Science, 42 (2): 116-122.

Silberschatz, A., P. B. Galvin, and G. Gagne. 2003. Operating Systems Concepts (6 ed.).
John Wiley and Sons, Inc.

STEIM. 2004, Summer. Junxion - products of interest. Computer Music Journal 28 (2):
105-107.

Tuckey, J. W. 1965, April. The technical tools of statistics. The American Statistician 19
(2): 23-28.

Tufte, E. R. 1990. Envisioning Information. Graphics Press.

Tufte, E. R. 2006. Beautiful Evidence. Graphics Press.

VanNort, D. 2010, January. Modular and Adaptive Control of Sound Processing. Ph. D.
thesis, McGill University, Montreal, Canada.

Wanderley, M. M., and P. Depalle. 2004. Gestural control of sound synthesis. In Proc.
of the Institute of Electrical and Electronics Engineers, Volume 92, 632 — 644.

Wanderley, M. M., N. Schnell, and J. B. Rovan. 1998. Escher - modeling and perform-
ing composed instruments in real-time. In Proc. of the Institute of Electrical and
Electronics Engineers, 1080—-1084.

Wilansky, J. 2013, December. A software tool for creating and visualizing mappings in

digital musical instruments. Master’s thesis, McGill University, Montreal, Canada.

Wildora. 2012, May. Osculator. Last accessed June 19, 2013, http://www.osculator.
net/.

Wolek, N. 2010. The mpg carepackage: coordinating collective improvisation in

max/msp. In Proc. of the Society for Electro-Acoustic Music in the United States.

Wright, M., and A. Freed. 1997. Open soundcontrol: A new protocol for communicating
with sound synthesizers. In Proc. of International Computer Music Conference, 101—
104.

