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Abstract

Digital musical instruments (DMIs) are typically composed of an interface using some

type of sensor technology, and real-time media synthesis algorithms running on a digital

computer. The connections between various input signals from performer interaction and

the parameters of synthesis must be artificially associated – this mapping of gesture to

sound or other media defines the behaviour of the system as a whole. Mapping design is a

challenging and sometimes frustrating process.

In this dissertation, the design and implementation of an open-source, cross-platform

software library and several related tools for supporting the mapping task are presented.

These tools are designed to provide discovery and interconnection between parts of DMIs

and other interactive systems, and to achieve compatibility through translation and trans-

formation of data representations rather than imposing representation standards. The

control parameters of software and hardware devices compliant with libmapper can be

freely interconnected without requiring any intended mutual compatibility.

Among the unique features presented is support for mapping between systems that in-

clude entities with multiple instances with dynamic lifetimes, systems which would usually

require bespoke programming. A formalization of the problem is described, and several

examples of real-world applications are outlined.

Finally, two use-cases for the mapping tools are presented in-depth: the development

of the T-Stick digital musical instrument, and the design and use of prosthetic musical

instruments for interactive dance/music performance.
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Sommaire

Les instruments de musiques numériques (IMN) comprennent généralement ces éléments:

une interface qui comporte certaines technologies de captation, et des algorithmes de

synthèse qu’un ordinateur calcule en temps réel. Les connexions entre les signaux engendrés

par l’interprète et les différents paramètres de synthèse doivent être établies artificiellement.

Cette correspondance entre le geste et le son, ce *mappage*, définit le comportement du

système. La conception de tels mappages est un processus exigeant, voire parfois frustrant.

Cette thèse présente la conception et l’implémentation d’un ensemble d’outils logiciels

qui servent à faciliter l’élaboration de mappages. La pièce centrale de cette collection est

une bibliothèque multiplateforme à code source libre appelée libmapper. Ces outils per-

mettent la détection et l’interconnexion des différentes parties d’IMN ou d’autres systèmes

interactifs. Ils visent à assurer la compatibilité par la traduction et la transformation des

représentations de données plutôt que par l’imposition de standards. Les paramètres de

contrôle des dispositifs logiciels ou matériels qui se conforment à libmapper peuvent être

interconnectés librement sans qu’une compatibilité mutuelle ne soit prévue.

La possibilité d’établir des mappages entre des systèmes qui incluent des entités, qui à

leur tour comportent de multiples *instances* à durée de vie dynamique, constitue l’une

des fonctions uniques qui sont présentées. Ce problème, qui devrait normalement nécessiter

une programmation sur mesure, est décrit, formalisé et illustré par des exemples concrets.

Finalement, deux cas où ces outils de mappage ont été utilisés sont analysés en pro-

fondeur: le développement du T-Stick, un instrument de musique numérique, ainsi que la

conception et l’utilisation d’instruments de musiques prosthétiques pour la danse interac-

tive.
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Chapter 1

Introduction

Digital musical instruments (DMIs) generally consist of a physical or graphical interface

generating control signals, a digital synthesizer accepting real-time control, and a layer of

“mapping” connecting the two [7]. The design of this mapping layer profoundly affects

the behaviour and perception of the instrument and the experience of both performer and

audience – the creation of mappings is an essential part of the design process for a new

digital instrument and is often revisited when composing a new piece of music. Crucially,

mapping designers need to be able to quickly experiment with different mapping configu-

rations while either playing the interface themselves or working closely with collaborating

performers.

There are many interesting instruments, input devices, sensors, synthesizers, and tools

for mapping. There is, however, a lack of compatibility between these systems: different

datatypes and rates, different units and ranges, and different approaches to representation,

including dozens of attempts at standardization. Does this lack of compatibility demand

further standardization? Unlike existing mapping systems, we argue that adding another

standard is not helpful, since even if it is deemed successful not everyone will accept it

and further fragmentation will result. Worse, there is artistic interest and novelty in build-

ing systems that cannot be easily represented within existing standards and established

schemas.

This dissertation focuses on the conception, design, and use of a new kind of map-

ping system and the implementation of open-source software tools for supporting their use

by programmers, designers, composers and performers. These tools enable easy experi-



1 Introduction 2

mentation with cross-connections between input devices, interactive systems, and media

synthesizers; and support collaboration between users of different tools and programming

languages. Unlike most of the existing tools described below in section 1.4, our tools do not

impose any standards as to how systems should be represented or what can be mapped.

1.1 Conceptualization of Digital Musical Instruments

Musical instruments are traditionally classified in several ways, the most famous is the

Hornbostel-Sachs taxonomy which classifies instruments based on the type of structure that

is vibrating to produce sound [8]. The system includes idiophones, chordophones, mem-

branophones, and aerophones, but all electric and electronic instruments are lumped into

the category electrophones/electronophones, which is not particularly useful when trying to

compare and contrast different DMIs1. A similar approach is taken by [9] in classifying in-

struments based on the state of the matter (i.e. solid, liquid, gas, plasma) that is vibrating

to produce sound.

A more useful system – for our purposes – considers the interface used to interact

with the sound-producing machinery, classifying instruments by whether they have keys,

buttons, mouthpieces, or bellows, for example. However, considering that we have many

kinds of sensors, and many phenomena that can be sensed, it seems likely that many of

the new DMIs will not fit into interface types defined for classical musical instruments.

So what is a digital musical instrument – and how can we understand them in useful

contexts? Our basic definition of a DMI is simply based on the fact that phenomena are

sensed and sampled digitally, and digital computers are used to synthesize the resulting

sound or other media. The system’s internal representation of quantities is abstract – there

may be semantics associated with a particular signal, but the system must be designed

to “tag” the signal with this metadata, they are not an intrinsic property of the samples

themselves. All the physically-connected associations from acoustic systems are abolished,

and if a performer action is to produce or affect synthesized sound the system must be

programmed to make it so. At the most basic level we can consider the DMI system to be

composed of sensing + mapping + sound synthesis (figure 1.1).

This broad description of DMIs applies to a wide variety of systems; in order to under-

1Technically, the H.-S. system should be categorizing the type of loudspeaker producing the sound of
the instrument rather than the instrument itself, since these are separable for DMIs
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AudiencePerformer

Digital Musical Instrument

sound sound

action
Interface

Synthesis

Fig. 1.1 A common (simplistic) representation of the digital musical instru-
ment in context: a performer interacts with the instrument by acting on the
interface and receiving the resulting sound, which is also received by an audi-
ence. Note that although the DMI is represented as one block in this diagram,
it may in fact consist of multiple parts.

stand them more specifically, researchers have proposed a number of relevant metrics and

comparisons, which we classify according to their main focus: object, control, and agency.

Afterwards, we will briefly touch on the intentions of the designer, and communication

between performer and audience.

1.1.1 Object

Traditional acoustic instruments are necessarily built from physical materials and cannot

possess virtual or modelled parts. The “interface” part of DMIs are also often embodied in

physical objects, but we require more flexibility in considering their physical presentation.

Several different perspectives of the interface may be useful for comparing DMIs, including:

similarity to traditional instruments – a new DMI might be classified as e.g., an aug-

mented instrument, or as instrument-like, instrument-inspired, or an alternate gestural

controller [10]

malleability and programmability – in the case of some DMIs, the physical interface

itself might not have a fixed shape, and in most cases the response of the instrument

is reprogrammable, raising the question “is it still the same instrument when I change

the mapping?”

tangibility vs. immersivity – can the interface be touched? Is it embodied in a visible
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object - or perhaps in the space around an object? Or is the “instrument” actually an

immersive, interactive space? [11] Note that from an HCI or tool-use perspective it

may seem inappropriate to call a space an “instrument”, but here the word is used as

shorthand for “musical instrument” and may carry important cultural associations.

spatial distribution – related to the last point, does the DMI have a location? Perhaps

the “instrument” is distributed across multiple locations [12].

object as focus or medium – for certain DMIs, a pre-existing object may be used or

repurposed to exploit an audience’s nostalgia or cultural contexts, e.g. circuit-bending

or “infra-instruments” [13].

1.1.2 Control

The dimensionality of control provided by a DMI is often over-emphasized; it is likely

that the relationships between these dimensions [14] and whether they are well-matched

to perceived affordances of the system (both interface and sound synthesis) [15] are vastly

more important. Considering temporal aspects of control, Schloss considered three levels:

timbral level, note level, and control over a musical process [16]; closely-related is Jens

Rasmussen’s model of human information processing which identifies signal-, rule-, and

model-based interaction behaviours [17], which has been applied by ourselves and others to

the design and conceptualization of DMIs [18, 19, 20].

1.1.3 Agency

A related concept concerns the balance of power between performer and system – un-

like acoustic systems, a digital synthesizer can also be programmed to model physical be-

haviours, make autonomous decisions, or to inject randomness into its internal processes.

At one extreme of this continuum we will consider systems that are completely determin-

istic and possess no autonomy, while at the other end we might find systems with full

autonomy. In the latter case, however, it might be more appropriate to refer to the system

as a co-performer rather than an instrument.
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1.1.4 Designer’s Intentions

Almost everything we might say about the instrument design should be prefixed with

“intended...”, since it is typical that tools for the arts are repurposed and re-imagined by

performers, extended in terms of the performance technique to do things that were not

initially intended by the designer. Over time, a community’s judgement of appropriate or

canonical use of the new instrument may change.

User Expertise – Are the instruments intended for use by “expert” performers – imply-

ing that is it acceptable to require many hours of practice before achieving any sort

of expertise or other reward? Or perhaps for amateur performers, or for casual in-

teraction in the context of a museum installation – in which case it is rather unlikely

that the interactor will have the opportunity to practice extensively. The instrument

could also be intended for children or for pedagogical use, or perhaps for individu-

als with physical or mental disabilities who might not be able to play a traditional

instrument.

Role of Technology – For many performances involving DMIs, the technology is pre-

sented front-and-centre, positioned as an important part of the work rather than the

musical result standing on its own. This is not to say that this situation is problem-

atic, but if novelty is the most interesting thing about the performance we should

acknowledge that there is not likely to be much longevity in the use and appreciation

of the instrument.

1.1.5 Expressivity

The term expressivity is occasionally used in reference to new instruments (in the NIME

conference proceedings, for example) as if it is a property of the interface. We understand

this as a basic statement that the designer intends for a performer to be able to commu-

nicate musically (to express themselves) using the instrument. Discussing the expressivity

of an instrument is not useful, since given the proper context a performer could likely ex-

press themself using the affordances of any interface [21]; meaning is not embedded in the

instrument but in the minds of performer and audience. Performer expression is not a raw

material that is filtered or mediated by the instrument they are playing, rather the audi-

ence observes and perceives the interaction between the performer and their instrument
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(see figure 1.2).

Audience

past experiences
preconceptions

opinions
tastes

Performer

past experiences
preconceptions

opinions
tastes

Digital Musical Instrument

sound

sound

action
Interface

Synthesis

other senses

Fig. 1.2 An alternative depiction of the DMI, avoiding possible impressions
that the instrument is a conduit from performer to audience.

This implies that any attempt to “reduce barriers” to expression will ultimately fail,

since it will make performances less meaningful rather than more so. Since audiences lack

contexts in which to understand and evaluate a new instrument and its performance, it

is likely that reducing instrument constraints or increasing the degrees of freedom will

slow the process of understanding for new audiences, since there will be a larger space of

performance possibilities.

If an instrument designer wishes to maximize “expression” with their new instrument,
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perhaps they should design it to allow communication within existing contexts (e.g., build

augmented instruments, instrument-like, and instrument-inspired gestural controllers men-

tioned above). Alternately, we might consider if there are ways to improve or speed-up the

generation of new contexts for our new instruments.

1.2 Evaluation of DMIs

The ultimate test for a new DMI must be whether or not it is performed and gains accep-

tance by some wider community (if this is intended by the designer). Many of the factors

for this acceptance involve contexts surrounding the instrument rather than aspects of the

design itself, and identification of instrument qualities that might influence success or fail-

ure remains largely an open question. Nevertheless, some methods proposed for evaluation

of DMIs are presented below.

1.2.1 Quantitative Analysis

Wanderley et al. identify musical tasks appropriate for evaluation tasks, ranging from iso-

lated tones, to scales, arpeggios and complex contours [22]. They also consider the usability

of controllers to be based on four features: learnability, explorability, feature controllabil-

ity, and timing controllability. Many quantitative analysis techniques require such tasks in

order to determine a measure of accuracy or error, including all of the following (the first

three techniques were suggested by [22] for use in musical tests):

• Fitt’s Law: evaluation in terms of time, target width, and linear distance to the target

• Meyer’s Law: a refinement of Fitt’s Law for movements composed of sub-movements

• Steering Law: used for evaluation of constrained motion along a circular path

• Time on Target: Used for human factors research on anti-aircraft gunnery. Errors

which are slightly off-target are penalized as much as dramatic errors [23]

• Cross-correlation of error terms: used for quantifying coordination between dimen-

sions.

• Efficiency: a measure of the length of the path followed divided by the length of the

optimal path
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• Allocation of Control: This metric combines the spatial Inefficiency metric and the

time-based Integrality metric to measure simultaneity of control. [23] uses the m-

metric for evaluation of Allocation of Control in a 6-DOF docking task.

There are also some interesting techniques which do not require a defined task, and

could be appropriate for examining unguided musical interaction:

• Integrality: defined as the ratio of the time spent performing integral movements to

separable movements [14, 23]. Integral movement exists simultaneously in several

dimensions.

• Control Integration: a measure of trajectory slope in degrees, with maximum integra-

tion at 45 degrees. Vertegaal used a metric he terms Control Integration to evaluate

a mouse, a joystick, and a Nintendo Power Glove for controlling a four DOF timbre

space [24, 25].

• Invariance: For applications in which the same gesture is repeated, spatial or temporal

invariance can be used for evaluation. This technique does not require a defined task,

but works best for movements like walking that are repeated many times [23].

Hunt performed experiments to compare the suitability of three different input devices

for controlling musical parameters [26]. The devices consisted of 1) a computer mouse and

on-screen sliders, 2) physical sliders, and 3) a “multiparametric” device consisting of the

computer mouse and physical sliders used together, but mapped in a complex, integral way.

The intent of the experiment was to determine if a non-analytical approach to musical con-

trol (i.e. with the multiparametric device) would be more successful for certain tasks. Each

subject was asked to use each of the devices to replicate 24 sound examples which required

either simple discrete changes to one parameter, continuous changes to one parameter at

a time, or simultaneous, continuous parameter changes. Automated and expert human

analysis of the recorded results indeed found that the subjects performance when repro-

ducing the complex examples was better with the mutiparametric device. Comments in

taped interviews also revealed that the subjects found the multiparametric interface more

enjoyable and interesting. A longitudinal study was also undertaken, with a reduced num-

ber of participants and sound examples. The results of this study indicated strong learning

effects for the physical sliders and multiparametric interfaces, but not for the mouse.
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1.2.2 Qualitative Analysis

One problem frequently identified with task-oriented evaluation of musical devices or in-

teractions is that people usually do not perform music analytically. Qualitative analysis

techniques, such as structured questionnaires and interviews, can be used to extract useful,

structured information about experiences, feelings and preferences, and can do so with-

out setting up artificial goals or tasks that may in fact interfere with vital aspects of the

interaction (such as enjoyment).

Stowell et al. used a qualitative analytical technique called Discourse Analysis for the

evaluation of two interfaces for remapping timbre [27, 28]. During testing, the subjects

were not given explicit tasks, but instead followed a process of guided exploration followed

by a short semi-structured interview to discuss their experiences. Discourse Analysis is

a process performed using recordings of the interviews, involving identification of objects,

actors, and the relationships between them.

Harrison et al. argue that there is an emerging “third paradigm” in HCI research,

distinct from the strong influence from human factors on the one hand, and from cognitive

sciences on the other [29]. This paradigm, which they term situated perspectives, focuses on

investigating and supporting situated action in the real world rather than reducing errors

or optimizing efficiency of information transfer. Among other issues, the third paradigm

concerns itself with “the domain of non-task-oriented computing, such as ambient interfaces

and experience-centred design. These approaches tend to be bad fits to the first and second

paradigm, whose methods require problems to be formalized and expressed in terms of

tasks, goals and efficiency” [29]. In the third paradigm, the design and/or construction

of a musical interface is not a solution to a problem (first paradigm) nor a means to test

hypotheses or to generalize knowledge gained (second paradigm). It is instead an element of

enquiry, aimed at supporting complex, interesting interaction in the world; in this context

ambiguity is celebrated, and enchantment or joy are seen as legitimate criteria of success.

1.3 Mapping

We have established that mapping is a necessary component of a DMI, but how should the

creation of the mapping be approached or described? In terms of conception or perception

of the mapping design, we must consider its role – is the mapping “part of” the instrument,
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of a specific composition, or of a performance [30]? Also, is the mapping intended to

be legible to the audience? To what extent should they understand how parameters are

interconnected?

Several less-ambiguous metrics are also useful:

topology – based on the arrangement of connections between parameters, we can con-

sider the mapping to be one-to-one, many-to-one (or “convergent”) in which multiple

source parameters are combined somehow to control one destination parameter, one-

to-many (or “divergent”) in which one source parameter affects multiple destination

parameters, or many-to-many, in which many source and destination parameters are

complexly interconnected [31].

static vs. dynamic – does the mapping change over time, and if so over what timescales?

Minutes, hours, between performances?

explicit vs. implicit – is the mapping explicitly designed, or “learned” using a machine

learning algorithm or other system (e.g., [32]). In the case of implicit mapping, we can

also distinguish between supervised learning in which associations between input and

output are provided to the system (for example, the designer provides both gesture

and desired result), and unsupervised learning in which the system uses structure

found within the performance data alone.

multiple mapping layers – there are several motivations for using multiple layers of

mapping between the control interface and synthesis engine, including for parameter

abstraction [33], generalizability [34], or for combining multiple mapping approaches.

1.4 Existing Tools for Supporting the Mapping Task

In this section, we will survey existing tools for supporting the mapping process. Since

we have described mapping as a hybrid of connectivity and signal processing, this survey

is necessarily quite broad, encompassing software platforms, environments, toolboxes, and

applications. We will start by examining general tools, and finish with an overview of

tools designed for use with specific digital musical instruments. In the interests of brevity,

will not consider tools intended for building virtual physical models, which in general are

intended for modelling a fixed relationship between entities and their virtual environment
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– essentially a fixed mapping between input and output – and are thus not relevant to a

discussion of tools for designing instrument mappings.

1.4.1 Libraries, Toolboxes and APIs

MnM

MnM (Mapping is not Music) is a toolbox of mapping objects for Max/MSP developed at

IRCAM [35]. Based on the vector and matrix processing made possible by FTM, the MnM

tools are based on multiple linear regression techniques [36]. Tools for Principle Component

Analysis, Gaussian Mixture Models, Hidden Markov Models, and Support Vector Machines

are included, along with help patches showing how to easily perform N-to-M dimensional

mapping using several techniques. Additionally, tools for matrix multiplication, windowed

filters, histograms, and fft and ifft tools are provided. Example patches are also included

to demonstrate gesture recognition and gesture-following.

LoM

The Library of Maps toolbox (LoM) is a collection of external objects for Max and Jitter

implementing multi-dimensional mapping strategies based on geometrical representations

of parameter spaces [36]. It includes three main objects, each of which is based on a different

geometrical representation:

• lom.si implements mapping between an N-dimensional control space and an M-

dimensional sound parameter space where N ≤ M, based on simplicial complexes

created using associated points in both control and sound parameter spaces.

• lom.multi implements multilinear interpolation of provided data points. The space

created is hyperbolic (curved) and it differentiable across different cells (unlike lom.si,

in which the surface is non-differentiable across different simplices.

• lom.rst implements a global interpolation between stored sound parameter points

based on the regularized spline with tension (rst) technique. The number of output

parameters is constrained to be N+1 for input space of size N, so this object cannot

map from low to high dimension spaces (or vice versa), unlike the other two objects.
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All three approaches accept and output parameters in lists, and require sets of control

and sound parameter input/output pairs in order to define the dimensionality and the

arrangement of the parameter spaces. Unfortunately the LoM toolbox is not currently

available, and so couldn’t be evaluated further at this time.

hid Toolbox and Mapping Library for Pd

The hid library for Pd is a collection of approximately thirty objects for the Pure Data

graphical programming environment, created to facilitate the use of standard Human In-

terface Devices (HIDs) for controlling software[37]. The library provides an object hid for

interfacing with generic HIDs, as well as specific objects built on top of it for using joysticks,

computer mice, and computer keyboards as input. In addition, Steiner includes objects for

processing the data from the HID, including cartesian-polar transformation, filtering, and

logarithmic and exponential curves.

One year later, Steiner released and published the Mapping Library for Pd, building on

the experience of the hid library [38, 39]. Steiner states that the larger goal of the library

(beyond its use to the Pd and DMI communities) is to start a dialogue on the subject

of standard primitives for mapping, analogous to standard unit generators for audio. In

this way the library serves to explore the sort of basic functions that are necessary for

mapping. There are approximately 130 objects in the mapping library, coded by Steiner

and by Cyrille Henry, including a great number of transfer functions, curves, break-point

functions, and control-rate IIR and FIR filters. Interpolation objects and some windowed

statistics (mean, median, minima and maxima) are also represented.

Both libraries include objects of the form one2n (e.g. one2two, one2three), modelled

on the concept of divergent mapping from [40]. Rather than allowing generic divergent

mapping, however, these objects simply output multiple, differently-scaled versions of the

input and it is unclear what benefit they have over simply using a separate scaling object

for each mapping connection.

Since the Mapping Library was developed specifically with the goal of defining and

creating a complete set of mapping primitives, it is not surprising that it is so exhaustive.

One interesting and perhaps controversial choice made by the authors was to insist on using

normalized values (0-1) for nearly all input and output, including for angles and musical

pitches. While this can certainly simplify the act of connecting two objects, since there is



1 Introduction 13

no rescaling necessary, this choice can also introduce more confusion than if natural ranges

and units are used.

Both the hid and mapping libraries are included in the Pd-extended distribution2.

Digital Orchestra Toolbox

The Digital Orchestra Toolbox (DOT) is a collection of Max/MSP abstractions (function

patches loadable as objects) we developed for mapping digital musical instruments for the

McGill Digital Orchestra Project [41]. The toolbox contains more than 100 Max/MSP

abstractions, along with help/documentation patches for each one. These tools were built

as-needed, rather than to fill a set of mapping primitives like the Mapping Toolbox for

Pd, but many of the objects are quite similar. Tools included in the DOT differ from the

Mapping Toolbox in their treatment of signal ranges: wherever feasible, real-life units and

ranges are used by the tools rather than using normalization.

In the prototype implementations of the mapping tools described in chapter 2, the

DOT abstraction dot.admin was responsible for all communications between modules,

including both session-management and the processing and forwarding of control data.

This abstraction has since been removed since it is replaced by new language bindings for

the C library libmapper encapsulated in external objects build for both Max/MSP and

Pure Data.

StreamInput

StreamInput is a cross-platform API for discovery, abstraction, and synchronization of

disparate sensor data [42]. The specification for StreamInput is in design phase, coordinated

by The Khronos Group and backed by various industry partners. This specification will not

be discussed publicly until after it is released, and participation in the standard requires

paid membership to the The Khronos Group, however the public website reveals that the

system will be graph-based with interconnected nodes for input and filters. All nodes will

be timestamped to allow applications to adjust for pipeline delays when combining data

from different sensors. Support for motion/position sensors (including “positional sensor

fusion”), multi-touch sensors, video cameras, microphone arrays, biometric sensors, and

haptic devices is also advertised.

2http://puredata.info/
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VRPN

The Virtual Reality Peripheral Network (VRPN) is a library and a set of server applica-

tions for connecting physical input devices to virtual reality (VR) software applications

[43] for real-time interaction and logging. Currently at version 7.3, VRPN supports a wide

variety of commercial input devices including motion-capture hardware, Human Interface

Devices, and force-feedback peripherals. Generally, a networked PC is tasked with interfac-

ing each input device to the network, and VRPN automatically configures the network and

enables connections between the different devices and consuming applications. Messages

are timestamped, and can be routed over either UDP or TCP.

Physical interface devices are represented using extensible device types matched to a

particular functionality and may consist of more than one type. Some common device

types are tracker (position, orientation, and derivatives), button, dial, and ForceDevice (for

interfacing with force-feedback hardware).

Applications designed to consume data from a device type must instantiate a corre-

sponding VRPN application object and provide a callback function – VRPN will call the

callback when messages are available from a connected device of the correct type. Con-

nected applications can also send messages to connected devices (e.g. forces, sound) using

member functions of the VRPN API3.

Copperlan

Copperlan is a commercial offering in the space of post-MIDI musical networking4. It works

over an Ethernet, USB, or Firewire connection rather than requiring dedicated cabling, and

provides automatic discovery of connected devices, tunnelling of MIDI data, and global

clock synchronization across the network of connected devices. A graphical connection

manager application is provided for configuring routing, and software compatibility bridges

for connecting existing VST plugins and interfacing with Max/MSP are also available.

Many of the details of CopperLan are not provided to protect intellectual property.

Academic and non-commercial users may register for royalty-free licenses, however access

to the CopperLan specification and software development kit (SDK) is only possible after

signing a restrictive license agreement.

3http://www.cs.unc.edu/Research/vrpn/
4http://www.copperlan.org/
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1.4.2 Platforms and Environments

SenseWorld DataNetwork

The SenseWorld DataNetwork is a client/server framework for sharing data in a collabo-

rative performance or installation environment [44]. The server is implemented in Super-

Collider and there are clients available in SuperCollider, Max, PureData and Processing

[45]; all communication takes place using Open Sound Control (OSC). Data sources are

represented in terms of “nodes,” which correspond to wireless motes in the Sense/Stage

hardware, and “slots,” which correspond to individual data streams within a node (sensor

channels on a mote). The source code is released under the open-source GNU/General

Public License.

Tapemovie

Tapemovie is a modular patching environment built in Max/MSP, and uses OSC for mes-

saging [46]. It includes various high-level modules, and a “mapper” module which can

create and edit mapping connections between parameters. Each mapper object, as with

the Jamoma mappers, can only create one connection, and only between two parameters.

Data processing capabilities include speedlim, which limits the throughput; linear, loga-

rithmic, and exponential functions; symmetrical functions, ramp time, and range-clipping

of both input and output. Smoothing of the data can be performed separately for rising

and falling values. The data can be previewed inside the mapper object. The author

of Tapemovie is now pursuing the development of a replacement mapping system called

SPAN5.

junXion

junXion v4 is an OSX application from STEIM, built specifically for mapping [47, 48]. It is

designed to accept data from Human Interface Devices such as joysticks, MIDI, OSC, Wi-

iRemotes, Arduino, audio or video, and can perform conditional processing and remapping

to MIDI or OSC output. In terms of user interface, the user focuses on creating actions

associated with some input, tables that can be applied for look-up processing, and variables

which can store input values for use in other actions. Actions can result in MIDI or OSC

5https://github.com/didascalie-net/span
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messages, or they can result in another action. Signal processing available for each action

includes smoothing, differentiation, leaky integration, and table look-up. Input and output

data streams can be monitored in real-time.

The software is powerful and easy to use judging by the online tutorial videos, it’s

only weaknesses being a focus on one-to-one mapping (combining inputs is possible but

awkward), and fairly weak OSC output in which the messages are constrained to the form

/jXswitch/x/<data> or jXcontrol/x/<data>, depending on whether or not the data are

boolean values. Strong semantics in OSC namespaces are to be preferred, especially when

dealing with very large numbers of parameters.

Integra

Integra is an open-source software project that aims to both resurrect technologically-

obsolete electronic music compositions, and to prevent their future obsolescence (and like-

wise protect new compositions)[49, 50]. Part of the Integra development effort has been

centred on the creation of a new software composition tool (which they envision will not

become obsolete). Although this tool is intended for composition, consideration of real-

time control has been included from the beginning, since many electronic compositions

include interactive elements. Inter-module communication is via OSC, and conceptually

the graphical user interface (GUI) is separated from the “engine” where actual sound and

data processing takes place. In terms of mapping, the focus has been on displaying and

editing inter-module connections in the GUI; like junXion, the assumption is that most

users will implement a series of dynamic scenes incorporating a set signal processing and

control mapping.

Jamoma

Jamoma is an open-source modular patching framework for Max/MSP with a very ac-

tive developer community and fast development cycle [51]. Although the original version of

Jamoma used normalized values throughout, the influence of the Gesture Description Inter-

change Format (GDIF) proposal [34] can now be felt in the development, with the release

of a UnitLib specifically for translating between native units and ranges. RampLib and

FunctionLib, now core components of the Jamoma framework, provide the ability to apply

tuneable Cosine, Linear, Lowpass, Power, Tanh, Exponential, or Logarithmic functions to
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data streams and to ramps between values.

Jamoma also includes three “mapper” modules: jmod.mapper, which allows the user to

create multiple connections between module parameters, but fairly simple processing of the

mapped data, and the newer jmod.mapperDiscrete and jmod.mapperContinuous, which

only perform one mapping connection per mapper module but offer more sophisticated

scaling and warping of the input. A nice user-interface feature that has been recently im-

plemented is to automatically change the background colour of modules that are connected

via the mapper so that they match each other, and stand out from the other modules.

MetaMallette

The Meta-Mallette is an environment implemented in Max/MSP for interconnecting mod-

ules over OSC [52] . Extensions by Ghomi [53] added separation of control, mapping, and

synthesis; and implemented intermediate mapping layers using simulated physics to add

dynamic behaviours to the mapping.

Device Server for the Allosphere

The Device Server is an application providing a central hub for collecting and distributing

real-time data from various input devices [54]. It can connect to devices using MIDI, HID,

or VRPN, and was designed for use with the AlloSphere environment6. Device Server

includes a graphical user interface for interacting with the network, and expressions can be

defined using Lua scripting for signal processing for each mapping connection.

Interactive Spaces

Interactive Spaces is a collection of libraries and runtime environment for designing inter-

active installations [55], implemented by Google’s Experience Engineering Team in collab-

oration with The Rockwell Group’s LAB. Implemented in Java with scripting interfaces for

javascript and Python, it uses the communications functionality of the Robot Operating

System (ROS) for interprocess communication; ROS provides both synchronous and asyn-

chronous data streaming using a publish/subscribe model [56], and is designed for use with

a large variety of sensors. The software is a recent project started in July 2012, and is in

active development.

6http://www.allosphere.ucsb.edu/
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OpenInterface

OpenInterface comprises a runtime platform (OpenInterface Kernel) and graphical front-

end (SKEMMI) for supporting rapid development of interactive systems [57]. Software

modules implementing device drivers, algorithms, etc. can be written in a number of lan-

guages, and are made compatible through encapsulation in automatically-generated C++

code. The design aims to provide flexible reconfiguration and iteration during the proto-

typing of new systems, without enforcing the use of specific devices, interaction techniques,

or programming models.

1.4.3 Implicit Mapping Tools

The use of artificial neural networks for mapping musical controls is not new [58, 59, 60] but

there has not been a surfeit of tools that make it easy. Fiebrink, Cook and Trueman’s play-

along mapping software [61] does exactly that, allowing the user to simply and quickly train

the system by playing along with a recording, which supplies the software with associated

inputs and outputs. The software can be set to automatically hand over control to the user

once an accuracy threshold has been reached. The software is based on the Wekinator by

the same authors, which implements several machine learning techniques, including neural

networks, Adaboost, support vector machines, and k-nearest neighbour classification.

1.4.4 Instrument-Specific Mapping Systems

Finally, several commercial DMIs are distributed with dedicated software mapping tools:

Continuum Fingerboard – the Continuum Editor is a graphical application for config-

uring the modular sound synthesizer embedded in the Continuum Fingerboard DMI.

It is presented as a 2D patchbay-style matrix, in which the effect of a connection point

is determined by a user-defined expression. A graphical function-design interface is

provided; expressions can include variables representing the real-time control signals

generated by the interface: touch, pressure, and 2D touch position [62].

The Méta-Instrument – 2PIM is a software application implemented in Max/MSP for

calibrating, visualizing and mapping the sensor signals from a variety of interfaces

including the MI3 version of the Méta-Instrument [63], Nintendo Wii Remotes, and
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graphics tablets. “Profiles” for different synthesizers or signal processing can be

implemented as Max/MSP patches and loaded into the application at runtime7.

Karlax – the Karlax Bridge software is also a standalone application implemented in Max-

MSP, providing visualization of the signals generated by the instrument and providing

drop-down menus for mapping each signal to a specific MIDI device and message. In

“note” mode, the control mapping can be configured to alternate between MIDI note-

on and note-off messages, or to automatically terminate triggered notes after a given

duration. In “control” mode, the mapping can be configured for continuous control

over a specified MIDI control-change, or process the data to toggle or ramp between

user-defined ranges8.

Eigenharp – the driver software EigenD enables configurable mapping of the sensor sig-

nals generated by the instrument to MIDI note and control-change messages9. To

allow for independent control of multiple notes using control-change messages, “poly”

mode automatically distributes new notes over 16 different MIDI channels. Work-

bench is a graphical application enabling configuration of mapping connections using

a “patching” metaphor.

1.5 Dissertation Structure

This dissertation concerns the conception and design of a different approach to connectivity

of interactive systems – with a specific focus on digital musical instruments intended for ex-

pert performance – which prioritizes flexibility of representation rather than compatibility-

through-standardization. This system must avoid the constraints of MIDI and post-MIDI

representation standards, and allow intercommunication and collaboration between existing

tools and languages.

Chapter 2 introduces the central concepts for development of such a system, and de-

scribes their implementation as an open-source, cross-platform software library (libmapper)

for providing a simple route towards compatibility between the components of digital mu-

sical instruments/interactive media systems.

7http://www.pucemuse.com/
8http://www.dafact.com/
9http://www.eigenlabs.com/
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This research also aims to support mapping scenarios with multiple ephemeral enti-

ties which might dynamically appear and disappear. An obvious musical example is the

concept of “notes” – each has a beginning and an end, more than one may sound simulta-

neously, and there may be long periods in which no notes are sounding at all. There are

however many other examples, including the outputs of multitouch interfaces or computer

vision systems that track objects of interest (faces, people, “blobs”, etc.). Chapter 3 de-

scribes our specification for supporting mapping between multi-instance signals, and the

implemented extensions to libmapper functionality and programming interfaces. Several

examples demonstrating the new functionality are also presented.

In part II, Chapters 4 and 5 present two use cases for the mapping tools presented earlier,

in the form of new digital musical instruments. First, the conception and development of

the T-Stick DMI over a period of eight years is presented in Chapter 4; to date the T-Stick

has been publicly performed at dozens of concerts in seven different countries, with all of

the mapping design developed using the tools presented in this dissertation. Next, the

more recent design and development of a small family of prosthetic musical instruments

for musicians and dancers is presented in Chapter 5. While only one public performance

tour has utilized the instruments thus far, important segments of their development took

place during intensive group workshops for which the use of flexible mapping tools was

invaluable.

Finally, general conclusions and future directions for this research are presented in

Chapter 6.
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Part I

Development of Software Tools for

Mapping
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Chapter 2

Distributed Tools for Interactive

Design of Heterogeneous Signal

Networks

The following chapter was submitted as:

J. Malloch, S. Sinclair, and M. M. Wanderley, “Distributed tools for interactive design

of heterogeneous signal networks, ” Submitted.

2.1 Abstract

We introduce libmapper, an open source, cross-platform software library for flexibly con-

necting disparate interactive media control systems at run-time. This library implements

a minimal, openly-documented protocol meant to replace and improve on existing schemes

for connecting digital musical instruments and other interactive systems, bringing clarified,

strong semantics to system messaging and description. We use automated discovery and

message translation instead of imposed system-representation standards to approach “plug-

and-play” usability without sacrificing design flexibility. System modularity is encouraged,

and data are transported between peers without centralized servers.



Distrib. Tools for Interactive Design of Heterogeneous Signal Networks 23

2.2 Introduction

One focus of research in our lab is the development and evaluation of novel “Digital Musical

Instruments” (DMI) – using a variety of sensing technologies to provide real-time control

over sound synthesis for the purposes of live music performance. In this case, a device

may have hundreds of different parameters available for input or output, and the difficult

questions arise: which of these parameters should control which? How should they be

connected? How can technology and aesthetics help us decide? Especially in collaborative

undertakings, who makes these decisions?

These questions are just as applicable to the design of any interactive system for which

the precise use-cases are not well defined (here, “... for making music” is not considered

a complete specification!). In addition to professional artists and researchers exploring

this space, there is also a large and growing community of individuals creating interactive

systems with readily-available, low-cost sensors and microcontroller platforms such as Ar-

duino1. Mobile telephones now commonly contain a substantial collection of sensors for

which real-time data are available: accelerometers, gyroscopes, magnetometers, satellite

navigation system receivers, microphones, cameras, and ambient light sensors. The “App”

ecosystems surrounding various mobile phone platforms (e.g., iOS, Android) also provide

exciting opportunities for developers to experiment with creative, real-time control of media

synthesis.

In the field of interactive music, a connection or collection of connections between real-

time sensor or gesture data and the inputs of media control is commonly referred to by the

noun mapping [64]. We also use the term as a verb to refer to the activity or process of

designing these relationships, as in “... a tool for mapping of digital musical instruments.”

A mapping may be as simple as a single connection, or it may consist of an arbitrary

number of complex connections limited only by the constraints of computation, commu-

nications bandwidth, or the designer’s imagination; it may be explicitly designed or im-

plicitly learned by a machine learning algorithm, which might be guided (supervised) by

the preferences of a human designer or might represent structure found in the data alone.

In typologies of mapping we also commonly distinguish between convergent mapping, in

which multiple source parameters are combined to control a single destination parameter,

and divergent mapping, in which a single source is mapped to control multiple destination

1http://www.arduino.cc/
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parameters. The system designer may wish for an instrument mapping to be different for

different pieces of music, different performances, or indeed within a single piece. Studies

have provided evidence that complex mappings may be preferred by performers [65] – this

seems to indicate that simple one-to-one mappings, such as the assignment of a single knob

to control a particular sound parameter, can be perceived as less interesting to play as

compared to mappings which include mixing of controls signals. It follows that a certain

amount of iterative experimentation during interaction design is necessary to achieve a

balance that is sensible but does not quickly become boring to play.

2.2.1 The Problem

The design of the mapping layer profoundly affects the behaviour and perception of the

instrument and the experience of both performer and audience; the creation of mappings

is an essential part of the design process for a new digital instrument, and is often revisited

when composing a new piece of music for a DMI. Crucially, a mapping designer needs to

be able to quickly experiment with different mapping configurations while either playing

the interface themselves or working closely with collaborating performers.

There is, however, an a priori lack of compatibility between systems: there is no “nat-

ural” mapping between a sensor voltage level and a sound parameter. After digitization,

one must deal with different data types and rates, different units and ranges, and differ-

ent approaches to system representation. In practice this usually means that some fairly

extensive programming is necessary in order to make different systems and environments

intercommunicate. The mapping designer must consider the control space of both source

and destination devices, and explicitly devise a scheme for bridging the two. This takes

valuable time that could be spent more creatively on the mapping design itself, and restricts

the activity of mapping to the relatively smaller group of artist/programmers.

There are a number of established systems and approaches for representing interactive

systems, and for communicating control data; some examples are described below in section

2.2.3. All of these approaches are valid for some systems or scenarios, useful for some users,

but does their incompatibility demand further standardization? We argue instead that

adding another standard is not helpful, since even if it is deemed successful, not everyone

will accept it – thus, further fragmentation will result. Worse, there is artistic interest and

novelty in building systems that cannot be easily represented within existing standards
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Fig. 2.1 Examples of some of the types of devices we wish to flexibly connect
to media synthesizers. Clockwise from top–left: commercial computer input
devices such as joysticks, “novel” musical instruments such as the T-Stick
[1] (photo: Vanessa Yaremchuk, used with permission), force-feedback/haptic
devices, and systems for modelling virtual physical dynamics such as DIMPLE
[2].
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and established schemas. Since our goal is to support intercommunication of experimental

interactive systems, imposing further standardization will likely not be helpful.

We argue that what is needed in the research and artistic communities are tools that,

1. allow free reconfiguration and experimentation with the mapping layer during devel-

opment;

2. provide compatibility between the differing standards (and systems that eschew any

standard);

3. and allow the free use of interesting mapping layers between controller and synthesizer

(e.g., machine learning, high-dimensional transformations, implicit mapping, dynamic

systems, etc.).

Mapping interactive systems is often a time-consuming and difficult part of the design

process, and it is appropriate to demand tools and approaches that focus squarely on the

mapping task.

2.2.2 Terminology

Here we define some terminology that will aid in describing existing solutions as well as

discussing our proposed solution.

Signal

Data organized into a time series. Conceptually a signal is continuous, however our

use of the term signal will refer to discretized signals, without assumptions regarding

sampling intervals.

Data representation

How a signal’s discretized samples are serialized for the purpose of storage or trans-

mission. This could include the data type (e.g., floating point, integer), its bit depth,

endianess, and vector length if applicable. It might also include an identifier or a

name used to refer to the data, whether it is included with the stored/transmitted

data or defined elsewhere in a specification document.

System representation

Further information needed to interpret the data, such as its range, unit, coordinate
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system (e.g., Cartesian, polar, spherical, etc.), and any compression applied to the

data values (e.g., logarithmic scaling). At a still higher level, the system represen-

tation also includes any assumptions or abstractions applied to the control space for

the given system. This might include the level of control a parameter addresses, e.g.

directly controlling output media vs. controlling a property of a higher-level model,

or even whether a given parameter is exposed at all.

As an example, the MIDI standard includes specification of low-level data transport

(7– and 14–bit little-endian integers), and a mid-level stream interpretation (e.g.,

pitch values represent tempered tuning semitone increments with 69 = A4 = 440Hz).

It also includes a high-level control abstraction using the concept of a “note” to

represent sounds as temporal objects, each with an explicitly defined pitch, beginning

and end – something that is often more ambiguous in acoustic systems.

Another familiar example in audio synthesis is the “ADSR” (attack–decay–sustain–

release) control model for the evolution of temporal “envelopes” on analog synthesiz-

ers. This is not the only way to control envelopes, or even the “correct” way, but it

has proven useful enough that it is still used on many hardware and software synths.

The very use of envelopes is an abstraction of low-level control to a higher-level (i.e.

lower-dimensioned or temporally-compressed) control space, and an important detail

to consider when describing the system.

2.2.3 Existing Solutions

Since the early 1980s, the Musical Instrument Digital Interface (MIDI) protocol [66] has

been the de facto standard for connecting commercial digital musical instruments. Al-

though it is extremely widespread, it has been argued that MIDI has many failings from

the perspective of designers of “alternate” music controllers. To cite some examples, MIDI’s

bandwidth and data resolution are insufficient [67], messaging semantics are confused [68],

its bias to percussive instruments is constraining [69], and it is unsuited for representation

of complex control spaces. Although the bandwidth concerns are not strictly tied to the

protocol, and extensions such as SKINI have dealt with the limited data types and res-

olution [70], the protocol’s lack of metadata, reliance on normalization, and inability to

well-represent control systems substantially different from piano keyboards make it a bad

fit for more generalized mapping needs.
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In the academic community, Open Sound Control (OSC) [71] has largely supplanted

MIDI as the protocol of choice. Unlike MIDI, however, the OSC specification describes

only how to properly format and package bytes to form a named OSC message; although

this formatting is transport-agnostic, OSC is almost exclusively transported over packet-

switching networks as UDP datagrams. OSC is vastly more flexible than MIDI: it includes

support for single- and double-precision floating-point numbers, integers, and 64-bit NTP-

formatted absolute timestamps. Most importantly, OSC messages are tagged with a user-

specifiable, human-readable string instead of a predetermined controller ID number; thus,

simultaneously an advantage and disadvantage, OSC messages are not forced into any

higher-level hierarchy or schema.

This lack of standardization for specific OSC message names, the so-called OSC names-

pace, means that while OSC-capable hardware or software can decipher the contents of a

message originating elsewhere, there is no guarantee that it will be able to make use of it

on a semantic level. The result is that most OSC-capable devices use their own custom

protocol running on top of OSC designed by individual device developers. Intercommu-

nication between two OSC-capable devices must typically be provided by consulting the

documentation for the receiving device, and specifying the IP address, receiving port, OSC

path string, and argument format to the sending device.

Although this can be seen as a disadvantage for reasons of inter-device compatibility,

it has nonetheless become evident in our experience, (and to the credit of the designers of

the OSC protocol) that device-custom naming schemas allow a level of expression that is

far easier to understand for humans. To resolve compatibility problems, two approaches

are possible: firstly, normalization of namespaces and control-space representation to allow

automatic interpretation of a set of “known messages”; or secondly, translation of messages

from one representation to another.

We argue in this work that the latter is a better choice, and translation of represen-

tations is the approach adopted by libmapper. Numerous systems for OSC namespace

standardization have been proposed [71, 51, 34, 72, 73, 44, 3], but none has yet been widely

adopted. We believe that this is symptomatic of the idea that a one-size-fits-all semantic

layer is not the right solution. Not only do representation standards risk leaving semantic

gaps that force designers to “shoehorn” their data, as is common with MIDI, but we also

argue that normalization, while convenient, discards valuable information about the signal

being represented. In fact, we believe that this lack of imposed representation standards is
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the greatest strength of Open Sound Control over other solutions, and that translation is

ultimately a better path to improving compatibility.

2.2.4 Solutions from Other Domains

The (slow) transition from MIDI to OSC mentioned above can be seen as part of a trend

in many domains to move legacy dedicated-wire protocols to IP-based systems. In non-

musical media control, the legacy DMX512 system for lighting control [74] is gradually

being replaced by systems such as the Architecture for Control Networks (ACN) [75].

Meta-data standards for describing the capabilities of devices are often paired with the

communication protocol specifications: Device Description Language for ACN; Transducer

Electronic Datasheet for IEEE 1451 [76] and Transducer Markup Language [77] for sensor

and actuator description. The Virtual Reality Peripheral Network (VRPN) [78] functions

to allow network-transparent access to control data from various input devices, and also

requires a standardized representation of devices.

2.3 Translating representations with libmapper

Our approach to solving the problems of standardization and intercommunication is dif-

ferent than previously proposed standardization/normalization-based approaches. Rather

than enforcing conventions in the representation of signals (names, ranges, vector lengths,

etc.) we simply provide a minimal layer to help devices describe themselves and their capa-

bilities. One reason we prefer description over standardized representation is that our goal

is not precisely automatic connectivity but rather flexible connectivity. Although libmap-

per can certainly be used to load previously-designed connections in a production-oriented

scenario, we wish to emphasize that libmapper is designed for use in the space of mapping

design and exploration, not simply connectivity.

While OSC is currently used by libmapper for transporting data, automatic translation

is provided to the namespace expected by the destination. Crucially, this means that

the sending application need not know the destination’s expected OSC namespace – the

destination is responsible for announcing this information, and libmapper takes care of

translating the sender’s messages into a form expected at the destination. This includes
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both translation of the OSC path2 as well as transformation of the data according to some

mathematical expression; typically, this is simply a linear scaling, but can be much more

complex if desired.

We do not enforce a particular range convention, and in fact explicitly encourage users

to avoid arbitrary normalization. This is further encouraged by providing automatic scaling

and type coercion between sources and destinations of data. Thus, the endpoints can be

represented in the most logical or intuitive way without worrying about compatibility when

it comes time to make mapping connections.

Most importantly, we do not presume to tell the user what this “most logical or intuitive

way” might be; instead, we simply try to make it easy for the user to represent their

systems modularly and with strong semantics. Further, our position is that redundant

representations of the signals from different perspectives are often useful (though perhaps

for different people or at different times) [34]; by managing connections, libmapper makes

it easy to expose large numbers of parameters for mapping without flooding the network

with unused data.

Our approach aims to make the mapping task work transparently across programming

languages, operating systems, and computers – the user can choose the language or pro-

gramming environment best suited for the task at hand. From the instrument designer or

programmer’s point of view, libmapper provides the following services:

• Decentralized resource allocation and discovery

• Description of entities, including extensible metadata

• Flexible, run-time connectivity between nodes

• Interaction with a semantic abstraction of the network (e.g. connecting devices by

name rather than setting network parameters)

The first iterations of these tools were developed to meet the needs of a collabora-

tive instrument development project [41]; since then, we have refined the concepts and

functionality, reimplemented parts of the system that were written in other languages in

transportable C, added bindings for other popular languages, and added utilities for session

management, data visualization, recording and playback. We have offered demonstrations

2The OSC path refers to the text string identifying the semantics of an OSC message.
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and workshops to test our documentation and solicit feedback (e.g. [79]), and used the

system for further projects with other universities and industry.

2.4 libmapper concepts

In this section we describe the main features of libmapper, and give our reasoning behind

choices made during its conception. The libmapper library itself is used by disparate

programs running on a local network, but the collection of these devices can be characterized

as a distributed, peer-to-peer communications system based on a representation oriented

around named signal streams. It is effectively a metadata, routing and translation protocol

built on top of OSC that includes extensive means for describing signals and specifying

connections between them over a network.

While the distributed aspect adds complexity as compared to centralized models, this

is well-mitigated by a common communications bus and extensive description of signal

properties. These make it possible for libmapper programs to find each other automatically,

resolve naming conflicts, and make intelligent default decisions during mapping.

2.4.1 Peer to peer communication

As mentioned, for libmapper we have chosen a distributed approach instead of a more

centralized network topology. This is not the only choice, and therefore it is necessary to

explain our decision.

One possibility for distributing sensor data on a network is the “blackboard” approach:

a central server receives data from client nodes, and re-publishes it to receiving clients that

request particular signals. This approach is often taken by online media services such as

multiplayer online video games, in which a large number of clients must stay synchronized

to a common world state. A multi-layer database back-end used to track and synchronize

real-time state updates with an “eventual consistency” approach is often employed today for

such applications, with a mirrored-server architecture to distribute the load [80]. This has

proven to work well, but is a complex solution made necessary by a strong synchronization

requirement. Often, ensuring consistency relies on optimistic updates with roll-back to

provide perceived fast response times.

Such a centralized method lends itself well to shared environments, however a real-time

musical network more typically requires fast, unsynchronized flow of independent signals
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from sensors to musical parameters, for which several instances may be present at once –

multiple controllers, multiple synthesizers, and multiple performers may share a common

studio environment with a single network. MIDI handles this scenario by supporting multi-

ple channels multiplexed over a single serial bus, and, more and more, by providing several

MIDI buses and devices in a studio setting, unaware of each other so that they do not

interfere. Today, MIDI devices which connect over USB appear to the operating system as

their own MIDI device, or even as multiple devices, rather than taking advantage of MIDI’s

daisy-chaining ability. This means that the user must keep track of which combination of

device and channel number represents which physical controller, relying on device drivers

to provide meaningful identifiers which are often composed of a concatenation of the prod-

uct vendor and number. If data from a MIDI device connected to one computer is needed

on another, some 3rd-party transport is required, usually specific to the software in use, if

such a service is provided at all.

However, an IP-based network actually lends itself well to a peer-to-peer approach,

which we have extensively leveraged in the design of libmapper. That is to say, each node

on the network can be instructed to send messages to any other node, and any node can

issue such an instruction. Additionally, establishment of connections is performed in a

stateless manner, and when data transformation is needed, the system is agnostic to where

the computation actually takes place.

In our system, data transformation is currently handled by the source node, but since the

details of the connection are worked out between the nodes the potential for an alternative

agreement is left as a possibility. For example, the receiver could perform all or part of the

calculations, or a third-party node could be instructed to process the signal. Computational

cost may be considered against hardware capabilities in order to make this decision. This

also lends the possibility of agreeing on alternative data transports, such as TCP/IP, or

shared memory if the source and destination are on the same host; this latter scenario

would be useful for controllers that embed their own audio synthesizer.

2.4.2 A communication bus for “administrative” messages

To enable discovery, it is of course necessary to have a means of communication between

all nodes. This is accomplished by having the peer-to-peer data communications run in

parallel with a separate bus-oriented architecture for the low-traffic control protocol. Since
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our target scenario is several computers cooperating on a single subnet, we have found

that multicast UDP/IP technology is ideally suited for this purpose. Multicast is used for

example by Apple’s Bonjour protocol for tasks such as locating printers on the network

[81].

It works by network nodes registering themselves as listeners of a special IP address

called the multicast group. IP packets sent to this group address are reflected by the Ren-

dezvous Point via the Designated Routers to all interested parties [82]. A small multicast

network therefore takes the form of a star configuration, however multicast also allows for

more complex multi-hop delivery by means of a Time-To-Live (TTL) value attached to

each packet. In the case of libmapper, all nodes listen on a standard multicast group and

port, and the TTL is set to 1 by default in order to keep traffic local.

We refer to this multicast port as the “admin bus”, since it is used as a channel for

“administrative communication”: publishing metadata, and sending and acknowledging

connection requests. The admin bus is used for resolving name collisions, discovering de-

vices and their namespaces, specifying the initial properties of connections, and making

modifications to connection properties. It is important to note that no signal data is com-

municated on the admin bus; signals consist of OSC messages transmitted (most commonly)

by unicast UDP/IP directly between device hosts.

Comparison between multicast and other options

The choice of multicast UDP/IP was not the only possible carrier for this information.

Other possibilities include:

1. broadcast UDP messages;

2. a centralized message rebroadcaster;

3. or rebroadcasting of instructions within a mesh network, where each node commu-

nicates with a subset of other nodes, and messages are propagated throughout the

mesh after several hops.

We chose multicast since, as mentioned, we targeted the use case of a LAN subnet

where support for multicast could be guaranteed. Broadcast would also have worked, but

we consider multicast to be more “friendly” on a large network, since only interested nodes

will receive administrative packets.
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The idea of using a mesh is tempting for networks where multicast or broadcast is

not available, but the complexity of such an approach was prohibitive and not needed for

our applications. However, it is reserved as a future possibility if the need arises. Mesh

networks would require the address of a pre-existing node at initialization time, whereas

standardizing a multicast port makes it “just work” from the user’s point of view. One

advantage of mesh networking is to allow the ad-hoc creation of disjoint networks without

requiring any special tracking of which multicast ports are available, but use cases for this

scenario are, we believe, quite rare.

Another possibility lies between these two extremes: using multicast or broadcast solely

for discovery, as in the case of OSCBonjour [83], while sending commands and metadata

through a mesh network of reliable TCP connections. Indeed, recent work inclines us

towards this solution since we have observed problems of dropped packets when large

numbers of signals and devices are present.

The use of multicast has brought to light a distinct lack of support for this useful

protocol in OSC-compatible tools. Before developing libmapper as a C library, we added

multicast ability to PureData’s OSC objects, found bugs in Max/MSP’s net.multi.send

object, and also added multicast to the liblo OSC library, which is used internally by

libmapper. With libmapper these improvements were not needed, since libmapper uses

liblo directly, and as we provide bindings to libmapper, multicast OSC is handled by the

library for all supported bindings. It was nonetheless a useful exercise to provide multicast

support in these various environments, and we would like to encourage developers of future

audio applications to include the possibility of using it.

Finally, since the information carried by the admin bus is essentially a distributed

database, we considered the use of decentralized database technologies such as a distributed

hash table (DHT) as used by the BitTorrent protocol [84]. This is certainly an interesting

option, but a DHT is best suited for information that is evenly and redundantly distributed

throughout a set of nodes. In the case of libmapper, each node maintains its own infor-

mation, and ostensibly this information is useless if the device is unavailable. Conversely,

deleting expired data from a DHT, e.g. when a device goes offline, is unusual, whereas

libmapper needs to support the possibility of devices appearing and disappearing from the

network. Therefore the idea of devices maintaining their own profile and publishing their

own availability seems to be an acceptable approach. On the other hand the idea of one

device responding to metadata requests on behalf of another is certainly within libmapper’s
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possibilities due to the use of multicast, if for example such a strategy is shown to reduce

load on less-capable peers.

2.4.3 Comparison with centralized topology

Of course, a centralized organization facilitates or enables certain actions. For example,

recording several data sources to a centralized database requires access to all signals at a

single point. Likewise, drawing realtime correlations or other statistical analyses on the

set or a subset of signals, useful for gesture recognition or trend identification, similarly

requires a global view on the data and therefore a centralized approach is best-suited.3 In

our experience, most systems designed for mapping use this client-server approach (e.g.,

[44]).

However, the use of a central hub is a subset of the possible connection topologies using

libmapper’s peer-to-peer approach – it is trivial to model such a topology by simply rout-

ing all signals through a central libmapper device. This can be done automatically by a

program that monitors the network for new connections and re-routes them through itself.

It can then record, analyze, or modify any signals before passing them on to the intended

destination. As a proof of concept, we make available a small C program called greedyMap-

per that “steals” existing and future network connections and routes them through itself.

When the program exits, it returns the mapping network to its previous peer-to-peer topol-

ogy. This program is not intended for real use, since we find it preferable to simply create

a duplicate of each interesting connection, so that the source device sends the signal once

to its mapped destination and once to the recording or data-processing device (Figure 2.2).

Extending in this manner by doubling the connections, instead of modifying the network

to provide a hub, is a less intrusive means to the same end, and results in the same amount

of overall network traffic. In particular, when the central device disconnects, it is not

necessary to re-route signals back to their original configuration, creating a potential drop-

out period, but is enough to simply disconnect the recording pathways. For the same

reason, the sudden disappearance of the central device has far less drastic consequences, in

the case of a computer crash or power disruption.

This connection-doubling technique is used bymapperRec, a program that automatically

3Note that there do exist many decentralized statistical analysis approaches, such as graph-based tech-
niques that can distribute successive reduction steps throughout several computational nodes [85]. Appli-
cation of such techniques to libmapper may be possible, and is the subject of future work.
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duplicates any connections from a device matching a given specification. Ignoring the

connection properties, it maps the data untransformed, and records it directly either to a

text file, binary file, or to a PostgreSQL database via OSCStreamDB [86]. This can be

used for later playback, or to convert to formats appropriate to analysis tools.

Fig. 2.2 A comparison of network topologies: on the left, data recording or
analysis is performed at a central location; on the right, most such scenarios
can be handled with lower latency by duplicating the existing connections
instead.

2.5 Implementation

Conceptually, libmapper is organized into several components and subcomponents that

function together to represent network nodes and their functionality. Most of these com-

ponents are exposed as user-facing interfaces, however not all components are required by

all libmapper programs.

Devices, signals, routers

Firstly, a network node that can send or receive data is called a device. This terminology

stems from the original usage scenario where a hardware device is controlled by a single

libmapper application, however a device may just as easily be a software synthesizer, a data

transformation service, a bridge to another bus system, or anything else that may send or

receive realtime data. Every device has a name as well as an ordinal which is automatically

determined to uniquely identify it if other devices with the same name are found on the

network.
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Fig. 2.3 libmapper system components: devices, signals, routers, and links.
Connections are contained within links

A libmapper device must declare its signals, which are named value streams available

for connecting. Signals have a distinct data direction, i.e. they may either be an input or

output, but not both. It is possible in a given device to have one input and one output

signal with the same name, however, so this is not a limiting factor. Properties of signals

include its name, data type, vector length (see section 2.5.1), optional data range, and

optional units.

We also conceive of an entity known as a router. Conceptually, a router is an object

to which the device sends all of its signal messages, and it handles transforming these

messages into the form specified by existing connections, and sends them as required to

their destinations. This decouples the device from connection management, with the router

maintaining a list of destination addresses and transformation rules for each signal. The

reason for this distinction is to allow data processing and translation to potentially take

place on other network nodes, either alone or shared with the sending node. A device

contains a list of routers, one for each destination device it is linked to, and this is purely

an internal concept – application code never needs to interact with a router directly.

Links and Connections

In practise, a router corresponds to a link – a network connection created between two

devices. Each router contains the address information (IP address and port) required to

send data to its destination device, as negotiated by the link-creation protocol.

The router also keeps a list of connections associated with each of the device’s output



Distrib. Tools for Interactive Design of Heterogeneous Signal Networks 38

signals mapped to the link’s destination device. There is no limit to the number of times

a signal may be connected. Connections are specified with information about the source

and destination signal names, and any desired data transformation behaviour. In addition

to linear scaling, data transformation may include user-defined mathematical expressions,

automatic calibration, muting, and clipping (See section 2.6).

Default connection properties: The following steps are used to determine initial connec-

tion properties, which have been designed to allow fast experimentation provided the data

ranges are well-specified:

1. Any properties that are specified as part of the connection will take precedence.

2. Otherwise, any connection preferences specified by the signals involved will be added.

Some signals may have default clipping behaviour to prevent damage to equipment,

for example.

3. If the connection processing is still unspecified and the ranges of the source and

destination have been provided, processing will default to linear scaling between the

input and output ranges.

4. Otherwise no data transformation is provided; data is “passed through” unaffected.

(So-called “bypass” mode.)

In all cases, if the types do not match and type coercion is possible, then data types

will be automatically transformed. Type coercion follows the rules of the C language:

integers are automatically promoted to floating-point numbers, and conversely floating-

point numbers are truncated to integers if necessary.

Monitors

We also support network nodes called monitors that can send and receive data, but do

not have any signals of their own. These nodes are used for observing and managing the

network of libmapper-enabled devices, typically in the form of a graphical user interface

(see section 2.7). Due to the fact that libmapper administration is performed on a shared

bus, an arbitrary number of monitors can be used simultaneously on a given mapping

network, and they can be used from any computer in the local network.
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A libmapper device can also use the monitor functionality, for example responding to

remote activity on the network by dynamically adding or removing from its collection of

signals, or by automatically creating links and connections to remote devices when they

appear on the network.

2.5.1 Data types

Signals are associated with a particular data type, which must be a homogeneous vector

of one or more values. Values may be 32- or 64-bit integers, or 32- or 64-bit floating-point

numbers, for example.

The choice to support only homogeneous vector types may be seen as inflexible. Indeed,

many aspects of libmapper could be adapted to support heterogeneous vectors, however we

chose to support only homogeneous vectors because signals are not intended to represent

data structures, but rather values associated with properties of a system. The reason for

introducing vectors is that certain values are vectors from a semantic point of view, but

heterogeneous types imply something that can be broken up into pieces. We wanted to

encourage as much as possible the use of short vectors, limited to, for example, 2- or 3D

position data, but not used to organize an entire system state vector. Rather, such a

structure representing a system state should be split up into its components, each as a

separate signal (Figure 2.4).

/tuio/2Dobj set s i x y a X Y A m r

/session/object/id/position x y

/session/object/id/angle a

/session/object/id/velocity X Y

/session/object/id/angular_velocity A

/session/object/id/acceleration m

/session/object/id/angular_acceleration r

Fig. 2.4 Top: example data encoding specification from the TUIO protocol
[3] using a large heterogeneous vector to carry the entire state of an object.
Below: the same data exposed as separate “signals” with semantically strong
labels and only short, homogenous vectors where appropriate.

To enable flexible mapping design, it is necessary to access as much as possible individual
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pieces of information that can be mixed and matched by the user on the fly. Specifying

large amounts of data at particular indexes of a large state vector is comparable to “hiding”

the natural-language semantic specification enabled by Open Sound Control, and we feel

such a choice sacrifices one of the main advantages of OSC over MIDI. Being able to assume

homogeneous vector types also allows more succinct expression of element-wise mathematic

functions.

Even 3D position data may be usefully represented as separate (x, y, z) components,

but some values such as quaternions have terms that are rarely referred to individually. At

this point the reader may be asking, why not also support a matrix type? Indeed, why

not types for multidimensional tensors? There is certainly a case to be made for higher-

dimensioned arrays, such as transmission of pixel data for example, or handling of rotation

matrices. However, from a practical standpoint we felt that it was necessary to draw the

line somewhere, as libmapper – intended as a lightweight library – cannot provide a full

scientific programming language for data processing. Moreover, it is often inefficient to

transmit large bundles of data in real-time, and it is preferable to extract properties of this

data and expose these as signals.

As an example, a video feed could be transmitted as a 2D matrix signal, but a bare

video feed has little use for audio control. It is far more efficient and useful to extract video

features such as body or face position using computer vision techniques, and to transmit

signals such as “/eye/left/position” as 2-valued vectors.

We believe these arguments are sound, but support for high-dimensioned data is not

entirely out of the question, and could perhaps be added in the future if the need arises.

In the meantime, matrices can of course be transmitted as flattened vectors, which scalar

support alone would not have allowed.

2.5.2 Metadata

Several properties of connections were mentioned in section 2.5. These included the data

transformation expression, the connection mode, and the boundary behaviour. Devices

and signals also have properties, such as their name, type, length, and range.

In libmapper, this metadata can be extended by the user to include any extra informa-

tion that may be useful for visualization or analysis of the network. Devices and signals

may be extended with named values that can be of any data type supported by OSC.



Distrib. Tools for Interactive Design of Heterogeneous Signal Networks 41

For example, the user may wish to assign position information to each device in order to

identify its physical location in the room. This may aid in the development of a visualization

tool for the design of an art installation. Key-value pairs x=x and y=y may be used for this

purpose. In other cases perhaps location is more meaningfully communicated by indicating

the name of the room in which a device is situated, or perhaps the name of the person to

which a wearable device is attached.

Another example might be to mark certain connections as special, for example because

they are related to a recording device. When displaying the connected network topology, it

may be desirable to avoid including such connections in order to simplify the visual display.

Alternatively names could be used to semantically group certain collections of devices as

belonging to a particular user, or being components in a particular subsystem. Since the

admin bus is shared by all devices, identification of who made which connection could be

important for collaborative scenarios.

2.5.3 Queries

In addition to explicit connections between source and destination signals, machine learning

techniques can be used to map implicitly between collections of source and destination

signals. In the case of supervised techniques, it is necessary to learn the value of the

destination signals in order to train the system – information that is not available through

unidirectional mapping connections. Often, the value of the destination would have been

set by the connection in question, but the value could also have been changed by another

libmapper peer or locally by a user or by some automated process (as in the case of play-

along learning [32]).

Two facilities are provided by libmapper for this purpose. Firstly, it is possible to query

the value of remote signals. A monitor can query remote signals directly, since it has

access to information about the mapping network (the existence and network location of

the remote signal, for example), but a device has knowledge only of its own signals. In the

libmapper application programming interface (API), remote values can still be retrieved by

calling a remote query function on a local output signal; libmapper will query the remote

ends of any mapping connections originating from the specified local output signal and

return the number of queries sent out on the network. In order to process the responses to

value queries, the local device must register a query response handler function for the local
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output signal. The query protocol can also handle the case in which a queried signal does

not yet have a value.

Secondly, libmapper also provides the ability to reverse the flow of data on a mapped

connection. When this behaviour is enabled, every update of the destination signal, whether

updated locally or remotely by another connection, causes the updated value to be sent

“upstream” to the connection source. In this case no signal processing is performed other

than coercing the data type if necessary. The sampled destination values can then be used

to establish interpolation schemes or to calculate errors for supervised training (Figure 2.5).

Input Device Artificial 
Neural 

Network

Synthesizer
1

2

Fig. 2.5 Example “supervised” implicit mapping scenario: connections from
an input device are routed through an intermediate device rather than directly
to the synthesizer. During training, the values of connected destination input
signals are sent upstream to the intermediate device (1) using either individual
value queries or “reverse”-mode connections. After training, the connections
from intermediate to destination devices are reset to “bypass” mode (2). Note
that the arrows marked (1) and (2) actually represent the same data structures;
only the dataflow direction changes. A typical implicit mapping scenario might
use many such connections rather than the simplification shown here.

2.6 Signal Processing

The first two connection modes (“linear” and “bypass”) have already been described in the

context of determining default behaviours for new connections. For simple use, the “linear”

mode may suffice if the signal ranges have been well defined; for more advanced usage two

other options are provided.

The third connection mode is called calibrate, and it can only be enabled if the destina-

tion range has been defined. While a connection is in this mode, libmapper will keep track

of the source signal extrema (minimum and maximum values) and use them to dynami-

cally adjust the linear scaling between source and destination. Re-entering linear mode has

the effect of ceasing calibration while keeping the recorded extrema as the source range.

Ranges are stored independently for each connection, and can be added or edited as part
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of the connection metadata; different connections can thus map to different sub-ranges of

the destination, for example.

The final connection mode is expression, in which the updated source values are eval-

uated using a user-defined mathematical expression in the form “y=x”. This expression

can contain arithmetic, comparison, logical, or bitwise operators. The linear and calibrate

modes automatically populate the expression metadata, so that when switching into ex-

pression mode the user can start by editing the expression defining the previous mapping.

In addition to the active modes mentioned, each connection can be independently

muted, allowing users to temporarily prevent data transmission without losing the con-

nection state.

2.6.1 Indexing delayed samples

Past samples of both input and output are also available for use in expressions, allowing

the construction of FIR and IIR digital filters (Figure 2.6). These values are accessed using

a special syntax; some examples are shown in Table 2.6.1. We currently limit addressing

to a maximum of 100 samples in the past.

Function Expression Syntax
Differentiator y = x - x{-1}
Integrator y = x + y{-1}
Exponential moving average y = x * 0.01 + y{-1} * 0.99

Counter y = y{-1} + 1

Table 2.1 Some example expressions using indexing of delayed samples.

2.6.2 Boundary Actions

A separate “boundary” stage is provided for constraining the output range after the expres-

sions are evaluated. Actions can be controlled separately at the minimum and maximum

boundaries provided, and can take one of five different modes:

none values outside of the bound are passed through unchanged.

clamp values outside the bound are constrained to the bound.

mute values outside the bound are not passed to the output.
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Fig. 2.6 Processing pipeline used by libmapper.

wrap values outside the bound are “wrapped” around to the other bound.

fold values outside the bound are reflected back towards the other bound

2.7 Mapping Session Management

When designing mappings between libmapper devices it is necessary to interact somehow

with the network (via the admin bus); typically this is done using one of the graphical user

interfaces (GUI) we have developed in parallel with the library itself. These interfaces are

also used to save and load pre-prepared mappings, for example when performing a piece in

concert.

2.7.1 Graphical User Interfaces

Currently our working GUIs use a bipartite graph representation of the connections, in which

sources of data appear on the left-hand side of the visualization and destinations or sinks for

data appear on the right (Figure 2.7). Lines representing inter-device links and inter-signal

connections may be drawn between the entities on each side, and properties are set by

first selecting the connection(s) to work on and then setting properties in a separate “edit

bar”. They use a multi-tab interface in which the leftmost tab always displays the network

overview (links between devices) and subsequent tabs provide sub-graph representations of

the connections belonging to a specific linked device.

We have also explored alternative visualization and interaction techniques, which allow

more informed and flexible interaction with the mapping network. Crucially, we believe
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Fig. 2.7 Two different graphical user interfaces for managing the mapping
network. Top: mapperGUI bu the first author, bottom: vizmapper by Vijay
Rudraraju [4]
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that there is no need for a single “correct” user interface; rather, different network represen-

tations and interaction approaches may be useful to different users, for different mapping

tasks, or at different times.

All libmapper GUIs function as “dumb terminals” – no handling of mapping connection

commands takes place in the GUI, but rather they are only responsible for representing

the current state of the network links and connections, and issuing commands on behalf

of the user. This means that an arbitrary number of GUIs can be open simultaneously

supporting both remote network management and collaborative creation and editing during

the mapping task. This approach has brought our attention to interesting research into

other collaboratively-edited systems (e.g. [87]); our approach to undo/redo functionality is

based on this work.

2.7.2 Automatic Session Recovery

Apart from explicit saving and loading, for specific projects we commonly implement small

session-recovery programs to save time during working sessions. Sometimes while program-

ming a particular device it is necessary to frequently recompile and relaunch the device, and

recreating the mapping links and connections would be tedious. Using the monitor API,

it only takes a few minutes to write a small program that watches for specific relaunched

devices and recreates the desired mapping.

Eventually, we plan to create a general-purpose session logging and recovery system

based on libmapper, backed by a version control database allowing the recovery of any

previous configuration of the mapping network.

2.8 Mapping scenarios – libmapper use cases

In this section we briefly describe some examples of use cases for which libmapper has been

designed.

2.8.1 Explicit Mapping Scenario

Imagine that Bob has an interesting synthesizer, and that Sally has been working on a

novel physical input device. Since they both used libmapper bindings, collaboration is

simple – they use a GUI to view the mapping network and create a link between the two
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devices. Over the course of their session, they experiment with different mappings by

creating and editing connections between the outputs of Sally’s controller and the inputs

of Bob’s synthesizer.

2.8.2 Implicit Mapping Scenario

Sally and Bob decide to try a different approach: they are happy with some of the results

from the explicit mapping approach but they want to jump quickly to controlling more

parameters. They remove the direct link between their devices in the mapper network and

instead link them through an intermediate machine-learning module/device and connect the

signals they want to include in the mapping. Sally clicks on the button labeled “snapshot”

on the intermediate device each time she wants to indicate that the current combination

of gestural data and synthesizer configuration should be associated. Lastly, she clicks on a

button labeled “process”, and the device begins performing N-to-M-dimensional mapping

from the controller signals to the synth signals.

Finally, Sally and Bob might decide to use a combination of the approaches outlined

above, in which many “integral” parameters of the synth affecting the timbre of the re-

sulting sound are mapped implicitly using machine learning, but the articulation of sounds

(attacks, releases) and their overall volume are controlled using explicitly chosen mapping

connections. They decide that for this particular project this approach provides the best

balance between complex control and deterministic playability.

2.9 Support for Programming Languages and Environments

libmapper is written in the programming language C, making it usable as-is in C-like

languages such as C++ and Objective-C, and by users of media programming platforms

such as openFrameworks4 and cinder5. Bindings for the Python and Java programming

languages are also provided, the latter intended principally for compatibility with the Pro-

cessing programming language which is popular in the visual digital arts community.

We have made every effort to ensure that the libmapper API is simple and easy to

integrate into existing software. In most programs, the user-code must make only four calls

to the libmapper API:

4http://www.openframeworks.cc/
5http://libcinder.org/
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1. Declare a device (optionally with some metadata)

2. Add one or more signals (inputs and/or outputs, again with some optional metadata)

3. Update the outputs with new values

4. Call a polling function, which processes inputs and calls handlers when updates are

received.

Figure 2.9 shows a simple (but complete) program using the libmapper C API. For

simplicity here we will not show the monitor functionality, since for the most part only

GUIs and other session managers need to instantiate monitors. Full API documentation is

available online.

#include "mapper/mapper.h"

void handler (mapper_signal msig, mapper_db_signal props,

int instance_id, void *value,

int count, mapper_timetag_t *tt ) {

// do something

}

void main() {

mapper_device dev = mdev_new("my_device", 0, 0);

mapper_signal in = mdev_add_input(dev, "/out", 1, ’i’,

0, 0, 0, handler);

mapper_signal out = mdev_add_output(dev, "/out", 1, ’i’, 0, 0, 0);

int my_value = 0;

while(my_value < 1000) {

msig_update_int(out, my_value++);

mdev_poll(dev, 100);

}

mdev_free(dev);

}

Fig. 2.8 Simple program using the libmapper C API to declare one input
and one output signal.
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2.9.1 Max/MSP and Pure Data

Max/MSP and PureData – two graphical patching environments for music programming

– are supported via a mapper external object. This object instantiates a libmapper device

with the name of the object’s argument, and allows input and output signals to be added or

removed using messages sent to the object. Output signals are updated by simply routing

the new value into the object’s inlet, and received inputs emerge from the object’s left

outlet. The object’s metadata (IP address and port, unique name, etc.) are reported from

the object’s right outlet (Figure 2.9).

Fig. 2.9 Screenshots of the mapper object for Max/MSP (left) and PureData
(right).

The mapper external object also provides an opportunity to provide parameter bindings

for the popular music sequencing and production software Ableton Live6, since it is possible

to load Max/MSP patches as plugins in Ableton. Using the provided support for parameter

discovery, one can quickly scan the open project and declare all the Ableton parameters as

mappable signals on the network.

We also provide the implicitmap external object as a reference implementation for sup-

port of implicit mapping techniques with libmapper, and was built specifically for bridging

libmapper and the MnM mapping tools from IRCAM [88]. This object instantiates both a

libmapper device and a monitor, which it uses to observe its own connections and dynam-

ically adjust its number of inputs and outputs as necessary.

6https://www.ableton.com/
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2.10 Device and Software Support for libmapper

The most complex devices we use for mapping are invariably the ones developed in our

lab – complex in terms of numbers of signals available for mapping, and also in terms of

their departure from standard input devices such as piano keyboards. There are relatively

few commercial offerings in the “alternate music controller” space. In addition to the lab-

developed prototypes and research instruments, we also use a number of commercial input

devices such as joysticks, depth-sensing camera systems, and various optical, magnetic,

and inertial motion capture systems. We maintain a public collection of device drivers

and utilities for working with libmapper that we hope will grow alongside the community

making use of the library.

2.10.1 Protocol Bridges

In the interests of compatibility with other communication standards and with legacy

hardware, we are developing a series of software daemons that function as protocol bridges

to the libmapper mapping network. The MIDI protocol in particular is of interest to us,

since almost all music hardware built since the 1980s is compatible with MIDI, and it

remains the standard for most commercial music software today. Our MIDI bridge makes

use of libmapper and the open-source cross-platform MIDI library RtMidi7 to expose MIDI

signals to the mapping network. If the software is running as a daemon, any MIDI devices

recognized by the operating system will be dynamically added to the available pool of

mappable devices without any user intervention.

Popular computer peripheral input devices such as gaming joysticks and graphics tablets

are also commonly used for multidimensional control of music software. For this reason,

we are also developing a software daemon for automatically exposing the parameters of

peripherals using the Human Interface Device (HID) standard for mapping.

Finally, the Arduino microcontroller platform8 is immensely popular for creating DIY

electronics in general, and new control interfaces for music in particular. Students in our

lab frequently use Arduino circuit boards for sampling sensors and communicating with a

computer running audio synthesis in PureData or Max/MSP; usually custom firmware is

written to enable the microcontroller to efficiently perform specific tasks, however a generic

7http://www.music.mcgill.ca/~gary/rtmidi/
8http://www.arduino.cc/
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firmware – “Firmata” – is sometimes used instead to allow dynamic reconfiguration of the

Arduino at run-time [89]. For users of Firmata, we make available an adaptation of the

application “firmata test”9 that exposes the configured pins for mapping10.

Sending and Receiving Open Sound Control from libmapper

Although we argue that calling libmapper from your application is the best route towards

intercommunication, libmapper-enabled devices/applications can be used to send and re-

ceive Open Sound Control messages for compatibility with tools lacking libmapper bindings

but including OSC support. Sending OSC messages from a libmapper-enabled application

to an OSC-only application simply involves manually providing enough routing information

(receiving IP and port and the expected OSC message path) to create a dummy libmapper

connection. Sending messages from an OSC-only application to libmapper is also simple;

since libmapper uses OSC internally for message passing one can simply send properly-

formatted OSC messages to the destination device. The routing information, OSC paths,

data types and vector lengths for the destination signals can be easily inspected using any

mapper GUI on the network.

Naturally, these tricks only work for fairly simple scenarios, and will not support de-

vice discovery, value queries, or much of the session management features of libmapper.

However, in the libmapper-to-OSC scenario the spoofed connection will support signal

processing and session management.

2.11 Conclusions and Future Work

In conclusion, we believe that designers of interactive systems should use the most suit-

able, interesting representations of their systems, and that translation should be used for

providing compatibility rather than standardization and normalization of signals. We offer

libmapper to the community as tools for accomplishing this goal: a cross-platform, open-

source software library with bindings for an increasing number of popular programming

languages, platforms, and environments. The future of libmapper includes lots of exciting

work for anybody interested in aiding or guiding development – a few of the items on our

roadmap are described in the next section.

9http://firmata.org/wiki/Main_Page
10https://github.com/IDMIL/firmata-mapper
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Our own experience using libmapper for system interconnections on a variety of large

and small projects has been largely positive. While libmapper does not miraculously make

mapping easy (of course!), it greatly streamlines our work. Systems are now much less

tedious to set up and interconnect, even when working with student projects that were not

conceived to be compatible in any way. The use of libmapper and surrounding tools also

acts to democratize collaborative mapping sessions, since participants can experiment with

mappings between systems written in unfamiliar programming languages, and often even

while the devices themselves are being modified. Most importantly, we find that the time

we save means that we can try more ideas in the available workshop time, easily compare

and contrast them, iterate and refine them. We use libmapper in workshops, demos, concert

performances, and daily in our lab.

2.11.1 Future Work

Current work on libmapper focuses on finalizing the function and programming interfaces

for dealing with instances of signals, for the handling of polyphony in synthesizers as well

as “blob tracking” and other methods that involve virtual entities that pop in and out of

existence. This work will be treated in a future publication (cf. Chapter 3 of this thesis).

In tandem with the instances functionality, we are progressing on the full integration of

absolute time-tagging of mapped data. Once the groundwork is finished, this functionality

will enable automatic jitter-mitigation in data streams since libmapper will be able to

dynamically determine the amount of latency in a given link or connection. Perhaps more

interestingly, connection processing will be extended to allow arbitrary processing of the

message time-tags, enabling flexible delays, debouncing, resampling, or ramping to be part

of the designed mapping connections.

Finally, we are continuously working on adding support for new programming languages

and input devices, including progress on interfacing libmapper with embedded systems.

2.12 More Information

More information on libmapper and related projects can be found on the project website

libmapper.org or by subscribing to one of the mailing lists (developer or user). The

website includes online documentation of the libmapper application programming interface,

pre-built binary versions of the library for various platforms, and links to projects and
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utilities using libmapper. All libmapper development is performed in open consultation

with the community mailing list, and anyone interested can join to participate in defining

and implementing the future of the library and its surrounding ecosystem.
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Chapter 3

Generalized Multi-Instance Control

Mapping for Interactive Media

Systems

The following chapter continues where Chapter 2 finished, and addresses the design of

extensions to our mapping tools for mapping of signals with multiple instances. This

chapter was prepared as the manuscript:

J. Malloch, S. Sinclair, and M. M. Wanderley, “Generalized multi-instance control map-

ping for interactive media systems, ” Manuscript prepared for submission.

3.1 Abstract

We articulate a need for supporting the representation of entities with multiple instances

in tools for designing and using interactive media systems. A list of system requirements

is compiled from examination of existing tools, practical use-cases, and abstract consid-

erations of node connectivity and information propagation within a graph of connected

devices. The addition of support for mapping multi-instance signals to the open-source

software libmapper is described, along with practical examples of the new features in use.
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3.2 Introduction

3.2.1 Digital Musical Instruments

For the purposes of our research and this article, a “digital musical instrument” (DMI) is

a system which affords real-time control over digital audio synthesis algorithms using some

sort of user interface [7]. While approaches to user-interface and media synthesis may vary

considerably, a unifying feature of DMIs is that – unlike acoustic systems – there exists

no physical relationship between user input and its effect on the system state. Instead,

associations between gesture and sound (or other media) must be designed or otherwise

generated before the system becomes functional; this mapping from sensed gestures, pos-

tures or other phenomena to media control dramatically impacts the response of the system

and thus the experience of the performer and audience [90].

There are several typologies for considering mapping approaches. Mapping topologies

may be one-to-one, convergent (in which multiple source parameters affect a single des-

tination), divergent (in which one source parameter affects multiple destinations), or a

combination [30]. Hunt and Kirk described mappings as simple or complex [91] depending

on the inter-relations between dimensions of input and output; a similar distinction is made

between integral and separable approaches to control [92]. A mapping might remain static

over a period of time (e.g. the duration of a performance), or change dynamically, and it

could be defined through explicit configuration of connections or be generated implicitly

through the use of machine learning [93]. Several different layers of mapping might be

conceived between two entities, either for the purposes of system abstraction/organization

[33] or to combine several mapping approaches.

3.2.2 libmapper

libmapper (cf. Chapter 2) is an open-source, cross-platform software library for providing

discoverability and compatibility between interactive real-time systems for the purposes of

designing mapping layers between them [41]. It is written in C, and bindings are provided

for Python, Java, Processing, SuperCollider, Max/MSP, and Pure Data. Each application

that uses libmapper becomes a node in a distributed network, and real-time data can be

streamed between nodes in a peer-to-peer manner. Additionally, metadata describing the

nodes and their capabilities can be discovered by peer nodes or by monitors, which are
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usually embedded in some sort of user-interface for viewing and managing the mapping

network state. For simple connectivity, libmapper ensures compatibility between data-

stream endpoints by coercing, rescaling, and translating data representations as necessary.

The automatic transformations can be over-ridden by the mapping designer, assigning

custom signal-processing expressions that are applied to the data streams. The collection

of libmapper connections and their configurations forms a mapping between associated

sets of nodes, and can be saved and recreated later for further modification or for live

performance or other types of interaction (e.g. interactive media installations).

A Note on Terminology

For the libmapper project we have adopted certain terminology which we will also use

throughout the rest of this paper. For clarity we will define a few terms here:

signal a named data-stream with associated properties. A signal may be either an input

or an output, however when discussing mapping we usually find it less confusing to

consider data flow from the perspective of the mapping layer, for which signals are

either sources of information, or destinations for information.

device a container for signals often corresponding to a physical object or a software pro-

gram; conceptually a logical collection of signals, though a device may also have other

associated properties. Signals could be considered as dynamic properties of a device.

connection a mapping association between one source signal and one destination signal.

For libmapper, connections represent both data transport and representation trans-

formation including arbitrary processing.

link a conceptual representation of “router” software objects for forwarding and accepting

data flow between devices; a network-layer association between two devices.

3.2.3 The Case for Multi-Instance Mapping

Since libmapper provides run-time configurability to inter-device mapping, connections can

be created and destroyed on-the-fly by users or by automated processes by sending session-

management messages to the relevant devices. In a typical scenario, the devices and signals

available for mapping remain constant for the duration of a concert or mapping session;
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even in the case of pieces or installations with “dynamic mapping” the changes to mapping

configurations usually take place at intervals greater than a second.

The are also scenarios, however, in which it is necessary to support multiple distinct

copies of signals – or groups of signals – that dynamically appear and disappear. The most

obvious musical example is the support of polyphonic synthesizers, capable of producing

more than one sound simultaneously. There are however many other examples: multitouch

interfaces, computer vision systems that extract objects of interest (faces, people, “blobs”,

etc), and tangible user interfaces involving multiple identical objects. For example, we

cannot known ahead of time how many touches there will be on a multitouch interface

at a given time, only a possible maximum permitted by the sensing hardware or software

drivers. The requirements for mapping with these types of signals are discussed below.

In the following sections we will outline our approach to this problem through the exam-

ination of several hypothetical use-cases, and attempt a formalization of our requirements

for supporting multi-instance mapping in libmapper. In sections 3.6 and 3.7, we describe

the integration of multi-instance support into libmapper and demonstrate its use for several

associated software tools.

3.3 Our Concept of Signal Instances

Our aim is to flexibly support mapping scenarios which deal with instances of signals or

objects, and we considered many use-cases to help form a general concept of instances

(figure 3.1). Since it is impossible to anticipate all of the possible specific systems and

use-cases, we will attempt to first outline the general scope of the concept and identify

systems in which it should not be applied. In section 3.5 we will use these general rules to

formalize the requirements of the system.

3.3.1 Defining New Objects by Mapping

We have decided not to support the creation or definition of new higher-level objects from

aggregates of signal instances (e.g., “barycentre of three touches on a touchscreen”). We

intend libmapper to be a lightweight library providing interconnections between existing

systems rather than a programming language/environment in itself. With this in mind,

some complex mapping scenarios may be outside the scope of the library, however we

fully endorse the idea of using interesting, complex intermediate mapping devices/layers
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which might provide complex processing and expose new or aggregate objects for mapping

downstream.

Fig. 3.1 Use-cases for multi-instance mapping. Clockwise from top-left:
polyphonic audio synthesis; multitouch interfaces (tabletop multi-user inter-
face from the IDMIL); computer vision (blob tracking using data from a scan-
ning laser rangefinder); tangible user-interfaces such as the Reactable [5] (im-
age: Daniel Williams/Wikimedia Commons).

3.3.2 Instances are Interchangeable

The first important feature of our definition of instances is that they are completely inter-

changeable. It is central to the system-design philosophy espoused/encouraged by libmap-

per that strong semantics are attached to all entities whenever possible (whenever such

information exists). For example, we believe that using two instances of some signal la-
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beled /arm/position to represent left and right arms is not a good approach, since from

the interactor’s point of view (and likely that of the audience also) there is a strong, persis-

tent difference between their two arms and they are unlikely to confuse the two. In this case

separate signals – e.g. /arm/right/position and /arm/left/position – is likely a better

approach. The instance concept should only be applied when there are no differentiating

characteristics between the entities involved from the perspective of the system designer,

and hopefully also from that of the potential interactors.

3.3.3 Instances can be Dynamically Created and Destroyed

Instances of a phenomena may be ephemeral and their creation and destruction may be

driven by unpredictable control signals. “Destruction” in the case of virtual entities (e.g.

touches) means actual destruction, for persistent entities (e.g. physical objects) it implies

removal from the scope of the system (e.g. removed from an interactive tabletop).

3.3.4 Instances can be Serial and/or Parallel

We also consider “gestures” – or other segmentations of continuous signals – to be instances

of temporal objects (figure 3.2). In music this also applies to the abstract but useful concept

of “notes” – from a signal-processing point of view we can see that we are still dealing with

continuous time and not discrete events. Perceptual segmentation into notes occurs at two

different levels: the performer’s intention to play a note, and the auditory system of a

listener identifying some sort of sound “object”.

3.3.5 Mapping Once

For many cases, the very existence of signal instances is an important part of their state,

and needs to be mappable to destination devices. However, if we dynamically create and

destroy mapping connections as instances pop in and out of existence we are essentially

abusing the administrative data bus for mapping this signal state rather than administrat-

ing connections. The information required to map all instances is already contained in the

message to connect one instance, so it becomes obvious that dynamic connections are the

wrong approach. Instead, we would like to publish a signal once for an entire class, no

matter how many instances it might have. In order to simplify configuration, we would

also like to be able to map all instances of a signal with a single connection.
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Fig. 3.2 A comparison of parallel instance lifetimes (top) and serial instance
lifetimes (bottom).

3.3.6 Dynamic Re-assignment of Resources

Designers of polyphonic synthesizers have long had to deal with situations in which the

synth does not possess adequate resources to simultaneously produce all of the sounds it

is commanded to play. Supporting many synth voices is less problematic now that most

synthesis is handled by software, but in earlier days a synthesizer would possess a limited

number of oscillators or voice circuits, even after the adoption of the MIDI protocol for

controlling the synths. The MIDI protocol uses “note number” to index the instances of

the represented object “note,” and is capable of representing 128 simultaneously sounding

notes per channel. Since the protocol doesn’t require the control hardware to track which

notes are sounding, it is trivial to build a keyboard that can send more notes than the

destination synth would be able to handle.

The typical approach to dealing with this situation is to employ voice stealing, so that

a newly triggered note would “steal” the resources of an already-sounding note. Often the

oldest note would be stolen: many sounds decay as they progress and the oldest sound is

likely to be the quietest and have the least impact if released; more sophisticated synthe-

sizers might identify and release the quietest note regardless of its age. The synth designer
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must also decide whether to play the end sample of the note to be released (in the case of

wavetable synthesizers) or activate the “release” portion of an amplitude envelope (in the

case of typical additive, subtractive, or FM synthesizers) before starting the new note.

For more general mapping of interactive systems it is still necessary to consider that

some devices may have constrained resources similar to fixed polyphony in sound synthe-

sizers. Even for systems that dynamically use an arbitrary number of instances it may be

more efficient to preallocate some of the necessary resources.

3.4 Support for instances in existing tools

3.4.1 Instances in MIDI

The Musical Instrument Digital Interface (MIDI) protocol and connection standard has

been the de facto standard for connecting commercial electronic musical equipment since

the early 1980’s [66]. Designed initially for connecting piano keyboard-style controllers

to sound synthesis gear with severely-constrained communications bandwidth (by modern

standards), the protocol semantics and capabilities are heavily biased towards keyboards.

The protocol includes 16 different channels, and supports polyphony (multiple instances of

“note”) by labelling most messages with a 7-bit note number – up to 128 different notes can

be active on a channel at the same time – most remaining messages are intended to address

all active notes on a channel. This scheme hard-codes the semantics of the controller,

conflating key number with a musical pitch rather than considering the separability of input

device and synthesizer, and forces musical control to fit into the “note” concept: atomic

temporal objects with explicitly defined pitch, beginning and end. For general mapping

purposes these constraints are unacceptable, since “hacking” the protocol to represent more

flexible or more complex systems would abandon its main advantage – compatibility with

existing hardware and software.

For our general solution, we prefer not to think of note-on/note-off events, but rather

a key-activation as being an instance of a gesture that ends when the key is lifted. In

practice we might also desire to consider the trajectory of the hand/fingers when not in

contact with a keyboard.
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Handling Dropped Messages

Since MIDI was designed for transport over dedicated cables, issues with loss of instance

synchronization were not directly addressed. The MIDI specification does include a mes-

sage for all notes off which will turn off active notes without sending specific NOTEOFF

messages for each one. Adaptation of the MIDI protocol for packet-switching networks

resulted in RTP-MIDI [94], which maintains the message types and semantics of standard

MIDI but defines a container packet format. More importantly, RTP-MIDI adds a recovery

journal system to allow dynamic recovery from lost packets, which are much more likely to

occur than over a dedicated wire.

3.4.2 Instances in TUIO

TUIO is a protocol designed for communicating the state of table-top “tangible” user

interfaces for real-time control of media synthesis [3]. It is a higher-level protocol built

on top of Open Sound Control [95] – as is libmapper – and naturally supports working

with multiple objects on the table. Each object is assigned a unique id, and there are

set message types for different kinds of objects. The protocol is hard-coded to use certain

representations, coded as heterogeneous data vectors. While it works very well for its

designed use-case and enjoys fairly widespread use, TUIO is ill-suited for representing

arbitrary control systems.

To mitigate the effects of dropped UDP packets, the presence of objects on the table is

not communicated using explicit messages, but is deduced by the receiver by tracking the

stream of object updates and a stream of alive messages reporting the ids of all objects on

the table. Additionally, redundant system state information (an additional alive message)

is included in each packet.

3.5 Formal Requirements

In order to formally consider the effects of various connection topologies on multi-instance

mapping, we will make use of some concepts from graph theory. Briefly, in graph theory,

a graph consists of nodes which may be connected by edges ; a subset of graphs possess

edges that are directed, making possible loops that feed back on themselves, termed cycles

[96]. Links and connections formed by libmapper can be considered to be directed edges,
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and cycles are possible if defined by the user; nothing more specific can be said without

considering some examples. Starting with simple graphs, we will try to build a specification

for supporting instances in libmapper. Here, we will consider graph nodes to be libmapper

devices; since multiple connections can be made between two devices the general form will

be a directed multigraph when considering connections, and simply a directed graph when

considering links.

In the diagrams to follow, devices/nodes will be drawn with a fill if they can initiate

the creation of new instances. The creation of a new instance by node A can (but does

not necessarily) cause an associated instance to be created by any other node connected

directly downstream. We can consider this as information propagation within the graph

originating at node A; in the following exploration we will refer to the node which initiated

this chain of events as the instance origin.

3.5.1 Acyclic graphs

The simplest graph we are concerned with includes two nodes connected with no cycles –

data flows in only one direction. The creation of new instances by node A may cause the

activation of corresponding instances by node B. Our only system requirement at this stage

is that the instances of different signals need to be synchronized across the link between

nodes, so that downstream nodes can update themselves appropriately.

There are four possible acyclic graphs that can be formed with three nodes, shown in

figure 3.3

A

B

C A

B

C A

B

C A

B

C

Fig. 3.3 Three nodes with no cycles. From left:divergent, convergent, chain,
chain + convergent.

Divergent – This scenario is essentially the same as the simple two-node graph, collisions

between instance ids generated by different devices are not possible. Example: one

input device controls two synthesizers.
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Convergent – Two nodes are both routing instances to the same destination – we will

need to avoid collisions between instance identifiers generated by each device. Exam-

ple: two input devices connected to the same synthesizer.

Chain – If the intermediate node can also activate new instances, we need to ensure that

the final destination can distinguish between instances generated by each node. This

is the same as the convergent graph, except the instances from two nodes are carried

on the same link. Example: a virtual physics engine is used between input device

and synthesizer to add dynamic behaviour to the controlled synth parameters.

Chain+convergent – This graph adds another requirement, since the final node must be

able to associate instances from the first node that have arrived directly and through

an intermediate node. At the output of an intermediate node, instances will need

to be tagged or labelled with information identifying the instance origin. Example:

one input device is mapped to one synthesizer, but with a subset of its connections

connected through the virtual physics engine mentioned in the last example.

Acyclic graphs with more than three devices can be seen as combinations of the above

possibilities, and do not create any new requirements. If instance identification is already

required to persist through one intermediate node, it doesn’t matter if the chain of nodes is

made arbitrarily longer. Our only modification to the requirements for convergent topolo-

gies is that we must handle N incoming edges rather than only two.

From this investigation so far, we can conclude that we require globally-unique instance

identifiers in order to allow re-association of instance causal chains that re-converge while

avoiding collisions between instance identifiers.

3.5.2 Cycle Graphs

There are many more possible variations of the above graphs if cycles are permitted. For

the most part, the introduction does not affect our requirements, since unique instance

identification is already required for acyclic scenarios. There are several special cases which

may help inform our requirements, depicted in figure 3.4.

loops on non-origin nodes – In this scenario we need to support instance updates gen-

erated by nodes other than the instance origin, adding a simple requirement that non-

origin nodes have access to the necessary information for properly labelling outgoing
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updates, whether or not the update is triggered by an upstream signal. Technically,

we would have to handle this situation anyway, since the rate of updates on a given

edge is not specified in our graphs and is not constrained to match that of any other

edge. Only the propagation of instance existence/lifetime is considered here, and not

updates to its value. Example: the virtual physics engine from previous examples

updates locally and outputs messages at its own rate regardless of the input message

rate.

subgraphs with a shared node – This graph combines the convergent and divergent

examples given for acyclic graphs. A real-world example of this scenario could involve

two input/output interfaces (such as haptic controllers) mapped to a shared virtual

environment. In the interests of minimizing wasted bandwidth, we will need to ensure

that instance updates from the shared node are sent only to the correct instance origin.

subgraphs with 2 or more shared nodes – Similar to the last example, but highlights

the requirement that the instance information transported by edges must be config-

urable. The symmetrical graph shown third in figure 3.4 could be implemented by

declaring subgraphs ADB and CDB and enforcing the following rule: an edge can

only transport an instance if the instance origin belongs to the subgraph. Example:

a similar scenario to the last one but with two virtual environments connected in a

chain (nodes D and B).

arbitrary edge scopes – These examples have demonstrated the need for each edge to

transport or block instance information in a configurable manner. Since we cannot

know how users will interconnect nodes in practice, we must allow this configuration

to be defined arbitrarily. The fourth graph in figure 3.4 cannot be implemented

using the subgraph rule identified above, since the mapping designer has arbitrarily

chosen that the edge CA should only transport instances with B as their origin. An

alternate rule will suffice however: we define directed hyperedges as the group identity

for deciding whether an instance update should be transported over a given edge.

3.5.3 Node Autonomy

In a libmapper network, the origin node is not necessarily in a master/slave relationship

with downstream nodes, which may run simulations of dynamic systems, implement media
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Fig. 3.4 Several examples of cycle graphs. From left: a 3-node chain with a
cycle on the intermediate node; two 2-cycle cycle graphs sharing node B; two
3-cycle subgraphs sharing nodes B and D; an “arbitrary” graph with edges
labelled with instance scope.

synthesis models with their own timing requirements, or otherwise have their own internal

logic regarding instance updates and lifetimes. For example, an incoming instance may

cause the creation of an object in a simulation that will persist after the corresponding

instance at the origin has been released/destroyed. Perhaps the mapping designer wishes

to map touches on a multitouch screen to the creation of objects downstream, but wants

the lifetime of the objects to be administered by the local device. We need to add some

requirements to allow for autonomous decisions by arbitrary nodes:

• Any node can release its local instances at any time, and must propagate the instance

release downstream even if it is not the instance origin node. It may also be interesting

to inform any upstream nodes of the release – in this case information must flow in

the opposite direction of our defined directed edges.

• Any node can ignore instance releases from upstream. After this point it may be

useful to know that the instance release must be generated locally.

• We also need to consider that nodes do not necessarily have the same internal re-

sources, for example an origin node might allocate 10 instances while a node down-

stream only has the ability to activate 5 instances. The behaviour of the downstream

node when the 6th instance is received is important – for some scenarios it should

probably ignore the update, but for others it should release an active instance to free

resources for the new instance. This “stealing logic” will need to be configurable.
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3.5.4 Summary of formal requirements

Based on the the scenarios explored above, we can compile a short list of requirements for

building a multi-instance capable mapping system.

1. Globally-unique instance ids – unique across graph and across time.

2. Edges belong to groups (hyperedges) – we require configurable propagation of a given

instance across an edge based on inclusion of the edge in a defined hyperedge. Edges

can belong to multiple hyperedges.

3. Autonomous nodes – we will allow nodes autonomy in activating and releasing in-

stances from upstream. Upstream devices will be notified of early instance releases.

4. Stealing – configurable “stealing logic” for coordination of nodes with mismatched

resources.

3.6 Adding Multi-Instance Support to libmapper

Support for multi-instance signals is included in libmapper versions 0.3 and greater. In this

section we will briefly outline our specific implementation decisions, with a focus on the

user-facing application programming interface (API). As in the previous section, we will

use the term instance origin to refer to a node (now device) that starts the propagation of

a given instance. It is worth noting that in a directed graph, the origin is the only node

for which all other nodes touched by the hyperedge are necessarily downstream; messages

sent by other nodes will not necessarily reach the entire group/subgraph.

3.6.1 Instance Identification

Globally-unique two-part instance identifiers are created by the origin device when an

instance is first activated (explained in section 3.6.4), generated from a CRC32 hash of

the device name and an incremented counter stored in the device data structure. Device

names are already guaranteed to be unique within the libmapper network: if multiple copies

of the device class are running, a unique ordinal is appended to the given device name.

The allocation algorithm responsible for ordinal negotiation was modified to ensure that

collisions of the name+ordinal hash cannot occur.
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The second part of the id ensures that instances generated serially by a device can be

differentiated in the network (until the counter overflows), even when the API is called with

the same id by user code. This two-part instance id is used by all devices and persists for

the lifetime of the instance in the network, which may be significantly longer than in the

origin device, since downstream nodes decide for themselves when to release their instances.

Arbitrary instance ids can be used by the user code; each device maintains a map of

local instance ids to global ids and ensures that outgoing instance updates are tagged with

the correct information. This allows instances of different signals to be coordinated. These

maps are reference-counted and are freed when no longer needed.

3.6.2 Link Scopes

Devices have no knowledge of the configured network structure beyond their own links and

connections. Membership of a link in a given hyperedge is defined as the link property

scope, which is configurable using the standard libmapper protocols for setting object

properties. When a given signal instance is updated, the router object checks to see if the

origin hash in the instance’s id map matches the scope of each outgoing link before sending

over that link. One of the libmapper session-management interfaces has been modified

to provide configuration of link scopes by providing a drop-down list of available instance

origins.

3.6.3 Reserving Instances

The standard signal creation functions mdev add input() and mdev add output() now

automatically allocate one instance of the signal with the local id 0; if the pre-existing

libmapper signal update function msig update() is called, it will access this default in-

stance. Any time after creating a new libmapper signal, additional instances can be allo-

cated. We recommend doing this on application startup, but the number of instances can

be adjusted at any time. Specific instances ids (for coordinating instances across signals)

and user context pointers can be specified per instance if needed.

3.6.4 Updating Instances

An instance lifetime begins when the signal instance update function is called for a specific

id for the first time. There are no explicit messages for activating a new instance. Internally,
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Fig. 3.5 Flowchart showing instance lifetime relationship between two con-
nected signals.
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libmapper first checks if the instance is already active; if not it will try to activate a reserved

instance or steal an active one (see section 3.6.7). If an id map does not already exist for

this local instance id, a new id map will be generated with the local device as the origin,

otherwise it will associate the stored map with the new instance. As mentioned above, the

signal update message sent on the network includes the global/public part of this id map.

3.6.5 Receiving Instance Updates

On the receiving side, a second message-hander function has been added internally for

processing instance updates. This function follows a similar process to the update function:

if a signal instance matching the public/global ids is not already active, a reserved instance

will be activated if available. The device id maps are consulted to see if another signal

has already used the public ids; if so, libmapper will activate the instance matching the

private/local part of the id map, otherwise a new id map will be stored associating the

public ids with an unused private id available in the pool of reserved instances.

If an instance is successfully activated (or was already active) a user-defined handler

function is called with the local instance id and the new value.

VisualizationMultitouch Surface Physics Simulation

update update

release

newnew

release

Fig. 3.6 Example scenario with downstream instance release. New touches
and position updates to existing touches on the multitouch screen are mapped
to a physics simulation, which creates virtual objects for each touch, however
when the touches are lifted the physics simulation persists. The outputs of
the simulation are mapped in turn to a visualization engine with ephemeral
objects; when the visualization instances fade out, a release message is sent
upstream and the physics model removes its corresponding local instance.
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3.6.6 Releasing Instances

An active instance can be released simply by calling the function msig release instance()

with the appropriate signals and local instance id as arguments. This causes libmapper to

propagate the instance release to any downstream nodes and return local resources to the

instance reserve pool. If the local device is not the instance origin, an instance release no-

tification is also sent upstream – a possible scenario demonstrating this feature is outlined

in figure 3.6.

In order to implement downstream release notifications, an internal “receiver” data

structure was added to handle the receiving end of a link. This data structure mirrors the

“router” structure on the sending end, and stores information necessary for sending mes-

sages upstream (host IP addresses, ports, and link scopes). Adding the receiver structure

also allowed us to implement a new connection property that optionally reverses the flow

of updates on the connection, so that the “sender” receives updates (if a signal handler

has been defined) every time the signal is updated at the “receiver” – either by local API

calls caused by user interaction (e.g. setting a parameter on a synthesizer) or by incom-

ing remote updates on other connections. Such “reversed” updates can be used during

training of supervised machine learning algorithms, when examples of both source and

destination state are needed. The new feature complements the existing query/response

system implemented in libmapper.

3.6.7 Instance Stealing

An instance allocation mode can be configured for each libmapper signal, specifying the

desired behaviour when a reserved instance is not available for activation. The options

steal oldest and steal newest cause the release handler to be called for the oldest or

newest active instance, respectively. If a more sophisticated method is required for deter-

mining which instance to steal, or if more instances should be allocated, the user code can

also provide an “instance management callback” function. In addition to instance overflow,

this function can be called when a new instance is activated, or when a downstream or up-

stream release message is received; the function can be configured to ignore any subset of

the possible instance event types.

When an instance is “stolen” the device will mark the associated id map as locally-

released and decrement the local reference count, but will maintain a record of the id map
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until any upstream nodes have also released the instance. This ensures that incoming

updates for an already-stolen instance do not trigger the stealing logic again.

3.6.8 Multi-signal “Objects”

Suppose we have a scenario in which a message arrives with a previously-unseen public

identifier, and we have a local instance of the receiving signal available, but an instance of

another local signal with the same id is already in use. Without being informed somehow

by the user-code, libmapper has no way of determining whether the two signals are two

properties of the same entity or “object” (in which case the instances should be synchro-

nized) or whether they are unrelated (in which case it is safe to activate a new instance

in our scenario). In the latter case, if we store a new id map associating the new public

identifier with a previously mapped local id we have now complicated things for local signal

updates, since we have to choose between two conflicting id maps when choosing a public

identifier.

To avoid these situations, we need to indicate any sibling-relationships between signals.

This can be specified implicitly by using different id ranges for different objects, e.g. sig-

nals representing properties of object A are assigned instances ids from 0–9 and signals

representing object B get instances ids in the range 10-19. When designing devices with

possibly-large, dynamic instance populations this is a bit awkward and hard to track, and

some users may wish to use automatically-generated instance ids without worrying about

collisions between objects. The API also allows explicit definition of multisignal objects –

in the code below libmapper is informed that sig1 and sig2 are properties of the same

object:

mapper_multisig mms = mdev_add_multisig(dev);

msig_set_group(sig1, mms);

msig_set_group(sig2, mms);

Internally, libmapper creates a separate id map for each multisig, meaning that id

map collisions cannot take place between instances of different objects. A signal can be

reassigned to use the default device-wide id map by passing NULL for the second argument

to msig set group()
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3.6.9 Handling Orphaned Instances

Since libmapper devices form a distributed network, it is inevitable that at some point

instances will be accidentally “orphaned” from their upstream progenitors. For devices

with passive instance lifetime logic – always keeping local instances synced to upstream –

this will result in local instances that no longer receive updates but still consume memory

resources. To handle such situations, local instance release callbacks are also triggered when

the connection or link from the origin is removed, if the upstream device logs out, or if the

link scope property is edited to effectively cut-off the instance from upstream. In the event

of an entire upstream device disappearing from the network without properly logging out

(due to an application crash or network interruption) we will also need to release orphaned

instances – this scenario can be detected by tracking the timing pings sent on the admin

bus by active devices.

3.7 Examples

In order to “exercise” the libmapper instances API, we looked for possible applications in

our own work and that of our colleagues. For each test we required only that the source

code was available, that is was written in a language compatible with libmapper (currently

C/C++, Python, Java, SuperCollider, Max/MSP or Pure Data), and that the application

included some entity for which multiple instances could exist. Several examples are outlined

below.

3.7.1 Different Strokes

“Different Strokes” (DS) is a software application for performing music on a computer

through drawing, usually with a digitizer tablet as the input device [97, 98]. When a

freehand line is drawn into the interface, the application stores the position and velocity

trajectories enabling the stroke to be re-played by the system. Several stroke colours can

be selected from a palette, each of which is associated with a particular sound sample; the

duration of the sample is normalized to the length of a drawn stroke, and the speed of the

sample playback is mapped to the velocity trajectory. “Playback heads” (analogous to a

multitrack tape recorder) are represented by particles which travel along the drawn strokes.

New particles are triggered by either the creation of a new intersection, or intersection
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with another particle; in this way, complex feedback structures and periodic loops can be

constructed using very simple rules (figure 3.7).

Fig. 3.7 Different Strokes running on an Android tablet, from [6] (used with
permission).

As originally conceived, the particle engine in DS is hard-mapped to an included syn-

thesizer, however in discussion with the designer it became clear that it would be desirable

to allow for more flexible mapping, to allow both alternative synthesis engines and the con-

trol of different musical parameters and structures. An analysis of the DS system includes

several data structures and concepts to which we might apply instances:

cursors – Recent versions of Different Stokes support multitouch/multicursor input. The

input-side of DS could declare a libmapper signal cursor with dynamic instances to

allow mapping connections from libmapper-enabled multitouch controllers.

stroke types – DS has a fixed number of stroke types available through shortcut keystrokes

or a palette. Since the stroke type is static once chosen, and has associated semantic
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meaning (colour), it seems better to implement stroke types as different signals rather

than instances of the same signal.

strokes – Each stroke could be represented as an instance of some signal. Again, in DS

strokes are static once drawn, and thus do not provide much scope for real-time

mapping.

particles – The most useful application of instances. Using system defaults, each stroke

can have 0–3 active particles at any given timestep, each associated with a playback

pointer into the audio sample buffer associated with the parent stroke type. Mapping

of particle position and/or velocity is necessary for recreating Zadel’s original mapping

concept.

In [6], Zadel describes in more detail the integration of libmapper into DS, a project

which also involved constructing language bindings for the SuperCollider programming lan-

guage. For this work, both input and output signals are declared for mapping, however

support for multiple instances was only added for the output-side. DS particles are repre-

sented as instances of the signal stroketype/N/particle/position and stroketype/N-

/particle/rate, where N is the id of the stroke type. Integration of input-side multi-

instance mapping (to DS cursors) is left for future work.

3.7.2 Influence

Another of our long-term collaborative projects concerns the design of interactive systems

using distributed sensing and media synthesis [44]. As part of this project, we have been

working on a program called Influence1 using libmapper to form mappings between dis-

tributed agents (each is a separate process running somewhere on the network) and a

centralized environment where they can interact with each other while consuming minimal

bandwidth (figure 3.8). Connected software agents set their position in a 2D space, and

video convolution is used to propagate influence as a vector-field between them; the output

of the environment is a vector observation of the environment at each agent’s position.

Since its purpose is to handle multiple agents, this was an obvious test application for

the use of libmapper’s instance functionality. With multiple client programs connected,

the connection topology should resemble a star but with cycles defined through from each

1http://github.com/idmil/influence
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Fig. 3.8 The program Influence running with 50 remote agents connected.
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client, through Influence and back; and libmapper needs to ensure that the observations

for each local instance are sent back to the correct client.

A client program was implemented for testing interactions with the Influence environ-

ment: passiveAgent instantiates a variable number of agents, each of which outputs its

position (with a randomized starting point) and exposes input signals for velocity, accel-

eration, and force. By default, the program automatically connects itself to a running

copy of Influence, mapping client agent position to Influence agent position, and Influence

observations to the client agent force; links are automatically scoped to carry instances

initiated by the client programs. This implements a rough physical model in which agents

are repelled by each other.

3.7.3 The T-Stick Digital Musical Instrument

The T-Stick digital musical instrument (cf. Chapter 4) features inertial movement and ori-

entation sensors, pressure sensors, and a one-dimensional array of capacitive touch sensors

[1]. In the software driver for the instrument, raw multitouch data is processed to identify

the position and width of individual touches and grips, and also to extract “gestures” such

as brushing the surface with a finger or a hand. In early mappings this information was

used only in aggregate form (e.g. amount of coverage, or amount of brushing over a sliding

window) since libmapper did not support generic references to instances.

Additionally, a “jab” gesture with the instrument has been used prominently in several

mappings to trigger controllable excitation of synthesis models or ballistic “launching” of

some musical process. Subsequent “jabs” would either add to the pre-existing excitation

level, or re-trigger the process, whether or not the process had come to an end. The ability

to trigger multiple overlapping notes of processes with serially-performed gestures did not

exist.

To remedy this situation, support for libmapper instances was added to the language

bindings for Max/MSP2 (in which the T-Stick driver software is implemented), and the

driver modified to make use of the new capabilities. Touches, brushes, and jabs are updated

as instances of their respective signals, and have been tested in simple mapping to our demo

synthesizers; adaptation of the synthesizers used for public performances of the T-Stick is

still in progress. It is important to note that individual connections can be configured to

2http://github.com/idmil/mapper-max-pd
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transport updates as multiple instances or force them all to update the same destination

instance, and that our legacy mapping designs are not “broken” by the changes to the

T-Stick driver.

3.8 Conclusions

In this article, we have identified the need for representation of entities with multiple

instances in tools for designing interactive systems, a feature that is only partially present

in existing tools. After formalizing a specification for such support based on abstract

consideration of node connectivity, we have implemented a solution and integrated it into an

existing open-source software library for forming configurable runtime connections between

distributed hardware and applications. Finally, we provided several examples showing

adaptation of existing software and hardware to utilize the new multi-instance features.

We hope that this work will benefit designers and users of interactive media systems by

providing interconnection and protocol-compatibility between different tools while allowing

them to be represented logically and intuitively within their specific contexts.

3.8.1 Future Work

Moving forward, we must continue to exercise and test the multi-instance implementation

and API against real-world use-cases. In particular, scenarios with very large numbers of

instances or in congested networks present challenges for any real-time control system, and

will highlight any remaining deficiencies in our approach or implementation. Our recent

work bringing support for TCP streams between libmapper peer devices will be tested for

the transmission of instance release requests.

The implementation of bridge software between libmapper and the MIDI and TUIO

protocols is also underway, and will allow more widespread use with existing commercial

input devices and tangible user interfaces (TUIs) while bringing more flexible mapping

support to users of these protocols. Although not yet implemented, software tutorials

showing how to interface popular computer vision platforms (e.g. OpenCV) to libmapper

will also demonstrate the utility of these tools to another community.
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3.9 More Information

More information on libmapper and related projects can be found on the project website

libmapper.org or by subscribing to one of the mailing lists (developer or user). The

website includes online documentation of the libmapper application programming interface,

pre-built binary versions of the library for various platforms, and links to projects and

utilities using libmapper. All libmapper development is performed in open consultation

with the community mailing list, and anyone interested can join to participate in defining

and implementing the future of the library and its surrounding ecosystem.
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Part II

Case Studies: New Digital Musical

Instruments
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Chapter 4

The T-Stick Digital Musical

Instrument After Eight Years of

Development

The following chapter presents the first of two case-studies for development of new digital

musical instruments for use with the libmapper software ecosystem. This DMI was de-

veloped in parallel with early versions of our mapping tools, development that has helped

to drive the further development of libmapper by providing a consistent user-base and a

demand for concert-grade dependability. The chapter has been prepared as the following

manuscript:

J. Malloch and M. M. Wanderley, “The T-Stick digital musical instrument after eight

years of development, ” Manuscript prepared for submission.

4.1 Abstract

This paper describes the conception of a new family of digital musical instruments — the

“T-Sticks” — and their subsequent development and refinement over the course of the

eight years. More than twenty copies of the instrument have been made, and it has been

performed at dozens of public concerts in multiple countries and by multiple performers.

Three generations of hardware design improvements are explained, and the refinement of

gesture extraction and mapping approaches is outlined.
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4.2 Introduction

Digital musical instruments (DMIs) can take many different forms, but the fact that phys-

ical quantities are sampled and represented in abstract digital form means there are no

hardwired associations between gesture and sound. Unlike acoustic instruments, there is

no physical reason for blowing or bowing with more force to cause a louder sound, or for

small instruments to produce higher pitches. Instead, any connections between performed

gesture and produced sound (or other synthesized media) must be designed ; we usually

refer to the collection of these connections as a mapping between sources of data such as

sensors, and destinations for data such as the parameters of a synthesis algorithm.

In this paper we will focus on the history and development of one DMI project in par-

ticular: the “T-Stick” (figure 4.1). Development of this instrument began towards the end

of 2005; since then it has achieved a rare sort of “success” in that — unlike most new

instruments — it has been performed publicly dozens of times and in many countries, in-

cluding solos, duets and trios with other DMIs and with traditional instruments, ensembles

and even as concerto soloist with laptop orchestras. While it remains an academic project

and has never been produced commercially, nearly 20 of the instruments have been built.

Over the years we have published some brief descriptions of the early designs [99, 100, 101]

and our experiences practicing and performing with the T-Stick [102]. This article will at-

tempt to fill in some substantial holes in the public documentation of this project, outlining

the motivations, conception and subsequent development of the instrument and its use in

performance and pedagogy over the last eight years.

4.3 Conception

Our past experiences developing new DMIs and working with those developed by others has

been interesting and rewarding, however we have observed that there are certain recurring

problems with many DMIs. In particular, the majority of new DMIs we encounter are not

robust enough to support extensive rehearsal and performance. The flaws are sometimes

mechanical (parts come unglued, exposed wires break, etc.) or they may be technological,

for example sensors which work well under controlled laboratory conditions but do not

work so well in the “real” world. The increasing availability of digital fabrication (e.g.

laser cutters and 3D printers) is helping in this regard, as designers can create custom
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Fig. 4.1 Composer/performer D. Andrew Stewart playing the soprano T-
Stick. (Photograph: Vanessa Yaremchuk, used with permission)

cases or shells for their instruments.

A second issue concerns commitment to the new instrument. Inventing new instruments

is obviously a fascinating pursuit, and we do not wish to be discouraging, but we should

admit that creating a new “musical instrument” and then putting it on a shelf is not

particularly meaningful. Too often grand claims are made in reports on new instruments

(often including the dreaded term “expressive”), but to evaluate a new instrument it first

needs to be played. We are not saying that the instruments aren’t excellent, the point is

that we don’t yet know, and neither do their creators! In fact, if the instrument is not

played we will never know if robustness would have been a problem, let alone whether the

instrument would have been interesting to play.

The T-Stick started with a proposal written by the first author and the composer D.

Andrew Stewart, applying for project funds from the Centre for Interdisciplinary Research

in Music Media and Technology (CIRMMT) to develop a new DMI. At the discussion

stage before designing the T-Stick we decided that we would try to produce an instrument

that would be robust enough to support many hours of practice each day, without the

creator present. To achieve this goal, we decided that all sensors and electronics would be

properly protected and that there would be no moving parts. A strong shell or case would

be essential, and would also play a role in “hiding” the sensors from the performers and
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encourage them to perform gestures of sounds rather than playing the sensors.

Since we were strongly interested in exploration of mapping approaches (both as aca-

demic exercise and in search of interesting possibilities for performance), we decided to

adopt a simple geometric shape for the new instrument. By avoiding idiosyncrasy in the

physical appearance (we use the term “low specificity”) we hoped to maximize the extent

to which the mapping could define perception of the instrument by performer and audience.

We decided on a simple cylindrical shape with no protrusions or attachments, which would

allow us to keep all of the electronics safely tucked away in the interior.

4.3.1 Sensing

We also decided to design the sensing for the new instrument such that as many of its

affordances as possible would be measured. Our instrument would allow multiple ways

of exciting and modifying sound rather than attempting to design “correct” playing tech-

niques. Since the sensors would all be attached to the same simple object, their signals

would be highly inter-related [14], perhaps in a similar way to the interconnectedness of

acoustic systems. To avoid the risk of excessive revisionism, perhaps it is interesting to

directly quote our original project proposal:

Our experience of traditional acoustic instruments corresponds to a physical

view of the universe (a simple example: big instruments make low-pitched

sounds, small ones make high- pitched sounds; large and fast performance ges-

tures produce loud sounds, etc.) As this perception forms part of the context of

our experience of music performance, and forms the basis of a performer’s inter-

action with their instrument, it is of utmost importance that this be considered

carefully by a prospective instrument-builder. In this project, we propose to

use our different viewpoints and experiences to take a holistic approach: the

gesture vocabulary, sensor placement, mapping, and synthesis, while not bound

to exactly replicate the response of purely physical systems, should have an

internal consistency and logic that permits a prospective performer to quickly

and easily begin to make sense of the interface.

To this end, we designed to explore sensing of touch, pressure, movement, and orienta-

tion.
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4.3.2 Family

Lastly, the new DMI would actually consist of a family of related instruments with the same

basic structure and playing technique but differing in size. Obviously since the mapping

is separable from the physical interface all of the family members could easily be made to

sound exactly the same, however we planned to adjust the mapping and synthesis so that

relationships between performer gesture, energy-expenditure and the pitch, volume, and

timbre of the sound would be related in ways that are familiar from our experience with

acoustic systems. We considered that a family of DMIs could be used to explore similar

ensemble dynamics to traditional practice (e.g. string quartets), and might help “paral-

lelize” the process of creating contexts in which the new instrument could be perceived and

experienced: creating opportunities to observe multiple performers, each with their own

subtle variations of performance technique.

4.4 First Generation

The first generation of T-Stick hardware was developed from September 2005 to March

2006, and took place in the context of a seminar on development and performance of

DMIs, as well as the launch of the McGill Digital Orchestra project [103, 104]. This

project brought together composers, performers, and instrument-designers from our lab

to collaboratively develop physical instruments, performance techniques and vocabularies,

and compositions over a three-year period. Developing the T-Stick in this context meant

that we had access to extremely accomplished instrumental performers, who were tasked

with mastering the new instruments.

4.4.1 Development

Following our concepts of a cylindrical instrument, we began exploring different materials

for construction and settled on 5cm diameter PVC plastic plumbing pipe as an affordable,

but fairly strong substrate for our instrument, easily held in the hand but massive enough

to require some deliberation and effort to wield. For the first instrument to be built – the

tenor – we decided on 1.2 meters as a starting length (see table 4.1).

Experiments with small mockup sections of pipe allowed us to refine an implementation

of capacitive multitouch sensing using an array of sensors made from strips of copper tape
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Model Length Diameter Touch sensors (1st generation)

Tenor 1.2 m 5 cm 48
Alto 0.8 m 5 cm 32
Soprano 0.6 m 5 cm 24
Bass 1.8 m 11.5 cm 72

Table 4.1 The family of T-Stick instruments consists of three different mod-
els (sizes). A planned fourth model – the bass – has not yet been built.

fastened to the outside of the pipe. To allow for installing the sensors and other electronics

inside the pipe while keeping trace lengths short, we cut the pipes in half lengthwise with

a saw; small holes were drilled through each copper strip close to the edge for wires to pass

through before being soldered to the tape. The copper strips were connected in groups of

six to overclocked Quantum Research Group QT161 integrated circuits (since discontinued)

to provide the capacitive sensing (figure 4.2); their outputs were connected to daisy-chained

shift registers allowing very fast acquisition of touch data. Later, a sleeve of large-diameter

shrink tubing would cover the entire structure to hold the sections of pipe together and

provide strength and protection from sweat.

Fig. 4.2 A view inside the first T-Stick prototype, showing touch sensors
formed using copper tape wired to the small circuit boards. The small board
wired to the top half of the instrument contains voltage dividers for the pres-
sure sensors and a buffer/envelope-follower for the piezo contact microphone.
The large IC in the middle is the main micro-controller tasked with sampling
analog signals, controlling the shift registers and providing USB communica-
tions.

The other half of the PVC pipe was covered with a custom pressure sensor constructed

using conductive paper and foil [105], which was covered in turn with a layer of closed-

cell foam padding. This padding served two purposes: to improve the controllability of

pressure by providing displacement feedback to the performer, and to suggest a “squeezing”
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affordance when the instrument is held.

A three-axis accelerometer was also included to sense movement and orientation (by

sensing acceleration due to gravity). All of the analog sensor signals and the digital touch

data are sampled by an ATMega16 micro-controller running the AVR-HID firmware [106].

Lastly, a piezoelectric contact microphone was added in a effort to sense the impact of new

touches, to distinguish between touches, taps, and hits of thumps.

4.4.2 Frets and Spikes

We explored the use of “frets” between the touch sensors to enable tactile navigation of

the playing surface. These were formed simply, by wrapping medium-gauge wire around

the touch-sensing half of the instrument body before encasing it in shrink tubing. While

the frets certainly added a tactile dimension to brushing and navigation of the surface, we

quickly found that the frets also encouraged performers to perceive the individual touch

sensors as discrete points of interaction rather than as part of a (albeit fairly low-resolution)

multitouch-sensitive surface. Considering the individual sensors as “keys” as if on a piano

is certainly an affordance of the chosen hardware, but neglects more interesting interaction

modes such as brushing and rubbing. Additionally, the specific spatial resolution chosen

for the first prototypes was intended to be improved in later models, and we wanted to

avoid establishing performance techniques that depended on the original resolution. As

a compromise, the second T-Stick to be produced (an “alto”) featured only a single fret

placed at the centre point.

The first tenor T-Stick also featured a 0.5m “spike” that could retract into the body

of the instrument or be adjusted in length like that of a cello. The spike could be used to

support the instrument at a comfortable height for playing with both hands simultaneously,

while still freely allowing the instrument to be tilted and rolled; for hand-held performance

modes we usually removed the spike entirely to reduce the weight of the instrument.

4.5 Second Generation

Improvement of the T-Stick hardware began with the touch sensing — the first two instru-

ments to be constructed involved an astonishing amount of work wiring and soldering the

48 touch sensors (for the first tenor prototype) and associated electronics. We wished to

increase the resolution of touch sensing, but sensibly decided to find a more efficient design.



The T-Stick Digital Musical Instrument 88

To this end, we designed custom printed circuit boards (PCBs) to integrate 24-channels of

capacitive touch sensing (figure 4.3). With a doubling of touch resolution, this enabled a

multiple of the boards to be daisy-chained for each model of T-Stick: two for each soprano

(48 channels), three for an alto (72 channels), and four PCBs for each tenor (96 channels).

Narrower copper tape (0.25”) was used to form the sensing array as before.

Fig. 4.3 Printed circuit boards developed for the second-generation T-Stick
hardware. Each board handles 24 touch sensors.

4.5.1 Firmware Improvements

Starting with the third T-Stick, we began using the commercial Arduino Mini board for the

T-Stick micro-controller, allowing firmware to be written and compiled more simply than

our previous solution. The first T-Sticks appear to an operating system as Human Interface

Devices (HID), however the Arduino Mini does not have this capability and necessitated

use of a custom serial protocol for communicating with our driver software written in

Max/MSP. Software bugs in the available serial objects for Max/MSP 4.x forced us to use

polled communication, in which the software requests sensor data at a fast rate: in this case

the fastest rate possible was approximately 100 Hz1. After upgrading to Max 5 polling every

1“Pushing” data continuously from the T-Stick micro-controller inevitably led to software crashes



The T-Stick Digital Musical Instrument 89

6ms became possible, making gesture-to-sound latency slightly better, but the situation

was still far from ideal - especially since there is inevitably additional latency from sensor

data processing, synthesis, and audio output buffers. Jitter was an even greater problem,

since unlike predicable latency it cannot be internalized and anticipated by the performer.

Polling the T-Stick results in increased jitter since it is unlikely that performer gesture

will be timed to the sampling frequency - a performed gesture might be communicated

immediately, or up to the polling period (6ms) later.

The effects of latency and jitter were particularly obvious in the touch data, especially

when mapped to sound onsets or other perceptually-salient parameters. This drastically

decreased timing-controllability (a major metric for DMI usability [22]), resulting in ex-

treme difficulty when trying to accurately play complex rhythms or play in synchrony

with another performer. An examination of the effects of sensor sample rate on timing

controllability for the T-Stick revealed that there were different requirements for different

signals. The touch data are a collection of binary states (“touched” or “not-touched” for

each position) and only need to be communicated when they change, whereas pressure and

acceleration are better transmitted continuously at some rate. The firmware was revised

for multirate communications, with touch transmitted as soon as it occurs resulting in less

than 1ms of latency; other data are sent at an adjustable rate, usually every 10ms, with a

“heartbeat” messages sent from the driver periodically to prevent crashes. For now, higher-

level parameters such as grip width and brushing trajectories are calculated in Max/MSP,

but in the future will likely calculated on-board the T-Stick.

4.5.2 The T-Stick in Class: Pedagogy

Starting in 2009, T-Sticks were constructed as part of several seminars on the design and

construction of digital musical instruments at McGill University (figure 4.4). During the

first class, eight soprano T-Sticks and one tenor were constructed, under the supervision of

the authors and following the 2nd-generation designs. While learning about the design and

construction of the T-Stick, soldering and wiring, the student’s work also served to drasti-

cally increase the number of instruments available for performance projects in our lab and

for outside loan. Building T-Sticks as a pedagogical exercise also required much more ex-

tensive documentation, including part lists, supplier information, step-by-step instructions,

photographs and diagrams.
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As some of the parts have been discontinued by the manufacturer, for subsequent sem-

inars students have constructed a simpler and smaller “sopranino” version of the T-Stick

hardware. While unfortunately not resulting in a performance-grade instruments, this

project still teaches the basic soldering, wiring, and firmware programming skills; after

which the students typically move on to building a new DMI of their own design.

Fig. 4.4 Class photo after the first Digital Musical Instruments seminar to
involve the construction of T-Sticks.

4.6 Vibrotactile Feedback for the T-Stick

It is generally accepted as fact that performers of traditional musical instruments receive

important feedback from their instruments through the sense of touch [107, 108, 109].

The kinaesthetic part of this information is generally preserved for performers of digital

musical instruments — even contact-less musical interfaces such as the theremin make

important use of the performer’s proprioception. Vibrations transferred from instrument

to performer, however, are usually missing when performing with DMIs, since the user

interface is typically separated from the sound production machinery and thus does not

vibrate acoustically.
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Various approaches have been taken by researchers and instrument builders to reintro-

duce vibration feedback to digital musical instruments. This section describes exploration

of vibration feedback for the T-Stick beginning in the fall of 2007, and discusses issues and

implications of this addition for mapping and user-interaction.

4.6.1 Examples of Vibration Feedback in DMIs

Bert Bongers has made use of several actuator technologies for providing vibrotactile feed-

back in DMIs [110, 111, 112]. Versions of the Tactile Ring, using solenoids and loudspeak-

ers, have been used for playing various “In-Space” instruments including gloves and the

LaserBass.

Rovan and Hayward also designed and used ring-based actuators, in addition to stronger,

foot-sensed vibrotactile actuators, to improve feedback when playing open-air musical con-

trollers [113]. Their software, VR/TX, generates tactile stimulation events according to

input from the open-air Dimension Beam controller.

Marshall [114] took the approach of reintegrating control surface and sound production:

by including amplifiers and speakers in his Viblotar and Vibloslide, the user is exposed to

vibrations inherently linked to the sound produced. It is notable that while this approach

emulates traditional acoustic instruments, it does not allow supplementary feedback to be

transmitted inaudibly.

Birnbaum designed and constructed the Tactilicious Flute Display, an interface for tac-

tile display resembling an end-blown flute [115]. He also implemented the Max/MSP soft-

ware package FA/SA for extracting perceptual features of Break-Beat audio and performing

signal transformations to make the features perceptible to the fingertips. This software is

designed to drive small voice-coil actuators, but has also been adapted for experiments

with other actuator types, including electric motors loaded with eccentric masses as used

in “rumble packs” for video game controllers. The FA/SA software was later improved by

[116].

4.6.2 Actuator Choice

Initial prototypes of actuated T-Sticks were intended for exploration of possible hardware

configurations as well as difference mapping strategies; as such, future T-Sticks may be

constructed with a variety of different numbers and types of actuators. Although a hypo-
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thetical future design may include hard-coded feedback and actuators capable of only very

specific responses, a more flexible, general purpose actuator is required for experimentation

with mapping strategies. Specifically, we were looking for large frequency and amplitude

ranges, a high maximum amplitude, good transient response, and control over the phase

in a small form-factor.

Marshall provides a detailed comparison of different vibration actuator technologies

[117]. Using this information and the list of desired characteristics above some actuator

types can be ruled out for use in this project. The Tactor, for example, has a low maximum

amplitude and thus is probably unsuitable for driving the mass of the T-Stick. Rotary

electric motors, while providing appropriate maximum amplitudes, do not permit suitable

control of phase or independent control of frequency and amplitude, and most solenoids

are constructed so that they are either open or closed, and thus do not allow control of

amplitude.

Another actuator type, used in the MicroTactus actuated probe [118] and an experi-

ment in haptic perception of a virtual rolling stone [119], was eventually chosen for adding

vibrotactile feedback to the T-Stick DMI. Most importantly, it provides high maximum

amplitudes, large amplitude range, and control over phase, all in a form factor that easily

fits inside the case of the T-Stick. At the time of construction this actuator was not avail-

able commercially and had to be constructed by hand-winding electromagnet wire onto

machined plastic sleeves; an improved model is not available2.

4.6.3 Integration

The actuator was encased in shrink-tubing for protection and bonded strongly to the interior

of the T-Stick using epoxy adhesive, in order to ensure coupling between the actuator and

the instrument. It was decided to use the same actuator orientation as that used for the

MicroTactus and the rolling-ball experiment, in which the actuator is driven in the axis

corresponding to the length of the tube. This makes the effects of actuator placement

negligible: the stiffness of the ABS plastic pipe means that vibrations are not noticeably

damped from one end of the pipe to the other.

The actuator was driven using audio signals generated by software running on a laptop

computer (see figure 4.6.3). The actuator exhibits impedance similar to that of an audio

2http://www.tactilelabs.com/products/haptics/haptuator/
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speaker, and for this initial investigation a simple 1W 5V audio amplifier circuit was used,

using a Philips TDA7052 mono amplifier IC. More powerful amplifiers may be used for

future work with the actuated T-Sticks.

Sensor Data

Audio DataAMP

Actuator

Accelerometers

microcontroller

Fig. 4.5 The equipment used for driving the actuated T-Stick.

4.6.4 Mapping

For the purposes of this initial investigation, it was decided to create two competing im-

plementations of vibrotactile feedback mapping, corresponding to two different interaction

domains from [20].

Sign-based mapping

The first mapping approach involves the use of discrete vibrotactile cues provided to the

user/performer to help them navigate the multidimensional sensor-and-sound parameter

space implemented for the T-Stick. As an initial test of this approach, an amplitude-

enveloped waveform was sent to the actuator, creating a “buzz” sensation intended as a

discrete cue. This was mapped to a discretized version of the controller tilt data, such that
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crossing boundaries between discrete zones of tilt results in a vibrotactile cue. Large zones

(45◦) were used initially; the use of much smaller zones is only limited by sampling noise

in the tilt data.

Signal-based mapping

The second mapping approach instead uses a simple signal model to create a haptic illu-

sion, convincing the user that the controller exhibits physical dynamics it does not in fact

possess. While not actually changing the controller’s physical dynamics, haptic illusions

can profoundly affect the way in which the user interacts with the device.

A signal model of a virtual rolling ball was implemented in Max/MSP following the

description in [119]. Since the controller already contains acceleration sensing, it is simple to

link this to virtual physical dynamics consistent with real-life gravity and user-interaction.

The acceleration signal is integrated to approximate velocity, and the resulting signal is

used to control the frequency of a periodic signal mimicking the rolling of a ball of a set

circumference. By varying the scaling of acceleration data and the scaling of velocity data,

the mass and circumference of the virtual ball may be altered. Performing waveshaping

of the final signal (or altering the stored waveform if look-up tables are used) alters the

perception of the interaction between the virtual ball and the inside of the tube, creating

the impression that the motion is smooth or bumpy, or that the inside of the pipe is ribbed.

Integrating a second time approximates the position of the ball; this data is used to stop

the virtual motion and set the velocity back to zero when the ball reaches the end of the

modelled pipe.

4.6.5 Multi-actuator Version

In 2008 a more complex integration of actuators was produced for research on Enactive

Interfaces3: this version included four separate vibration actuators of the same design,

arranged two at each end and mounted orthogonally to the length axis of the instrument.

Although the direction of a particular vibration is not likely to be well-perceived, this

arrangement allows for perceivable panning effects along the length of the pipe.

3http://www.enactivenetwork.org/
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Fig. 4.6 A prototype with multidimensional vibration feedback built for the
Enactive Interfaces project: a wooden harness is used at each end of the T-
Stick to mount two linear vibration motors orthogonal to the length axis of
the pipe. This allows stereo panning effects along the length of the pipe.

4.7 The SpaT-Stick

In the autumn of 2008 we were approached by composer Sean Ferguson and choreographer

Isabelle Van Grimde regarding a possible collaboration using the T-Stick for a new perfor-

mance of live dance and music: Duo pour un violoncelle et un danseur (“Duet for a ’cello

and a dancer”). In term of instrument requirements, there would be two main departures

from the existing version: the instrument would be performed — at least part of the time

— by a professional dancer rather than a musician, and the composer wished to make

use of sound spatialization as an important dimension for real-time control. The fact that

the instrument would be used by the dancer also necessitated that the instrument be able

to operate wirelessly, since the choreography would include working in a fairly large area

and it was judged that long cables would be awkward and unsightly. During planning for

the piece, the choreographer indicated that she wished to use the T-Stick as a metaphor-

ical limb in ground-work, meaning that the instrument would be required to support the

dancer’s body weight as an extension to his arms.

With these considerations in mind, we decided that a new construction technique would

be required, since the existing approach involved cutting the PVC body structure in half in

order to build and connect the capacitive sensors. Although the PCV pipe began as a fairly
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sturdy object, cutting increased its flexibility — and reduced its strength — considerably.

A new approach using flexible circuits for the capacitive sensors was designed, in which

the sense electrodes are patterned on a sheet of flexible plastic and “rolled up” around the

remaining electronics before being inserted into an (intact) PVC body. Commercial flex

circuits of the size required (approximately 60 cm x 15 cm) were much too expensive for

our limited budget, so we built our own using plastic sheets and copper tape connected to

a revised version of the touch24 boards mentioned earlier (figure 4.7). This rough approach

resulted in lightly noisier touch sensing, since there was both more capacitive coupling

through internal components (since they are in closer proximity) and a weaker signal from

actual touch events since the plastic shell is thicker than the previously-used shrink-tubing.

These problems necessitated increased smoothing of the touch data before use, however the

tradeoff for increased mechanical strength was judged wise in this context.

Fig. 4.7 A flexible version of the capacitive sensor layout enables the elec-
tronic components to be rolled up and inserted into a transparent PVC body.

The resulting structure was of course slightly bulkier than the circuit boards and wiring

alone, so we moved to a slightly larger diameter of pipe for our new prototypes. This

new approach also allowed us to experiment with different body appearances, including

a version with a bamboo body. The body material chosen for the final instrument was

transparent PVC (figure 4.8).
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Fig. 4.8 Dancer Elijah Brown and ’cellist Chloé Dominguez using the Spat-
Stick in a performance of Duo pour un violoncelle et un danseur. The orange
end-cap indicates the “pointing” end of the instrument.

4.7.1 Sensing Orientation

The collaborating composer planned to use a ring of loudspeakers around the audience, and

for the performers to be able to direct the spatialization of sound around the ring during

the piece. The standard T-Stick design was capable of sensing tilt (the angle of the body

with respect to a plane approximating the Earth’s surface) and roll (rotation/orientation

around the major axis of the instrument’s body, again expressed with reference to the

Earth’s surface), but it was not capable of measuring rotation or orientation around the

axis perpendicular to the Earth’s surface. This meant that we would need to add another

mode of sensing apart from accelerometers for sensing orientation, that could relate the

orientation of the instrument with respect to something different from the gravity vector.

A three-axis magnetometer was added to the sensing hardware to act as a “digital

compass” measuring the orientation of the instrument in relation to the Earth’s magnetic

field. The data from this sensor needed to be compensated for orientation in other axes

using values calculated from the accelerometers, and also calibrated for distortion of the

field caused by the adjacent electronics [120]. One end of the instrument was arbitrarily
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chosen as the “pointing” end and marked with an orange end cap so that the performers

would know the direction they were pointing unambiguously.

This solution allowed the dancer to steer sounds around the performance space by

pointing and moving the instrument. Unfortunately, in-budget magnetometers proved to

be extremely slow (around five samples per second) meaning that interpolation of the

trajectories was required to prevent “jumping” of the controlled sounds. If the instrument

was turned more than 180 degrees between samples the interpolator would naturally assume

that the opposite trajectory had been performed and spatialize sounds accordingly; for the

purposes of the piece the performer simply avoided very fast gestures when controlling

sound spatialization. In section 4.8.1 a better solution is described.

4.7.2 Wireless Communications

In order to provide wireless communication, a class 1 Bluetooth radio transceiver was

added instead of the USB connector, and a battery pack and power management circuit

were constructed and embedded in the end of the instrument away from the magnetometer.

This type of transceiver is rated for 100 meters range line-of-sight which was judged suffi-

cient for our needs; in practice the radio was somewhat difficult to work with but worked

satisfactorily in rehearsal and performance. The short project schedule did not allow for

experimentation with alternative wireless modules or protocols such as WiFi or ZigBee.

4.8 Third Generation

In June of 2011, the first author had the opportunity to work as a visiting researcher at the

Universidade Federal de Minas Gerais in Belo Horizonte, Brazil. This period resulted in the

development of a new mapping — developed in collaboration with percussionist Fernando

Rocha — to enable T-Stick instrumentalists to play parts of a multi-percussion piece.

Perhaps more importantly for the development of the instrument, nearly six weeks were

put aside to work on refinement of the sensing platform and signal processing, especially

to improve the direction and orientation-estimation problems encountered during the Duo

project.
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4.8.1 Hardware Improvements

To this point the only inertial sensors included in the T-Stick were 3-axis accelerometers,

used for sensing both movement and orientation with respect to gravity. The major gestures

and postures used are “shake,” “jab,” tilt (elevation), and roll. Of these, “jabbing” has

the closest relationship with timing controllability as it is often used as a sound-excitation

gesture. Shaking was calculated using a leaky integration of all accelerometers with the

gravity component removed with a high-pass filter.

For sensing azimuth, a magnetometer was added to some models of the instrument as

mentioned in section 4.7.1; although the acceleration and magnetic field signals are com-

plementary in that they are both affected by the sensors’ orientation, magnetometers are

notoriously noisy since they are affected by any local disturbances in the Earth’s mag-

netic field, caused by electrical cables, transformers, metal building structures, and natural

anomalies. Also, estimation of the gravity vector using accelerometer data is complicated

by accelerations due to other forces. Misestimation of the gravity vector will result in a

faulty rotation of the magnetic field vector and a faulty calculation of azimuth.

Using only these two sensors, there is a natural tradeoff between noisy data with a

fast response and stable data with a slow response. This means that orientation cannot be

mapped to salient musical or sound parameters without obviously unintended consequences.

Orientation and movement of the T-Stick are visually very striking and as such beg to be

mapped to similarly dramatic sonic parameters.

The typical solution is to add another type of sensor, the rate-gyroscope, which mea-

sures angular velocity around one axis; we used three of them oriented orthogonally. The

combination of 3-axis accelerometers, magnetometers and gyroscopes in a single package is

commonly called an Attitude and Heading Reference System (AHRS). These systems are

used for aircraft stabilization and navigation, automobile navigation systems, and for iner-

tial motion capture systems for virtual and augmented reality [121]. The gyroscopes used

here operate much faster than the magnetometers, and could obviously be used alone for

mapping angular velocity to synthesizer control. Integrating the gyroscope data, however,

can provide an estimate of orientation separate from that calculated using accelerometer

and magnetometer data, and unaffected by either linear acceleration or local magnetic field

distortion.

Affordable (vibrating-mass) gyroscopes suffer from bias drift, especially when the ambi-
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ent temperature changes [122]4. Here the bias is the sensor output voltage which represents

zero angular velocity, and which is subtracted from each sample to calculate the true ve-

locity - if this value changes, then our velocity integration will also be biased, and will

slowly increase or decrease even if the sensor remains stationary. Since the bias changes

very slowly, we can consider if to be very low-frequency (almost DC) noise, while our es-

timates of orientation from acceleration suffer from high-frequency noise from movement

of the instrument (for the purposes of estimating orientation this signal is noise, obviously

for sensing linear movement it is extremely useful). An adaptive filter can fuse these two

orientation estimates into an estimate that is better than either on its own — in our case we

use a complementary filter [123] running either in the instrument driver software or prefer-

ably on-board the micro-controller since we can achieve tighter timing when integrating

the gyroscope measurements.

Mapping of Instrument Orientation

In our sensor-fusion code all orientations are represented as unit quaternions, since succes-

sive rotations require less computation and the representation doesn’t suffer from “gymbal

lock” problems [124]. Quaternions are a four-dimensional representation of orientation,

which can be very hard to visualize or intuit when approaching the mapping of the orienta-

tion data to media synthesis. Nevertheless, we do expose the quaternion signal for mapping

(it could be perfect for controlling some naturally four-dimensional parameter-space), and

we also expose a translation into more familiar Euler angles: tilt, roll, and heading.

4.8.2 Gesture-Processing Improvements

The addition of the rate gyroscope alone greatly improved the quality of movement pro-

cessing since it allows us to completely separate rotation and orientation of the instrument

from linear accelerations/displacements such as swinging, shaking, and jabbing. In addi-

tion to the sensor fusion described above, improvements were also made to signal-processing

routines used for extracting brushing gestures, jabbing, and shaking of the instrument5.

4Gyroscopes of much higher quality exist, and are used for dead-reckoning in Inertial Navigation Systems
(INS) in missiles for example. The prices of these sensors, however, make them unsuitable for prototyping
digital musical instruments.

5All of the functions and algorithms for T-Stick gesture processing — including sensor fusion algorithms
for estimating orientation, quaternion arithmetic, etc. — are publicly available as part of the Digital
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Brushing

In the early days, an extremely basic method was used to extract brushing gestures, which

was susceptible to false detection on first touch. The improved algorithm generates five

different signals for mapping, using bitmasks to track new touches and releases, and leaky

integration to extract signals corresponding to single brush strokes. Another leaky integra-

tor is tuned to produce smooth output over a longer timescale, enabling a performer to build

up its internal state with multiple sequential brushing gestures (exposed as brush/energy).

Jab Detection

Our original approach to extracting “jab” gestures from the T-Stick was to simply use the

derivative of the acceleration signal from either the x-axis or the polar amplitude, depending

on whether we wanted jabs only in line with the length axis or in any direction. If the

absolute value of this derivative — commonly termed “jerk” — exceeded a threshold, a

“jab” would be considered to have occurred and exposed for mapping as jab/amplitude.

The addition of gyroscopes greatly improved the quality of the jab direction signals since

the orientation could be calculated quickly while minimizing noise from linear accelerations.

As we increased sample rates through improvements in the T-Stick firmware and serial

drivers on the computer, we also designed an improved algorithm for jab-detection (see

results in Figure 4.9). The new algorithm uses lower thresholds for denoising, and can thus

detect jab gestures with lower amplitudes.

Shaking

The improved algorithm for processing shaking gestures is based on that for jab-detection,

starting with the polar roll signal calculated from the raw accelerometer data to measure

movement in the plane orthogonal to the length axis of the instrument. An extra step is

also added to force shake events to alternate between positive and negative signs. In order

to avoid wrap-around errors (where the raw signal jumps by 2π due to the representation

rather than the orientation), the raw signal is first “unwrapped” so that subsequent samples

are forced to follow the shortest polar distance. Starting with the shake/grain signal, we

also calculate and expose the frequency of shaking and its deviation over time — a low

Orchestra Toolbox for Max/MSP at http://idmil.org/software/dot.
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Fig. 4.9 Graphs showing the process of extracting “jabbing” gestures from
acceleration data. Top: x-axis accelerometer measurements in g as the in-
strument is “jabbed” in alternating directions approximately every 1000 mil-
liseconds; middle: windowed maximum difference of the acceleration data;
bottom: debouncing envelopes generated from the middle graph using a leaky
integrator, with identified “jabs” located at the peaks.
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deviation indicating high periodicity and vice versa.

4.8.3 Mapping Support

The T-Stick software makes use of another of our projects — the open-source libmapper

toolset (cf. Chapter 2) — for supplying discoverability and compatibility with media syn-

thesizers. Specifically, the T-Stick driver software is written in Max/MSP and uses the

libmapper bindings for this environment. Over the years we have been making constant

improvements to the efficiency and capabilities of libmapper, and these improvements have

also improved the usability and reliability of the T-Stick. The addition of support for OSC

bundles in the libmapper and the Max/MSP bindings, for example, dramatically reduced

the number of IP packets streaming between driver and synth, which makes our software

run more efficiently (leaving more cycles for intensive media synthesis algorithms and appli-

cations) and reduces the probability of packets being dropped. Continuing improvements

to the libmapper graphical interfaces have supported the process of designing new map-

pings for the instrument, and the support for “querying” the values of remote devices has

allowed the use of interesting implicit mapping layers between the T-Stick driver and the

synth, for example using machine learning algorithms to “learn” to interpolate between

high-dimensional examples [35].

One of the newest features in libmapper is support for signals with multiple instances

(cf. Chapter 3 in this thesis), a powerful feature beyond the scope of this paper but

which has several applications to the T-Stick. The most obvious application is for the

representation and mapping of multitouch data, since the capacitive sensing array on the

T-Stick can sense multiple simultaneous grips, taps, or brushes. A more subtle use allows

the mapping designer to decide whether successive serial gestures such as jabs are targeted

to one instance of the destination synthesizer, or to automatically use multiple instances of

the synth if the natural lifetime of the synthesized sound is longer than the period between

gestures.

4.9 Discussion

Our attempt to create a new DMI has been quite successful — the T-Stick has been

performed dozens of times and on several continents including conferences, concerts, and
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music festivals. Around a dozen performers have played the instrument publicly for audi-

ences, and countless people have played casually at school demonstrations and science &

technology expositions. The “T-Stick Composition Workshops” held in 2010 by the com-

poser/performer D. Andrew Stewart involved six additional composers and resulted in the

public performance of several new pieces.

Obviously we cannot know for certain which of our decisions helped to make these

things happen and which may have hindered our project, but we believe that some factors

strongly influenced the success of the result.

4.9.1 Robustness

Building a robust instrument was essentially our first priority, well before any specific design

decisions had been made for the T-Stick. Prior experiences with new glove-based instru-

ments and video-tracking had left us with a sense of frustration: although the interfaces

were interesting in a technological sense, the musical results were typically “cartoonish,”

more demo than performance. There would certainly be other roadblocks on the way to

more interesting performance with DMIs, but even these were out of reach if the perform-

ers couldn’t spend more time playing and less time waiting for repairs, or worrying about

breaking the instrument.

The T-Sticks have proven to be extremely robust, even the first prototype is still working

after eight years. They have been played for countless hours, shaken, packed in luggage,

shipped, and dropped (even down an escalator, twice) and for the most part continued to

work perfectly. Of course, like all instruments they are not indestructible — when the rare

repair needs to be made to one of the instruments, the shrink tubing cover can be cut off

and replaced after the repair work is completed; the new cover costs approximately $8.

4.9.2 Playing the Sensors

Another of our early aims was to physically hide the sensors and electronics on our new

instrument. We often speak of “interaction metaphors” when designing the mapping for

DMIs [125], and it seemed to us that maintaining belief in the mapping/metaphor would

be easier if we keep the technical aspects of the instrument abstract. This is not to say that

we think performers are not intelligent enough to think about engineering or electronics —

quite the opposite! The problem is that somebody needs to be focussing on the music, and
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if everyone is obsessing over the technological aspects of the instrument, important roles

are not being filled. The evolution of the instrument and its surrounding contexts may be

delayed or stunted as a result.

In the early days of T-Stick development, we quickly realized that our performer-

collaborators had already adopted a technical/technological vocabulary for discussing the

instruments; instead of framing a concept from the perspective of gesture/body/sound they

would typically reference a sensor! We saw this as symptomatic of a reductionist view of

the instrument and its performance technique, exactly opposite to our goal of integral,

complexly inter-related sensing and mapping.

Although the original performers were already familiar with the guts of the instruments,

adding the opaque cover helped us to reframe the discussion. The instrument became a

single cylindrical object; once we eliminated frets on the multi-touch surface, it became

almost featureless. At this point most our work and discussion revolved around mapping

approaches and decisions, and here another strategy helped us reframe the work away from

sensors and towards gesture, instrument, and sound [126]. It was around this time that

we began the development of what would become libmapper — an open-source software

library for interconnecting the parts of interactive systems and designing the mapping

between them [41] (cf. Chapter 2). The library and surrounding tools are designed around

the premise that it is useful to abstract mapping from instrument or synthesizer design,

and that multiple perspectives of a particular instrument or system can be beneficial. In

the Digital Orchestra Project and for early T-Stick mapping efforts, this meant that for the

most part no direct interaction with the driver software was necessary, and that mapping

could be defined from actions (e.g. “shaking”, “jabbing”) or postures (e.g. “tilt”) rather

than thinking about sensor signals.

4.10 Conclusion

We have presented the conception, design, and subsequent evolution of the T-Stick digital

musical instruments over the last eight years. While played for countless hours of practice by

a dozen different performers, and public performances in several countries, this instrument

has also passed through three main generations of technological development, as well as

specific modifications for experiments with vibrotactile feedback and for dance performance.

Development of the T-Stick has not ceased, new mapping designs and new compositions
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are still being produced and performed publicly. Additionally, a fourth generation of the

hardware is slowly taking form, that will address improvements in touch-sensor resolution,

construction, and manufacturability.
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Chapter 5

Instrumented Bodies: Prosthetic

Instruments for Music and Dance

The following chapter presents the second of our use-cases: the rapid development of new

instruments for musicians and dancers within the context of intensive collaborative work-

shops. The chapter was prepared as the manuscript:

J. Malloch, I. Hattwick and M. M. Wanderley, “Instrumented bodies: prosthetic instru-

ments for Music and Dance,” Manuscript prepared for submission.

5.1 Abstract

This paper describes the process of conception, construction, development, and use of a

new family of prosthetic digital musical instruments. The instruments were produced in

active collaboration with dancers, musicians, composers and a choreographer, with feed-

back and documentation gathered in a series of intensive workshops. The various design

constraints are discussed, including issues related to physical form, materials, sensing, er-

gonomics and aesthetics. The collaboration culminated with an international tour of a

contemporary dance/music performance composed and choreographed specifically for the

new instruments.
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5.2 Introduction

This article concerns the conception, design and fabrication of “prosthetic digital instru-

ments” for music and dance. These instruments are the culmination of a three-year long

project in which we worked closely with dancers, musicians, composers and a choreogra-

pher. The goal of the project was to develop instruments that are visually striking, utilize

advanced sensing technologies, and are rugged enough for extensive use in performance.

The complex, transparent shapes are lit from within, and include articulated spines,

curved visors and ribcages. Unlike most computer music control interfaces, they function

both as hand-held, manipulable controllers and as wearable, movement-tracking extensions

to the body. Further, since the performers can smoothly attach and detach the objects,

these new instruments deliberately blur the line between the performers’ bodies and the

instrument being played.

Starting with sketches and rough foam prototypes for exploring shape and movement,

they progressed through many iterations of the design before arriving at the current ver-

sions. We made heavy use of digital fabrication technologies such as laser-cutters and 3D

printers, accessed first through associated labs and research groups, and later commercially

as we increased the number of instrument prototypes produced.

Each of the nearly thirty working instruments produced for the project has embedded

sensors, power supplies and wireless data transceivers, allowing a performer to control the

parameters of music synthesis and processing in real time through touch, movement, and

orientation. The signals produced by the instruments are routed through an open-source

peer-to-peer software system the we have developed for designing the connections between

sensor signals and sound synthesis parameters (discussed in section 5.7).

Although evolution of the new instrument designs has not ceased, the current versions

were featured in recent productions of the piece “Les Gestes” for two dancers and two

musicians. The piece was developed in collaboration with our team, and toured parts of

Canada and Europe during the spring of 2013.

5.3 Background

In this section we situate our work within the fields of digital musical instrument design

and interactive dance performances, and describe the project within which the work takes
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place.

5.3.1 Digital Musical Instruments

Throughout human history new technologies have always been adopted and adapted for

the production of art. In the case of musical instruments, advances in wood- and metal-

working, materials, and the understanding of acoustics have allowed the invention and

evolution of music-making tools. Many of the “traditional” instruments we appreciate

today are examples of extremely refined technological development.

With the advent of computing technology, it became possible to synthesize and record

sound algorithmically rather than depending on physically-vibrating materials. Early work

in this field was constrained to off-line applications by the limited computing power avail-

able, but as faster computers were developed it became possible to synthesize sound in

real-time for at least some algorithms.

“Digital musical instruments” (DMIs) are systems designed for interacting with digital

sound synthesis in real time, just as a traditional instrumentalist interacts with an acoustic

system in real time. Since the inputs to a given synthesis algorithm are numerical rather

than continuous physical quantities, such systems have essentially limitless flexibility as

to the composition of the control interface - it’s weight, shape, colour, materials may

affect how the performer interacts with the interface, but they have no bearing on its

connectibility. Once the physical aspects of the interface are measured and sampled, the

resulting numerical values are just as abstract as the inputs to our synthesis algorithm, and

(unless we decide to attempt to model an existing system) there is no a priori correctness

in any particular configuration of connections between them. For a designer this flexibility

can be a bit alarming, but there are still plenty of constraints to consider, and the human-

machine interaction research community has much to say on ergonomics, perception of

affordances, etc.

This open definition also invites a more structured understanding, and the DMI com-

munity is not lacking in classification schemes. Over the years, there have been many

efforts to categorize digital musical instruments. Some examples of metrics used include

who is interacting [127], the typologies of interaction [30, 11, 128], user expertise [30, 125],

location and scalability [129], and type of musical control [16, 130, 20]. A straightforward

taxonomy of gestural controllers is that used by [10]:
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• augmented or extended instruments

• instrument-like gestural controllers

• instrument-inspired gestural controllers

• alternate controllers

5.3.2 Interactive Interfaces for Dance Performance

The term interactive dance typically refers to systems in which the movement of a dancer

somehow influences the manifestation of electronic or computer-based music.1 One of the

earliest important examples of interactive dance was Cage and Cunningham’s 1965 piece

“Variations V” [131].

The vast majority of interactive dance performances utilize motion-sensing technology,

which detects the relative motion of the dancer’s gestures or their position in a room. The

most common methods for this detection are computer vision, infrared motion capture, and

inertial measurement. Computer vision systems such as Eyesweb2 [132], EyeCon3 and the

Very Nervous System [133] use video from one or more cameras and extract information

such as the location and velocity of movement in front of a static surface. Infrared motion

capture systems from manufacturers such as Qualisys4 or Vicon5 use reflective markers

placed on the body and an array of cameras to create skeletal models of the movement of

a human body. Inertial measurement systems use accelerometers and gyroscopes placed

on dancers’ bodies to detect the movement of different body parts. Advanced versions of

these systems6 can also create the same skeletal models as infrared motion capture systems

[134].

One important conceptual aspect of interactive dance regards the intentionality of the

dancers’ control of music [135]. To what degree should the dancer’s movements be con-

strained by their desire to achieve a specific musical result? As opposed to musicians, a

dancer’s movements are predominantly intended to function within a visual aesthetic. The

1It is assumed that the resulting sound in turn affects the movement of the dancer; thus, the systems
are interactive.

2www.infomus.org/eyesweb ita.php
3eyecon.palindrome.de
4www.qualisys.com
5www.vicon.com
6For example, the Xsens bodysuits. www.xsens.com
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tension between their ability to stay within this aesthetic while simultaneously interacting

with synthesized sound pervades the creation of interactive dance systems.

Crutches and other prostheses have been incorporated into non-interactive dance per-

formances in a variety of ways. Handicapped dancers such as Zhai Xiaowei and Reynoldo

Ojeda use functional prostheses to allow for their participation in traditional dance forms7.

In “bODY rEMIX/gOLDBERG vARIATIONS”, Marie Chouinard’s dancers use crutches

and a variety of other prosthetic devices to create distorted and unconventional bodily

shapes8. However, the use of physical props or prostheses in interactive dance is relatively

rare as the dominant aesthetic tends to be to preserve the freedom of motion of the dancer

as much as possible.

5.4 Conception and Planning

5.4.1 The “Gestes” Project

The development discussed here took place as part of a project titled Les Gestes: une

nouvelle génération des instruments de musique numérique pour le contrôle de la synthèse

et le traitement de la musique en performance par les musiciens et les danseurs9. This

project brings together our group – the Input devices and Music Interaction Lab at McGill

University – with the choreographer Isabelle Van Grimde, her dance troupe Corps Secrets,

and composers Sean Ferguson and Marlon Schumacher in a collaborative research-creation

project. It is based on an earlier project with the same collaborators (Duo pour un vi-

oloncelle et un danseur) in which a dancer controlled live processing of a ’cellist using a

digital musical instrument – the T-Stick[100] – developed by the first author in our lab (cf.

Chapter 4 of this thesis).

Although we used a special wireless, reinforced version of the T-Stick DMI for the Duo

project, it was essentially very similar to the versions we use for live music performance

– differing more in the mapping decisions than in basic structure or appearance. The

Gestes project was intended to be quite different, since when planning the project we

made a collective decision to explore new forms for the instrument, specifically playing

7mentalfloss.com/article/22289/dancing-crutches
8http://www.mariechouinard.com/body-remix-golberg-186.html
9“Gestures: a new generation of digital musical instruments for controlling synthesis and processing of

live music by musicians and dancers.”
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with physically attaching the instruments to the dancers at times to form metaphorical

prostheses used to generate or modulate real-time audio synthesis.

The basic timeline for the project involved in-lab development and refinement of new

digital instruments, frequent workshops with the choreographer and dancers to explore

movement and evaluate the instruments in-use, and working with the composers to integrate

our software mapping tools into their workflow.

5.4.2 Designing Gestural Controllers as Prostheses

One of the possible typologies of digital musical instruments we find useful arranges them

from the perspective of the “physical embodiment” of the instrument. Although the very

term “instrument” might strongly suggest a physical instantiation, the term takes on ad-

ditional baggage in the context of musical performance and is commonly stretched to en-

compass a variety of abstract and non-physical systems or phenomena. As can be seen in

Figure 5.1, we consider one extreme of the typology to be inhabited by instruments with

a strong physical instantiation – these instruments are identifiable, localizable objects,

“played” using direct interaction with the instruments’ parts. Moving along our contin-

uum we might place an instrument such as the Theremin, since while it has an identifiable

locus it is “played” by interacting with the space around this object; the “instrument” (in

the metaphorical sense) must be considered to include this amorphous, invisible region.

Moving even further along our continuum the perceptual impact of the instrument locus

diminishes further (e.g., the Microsoft Kinect) until we arrive at “fully immersive” systems

[136] in which no physical instrument can be identified at all.10

Another design direction that blurs a system’s identity is to merge it with the per-

former’s own body, usually by attaching sensors to the body and using their posture,

movement, or other signals to control sound synthesis. Sensor-glove projects are particu-

larly common - see [137] for an overview. In our earlier overview of interactive dance we

mentioned systems which merge with the performer’s body so completely as to minimize

their perceived presence, both by the dancer and the audience.

For this project we decided we were particularly interested in designing instruments

10As an aside, we consider there to be another possible extrapolation to the left of the illustrated
continuum which addresses systems in which the object itself is the focus or medium of the interaction.
Infra-instruments (observed on their path to destruction[13]) and circuit-bending are examples inhabiting
this region – the instrument object in these cases is not merely identifiable but identified and fetishized.
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Fig. 5.1 One possible typology of digital musical instruments, organized by
their degree of (perceived) physical embodiment.

that could be perceived as either objects or part of our performers’ bodies, and enable

this perception to manipulated or switched smoothly during a performance. The dancers

would be able to add and remove our new digital prostheses from their bodies as if they

could remove an arm and use it as a separate tool. It is important to realize that this

approach is very different from simply adding sensors to the performer’s body, since the

physical configuration of the prosthesis both adds its own dynamic behaviour to the system

(meaning phenomena may be sensed that do not exist on an un-augmented body) and alters

the dynamic behaviour of the performer’s own body. Certain movements may become more

difficult, while others perhaps become easier; the natural balance and resting points of the

body may also change. The shape, mass, structure, and even appearance of the prosthetic

instruments are not merely decorations, but would be necessarily incorporated into the

performance technique and profoundly affect the qualities of any media generated using

the sensed data.
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5.4.3 Cultural Considerations

In every-day life, prostheses typically correct or improve some supposed disability. This

potentially adds weighty “cultural baggage” to our new instruments, and needs to be con-

sidered carefully when approaching the aesthetic design, e.g. do we want to explore concepts

of disability/suffering/awkwardness in our design? In robotics the “uncanny valley” effect

– in which the robots which appear “almost” human elicit feelings of fear or revulsion – is

well known [138]; we might therefore wish to avoid prostheses that too-closely mimic the

appearance of human flesh, or we might wish to deliberately play with these perceptions.

There are also futurist/science-fiction ideals of the “augmented” post/super-human.

The connotations here are not related to disability but rather additions or extensions to

existing human ability. Cyborgs are often depicted as villains in Western pop-culture, but

there are also positive depictions. Technological prostheses in this category are becoming

visible in media, e.g. augmented-reality head-up display systems à la Steve Mann [139] are

quickly becoming practical for everyday use (e.g. Google Glass 11).

5.4.4 Users

For the Prosthetic Instruments, we were designing for three different levels of users:

The dancers and musicians using the instruments. For the performers we needed

to consider the ergonomy of the instruments and its possible effect on fatigue or

injury. Other concerns include the degree to which the playing techniques resemble

the performers’ pre-existing skills, the learning curve [140], and cognitive bandwidth

required [141]. The instruments should also make the performers feel that they have

scope for expressing themselves. Beyond the familiarity of the physical appearance

and dynamics, these concerns bear strongly on the mapping design.

The composer and choreographer composing for the instruments could be consid-

ered to be “meta-users” of the instruments, since they are tasked with designing

aesthetic and performative contexts in which they will be used. Important concerns

at this level include programmability vs. specificity, changes (even improvements)

brought through design iteration, finding compatible aesthetic goals, and flexibility

vs. constraint in both sound production and movement affordances.

11http://www.google.com/glass/start/
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The characters played/embodied by the dancers. In the context of the piece Les

Gestes being developed in parallel with the instruments, dramaturgical concerns

might also impact the design. Even in abstract, considerations of believability, the

perceived skill and effort required to play the instruments, and their aesthetic ap-

pearance play a strong role even in non-programmatic performances. In our case,

one design goal was to suggest that our new artifacts might have an existing (though

foreign to the audience) cultural and practical context and are not merely props or

costumes.

In addition, the instruments need to be suitable for two different modes of interaction:

as object and as body. For interaction with the instrument-as-object, the design needed

to be interesting as an artifact in its own right in terms of appearance and interaction

affordances, and not simply suggest that it is waiting to be worn. As prostheses, we are

interested in the dynamics of the body-instrument system rather than either on its own.

Ergonomics is important in this process but is less important than some other concerns,

since the dancers should move differently while wearing them. These prostheses are not

costumes, but rather new limbs which happen to be detachable.

5.4.5 Design Schedule

Our experience in earlier projects has been that while the feedback of the composers and

performers during the instrument design was invaluable, not enough time and focus was

provided for the composition of the works. For Les Gestes, we attempted to remedy this

by basing the instrument design upon the T-Stick and allotting time for the creation of the

choreography and composition simultaneously with the instrument design.

The Gestes project took place over 18 months, followed by several months of rehearsals

before the public performances. The research focused on four workshops in which the

choreographer, composers, and instrument designers met for two weeks and work would

be created drawing upon each of their contributions. Our intention was that this process

would enable the three different artistic research processes to influence each other. The

first workshop was in August 2011 and the project culminated in public performances in

March and April 2013.

As instrument designers the workshops presented hard deadlines by which functional

instruments had to be ready. The creation of functional prototypes by the second workshop
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was necessary because all of the research conducted by the various collaborators depended

upon actively working with the instruments: the choreographer and dancers to develop ap-

propriate choreography and integrate the physical forms into the dancer’s body-dynamics;

the composers work on mapping the dancers’ gestures to sound; and the instrument de-

signers so we could re-evaluate and iterate on aspects of the design affecting movement,

appearance, and robustness. The workshops were also an opportunity to address specific

design problems by the iteration of prototypes during the two week span of each workshop.

5.5 The First Prototypes

Our first workshop brought together the instrument designers, choreographer, dancers and

composers for the first time. Held over a week in August 2011, this workshop was intended

to be exploratory in nature, with no expectation of creating functional instruments.

In planning for the workshop, we selected various materials with which we could con-

struct mock-up prototypes of the instrument shapes that would be wearable by the dancers.

In this way we could begin exploring the aesthetic effects of augmenting the dancers’ bod-

ies, the ergonomic and kinaesthetic issues experienced by the dancers when so augmented,

and potential movement and choreographic material. These physical materials consisted of

long strips of packing foam with a square cross-section approximately 10cm across, sheets

of corrugated plastic, approximately 2m of flexible transparent PVC tubing with a 6cm di-

ameter, and various types of fabric strapping and velcro with which to attach our prototype

objects to the dancer’s bodies.

We used the foam to construct frames around the dancers’ bodies, extensions to the

head, tails, and second “spines” mirroring the dancer’s own spines. The latter in partic-

ular seemed promising, and the “spine” object went through several iterations within the

workshop refining its shape and articulating its curvature and behaviour during movement

by adding and removing small amounts of material to the form (Figure 5.3).

We also explored many directions with shapes constructed of corrugated plastic, cut,

bent and folded into various shapes including spikes, extensions to the shoulders, arms,

ribcage, and jaw and head. One particular shape was found to be effective as both a type

of ‘visor’ and as used in groups to define an asymmetric ‘cage’ extrapolating from the

ribcages of the dancers (Figure 5.5).

We gradually converged on a refined set of instrument/objects through a repeated pro-
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Fig. 5.2 Planning sketches for the “Rib” and “Visor” instruments produced
for the first workshop.

cess of sketching, modifying the physical objects, and exploration of movement when the

dancers were wearing them. At this point we deliberately kept considerations open re-

garding the kinds of materials we might use for the final versions, or sensing possibilities

for making them interactive. Some discussion of mapping concepts occurred and were

documented with the sketches.

5.5.1 Sensing

Even during the initial exploratory workshop, we began researching possible sensing solu-

tions for the foam objects we were creating. Once we were happy with the basic shape

and dynamics of the foam and plastic prototypes, work on designing and integrating sensor

and wireless communication began in earnest. Our goal was to have fully-functional instru-

ments as early in the project as possible, so that our collaborators could begin exploration

of mapping configurations in tandem with exploration of choreographic and musical mate-

rial. Meanwhile we would have the freedom to explore design, materials and construction

approaches for the next iteration. Essentially our requirements for sensing were:

• Low-latency to enable responsive control.
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Fig. 5.3 Planning sketches for the “Spine” instrument produced for the first
workshop.
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• High resolution sensing of phenomena to enable nuanced control.

• The solution must be very robust, both to physically survive the rigours of live dance

performance and resistant to environmental interference (e.g., high levels or ambient

light (visible and infra red) from stage lights).

• Not visually distracting, although we were open to incorporating the sensors into the

instrument’s visual aesthetic.

• Not dependent on the instrument having a specific stiffness or be constructed of a

particular material, so that we would not have to re-solve sensing problems as the

physical design evolved.

• Allow the dancers completely free movement without occlusion, therefore wireless

and relatively light-weight.

• Able to operate with constrained electrical power (<100mA) to avoid concerns with

large batteries or frequent recharging.

• Reasonably inexpensive.

For the Spine, we decided that we would like to track the orientation and deformation

as it moves with the dancer. This choice fit well with our interest in conceptually blurring

instrument-as-object and instrument-as-body; the Spine prototypes follow the dancers’

bodies closely but also stand out with their own tension and dynamics. Since at this stage

in the design we had not committed to any particular materials, it was important that we

choose a sensing approach that would allow us maximal flexibility in future iterations.

Based on these criteria, we opted to combine data from accelerometers, rate-gyroscopes

and magnetic-field sensors to independently estimate the orientation of the two ends of

the Spine12. By noting the difference between the two ends, we can also estimate bending

and twisting of the entire structure. Including a wireless radio transceiver for communica-

tion, this solution cost approximately CAN$250 and provides updates of the orientation as

quaternions at approximately 200Hz. We calculate the orientations using a complementary

12This arrangement of sensors is sometimes referred to collectively as an inertial measurement unit, or
IMU.
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filter running on-board the Spines to provide a high sample-rate and tight timing for inte-

gration of the gyroscope data. This solution was embedded in existing foam prototypes in

time for the second workshop (Figure 5.4).

Fig. 5.4 A foam spine prototype with embedded sensing of orientation and
shape in use during a public post-workshop presentation. Dancer: Sophie
Bréton.

We also experimented with different spatial resolutions for the orientation sensing, since

this determines the resolution of measurable deformations. With three equidistant sets of

sensors we can sense simple compound “S” curves, for example, which cannot be distin-

guished using only two. Future versions of the Spine DMI may use higher-resolution sensing,

as the price and availability of IMUs are improving rapidly. The spines used for the public

performances of the Gestes project used only two IMUs located near the mounting locations

behind the head and at the bottom of the back.

For the Ribs and Visors, since the objects present interesting, wide curved surfaces for

touching and brushing we decided to use capacitive touch sensing building on technology

already developed for the T-Stick DMI. The corrugated plastic material used for initial

prototyping was not suitable for mounting sensors: it would wear out fairly quickly and

did not hold a particular shape very well once bent or curved. Since we planned to inte-



5 Instrumented Bodies: Prosthetic Instruments for Music and Dance 121

grate lighting into the instruments, we began testing capacitive sensing using a variety of

transparent conductive materials (ITO, graphene) as well as various conductive paints and

tapes that would allow us to draw or print sense electrodes onto the ribs and visors. In

parallel, we began vetting different plastics for use as the basic construction material.

We decided to use the MiniBee micro-controller boards for sampling sensors and wireless

communication with the composers’ computers. We developed these boards for an earlier

project [44] as low-cost, Arduino-compatible circuit boards with the footprint for a ZigBee

wireless transceiver [142]. We considered ZigBee to be an appropriate choice for this project,

since it provides low-power, sufficient range for our needs (around 100m line-of-sight),

support for many simultaneous nodes, and doesn’t require any intervention to reconnect

after a node has been power-cycled or has lost signal. As another known benefit, the

MiniBee nodes include a three-axis accelerometer, meaning that all the ribs and visors

could also output some orientation and movement data.

5.6 Refinement

5.6.1 The Spines

Our third prototype of the Spine instrument began our exploration of different materials

and segmented structures. Keeping the roughly square cross-section used in the foam

versions, we constructed it from cut segments of thin transparent rectangular PVC tubing

connected with hinges made from the same plastic. Support for the overall structure

was provided by rubber bands connecting adjacent sections. This structure was a vast

improvement in appearance over the foam and was used in early press photographs for the

project. Mechanically it proved problematic for several reasons. First, it’s construction

was very intricate, which not only made it difficult to build but also increased the chances

of mechanical failure. Second, the hinged design did not support side-to-side or twisting

motions. In addition, the use of distinct hinged parts pushed the aesthetic firmly into the

realm of the mechanical, more robot than cyborg.

The fourth prototype was again designed as a segmented structure, but with the separate

segments bonded to a single flexible plastic substrate which ran the length of the object.

This greatly simplified and lightened the object structure and restored the natural curvature

from the foam prototypes, although it was much less flexible when twisted. We considered



5 Instrumented Bodies: Prosthetic Instruments for Music and Dance 122

this approach promising and visually much more appealing, however a great deal of strain

is placed on the flexible backing and we had difficulty resolving the conflicting demands of

materials with appropriate flexibility, strength, and density.

Moving to Vertebrae

Fig. 5.5 The prototype spine in use by dancer Sophie Bréton. (Photograph:
Vanessa Yaremchuk, used with permission)

Starting with the fifth prototype design we started using three-dimensional structures

to resolve our strength-vs.-weight problems without needing a miracle material to satisfy

all our demands. In this version, separate “vertebrae” were fashioned using 0.25” thick

laser-cut acrylic and threaded onto flexible PVC hoses forming a truss-like structure with a

triangular cross-section. In order to allow the spine to bend, the third rail in the structure

is replaced with a very flexible PET-G rod; while the holes cut in the acrylic segments were

sized for interference-fitting with the PVC hose, the PET-G rod is considerably narrower

and able to easily slide through. Initially, the PET-G rod was fixed only at the head, with

a length extending past the length of the PVC. With refinement, the arrangement of two

fixed rails and one sliding rail provided the object bending affordances remarkably similar

to the foam prototypes, while also providing greatly increased strength/robustness since
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strains are naturally distributed (figure 5.5).

We proceeded to design and construct prototypes 6-8 using the building blocks from pro-

totype 5, while exploring alternate constructions including helical rails and heat-modified

vertebrae, scale tests using slightly different materials, and optimizing the vertebra designs

for increased strength. Final explorations involved increasing the length of the Spine past

the lower mount and altering the dynamics of the instrument when bent or twisted by fixing

the PET-G rod at both top and bottom, meaning that both top and bottom rails had fixed

lengths. This modification prevented the Spine from forming simple curves, instead forcing

it into interesting compound-curve shapes when bent. The total length of the PET-G rod

sets the natural resting curve of the Spine.

The friction fit of the tubing proved reliable for most of the length of the Spine. However,

we encountered several problems at the head of the spine in which the friction wasn’t

sufficient to counteract the weight of the Spine and the tension created when bending and

twisting. We considered several methods of securing the PVC tubing in the top vertebrae

involving pins and collars; however, we were wary of drilling holes through either the

vertebrae or tubing due to fears it would compromise their durability. Our solution was to

use superglue between the PVC and the holes in the top vertebrae, which proved to work

reliably but didn’t create such an unbreakable bond that we couldn’t remove the tubing if

we needed to make adjustments.

5.6.2 The Ribs

In the move towards functional prototypes, the decision was made to utilize rigid 1/8” thick

acrylic panels as the basic material. Our material requirements were:

• The instruments needed to be durable enough for an extended run of performances.

Flexible paper and plastic materials develop wear quickly and are easily damaged.

• The cantilevered design of the Ribs necessitates that they be both lightweight and

rigid, as the entire weight of the instrument needs to be supported on one end.

• The material needed to be able to keep its form; even with the paper shapes we iden-

tified the need for specific curvatures based upon the location of the instruments on

the body. We also decided that a rigid shape would place less wear on the embedded

electronics.



5 Instrumented Bodies: Prosthetic Instruments for Music and Dance 124

• The machinability of the material needed to be within our capability. Being primarily

an electronics and HCI lab, our workshops contain only basic tools; any additional

machining needed to be within the capability of tools we could acquire or gain access

to through university resources or outsourcing to private manufacturing facilities.

• The material needed to be cost-effective to stay within our relatively limited research

budget.

Clear acrylic plastic had many properties which suggested its use to us. Its basic

material, being transparent, does not have a strong visual identity, causing it to be less

immediately recognizable than wood, aluminum, or copper. Its thermoplastic properties

permit heat-forming to different shapes at a temperature which is easily attainable in a

non-specialized lab. It is machinable with hand tools as well as with general purpose laser

cutters without creating toxic gases 13. It is lightweight and relatively impact-resistant -

more than glass, for example, although less impact-resistant than polycarbonate.

First Functional Prototypes

The first round of functional prototypes were hand-formed from acrylic panels to roughly

the same dimensions as their paper predecessors. Their curvature was shaped by hand using

a standard heat-gun. Capacitive touch-sensing was implemented with pads and traces made

out of copper tape.

These initial plastic prototypes were found to have several aesthetic issues. The most

obvious was that they were too small, and the curvature too tight to the body. This

prevented them from having a satisfying visual presence, and also influenced the ways in

which the dancers interacted with them – larger shapes being seen as giving more room,

inside the Ribs and outside, for the dancers to move their hands and arms. The large

copper pads for touch sensing were also seen as problematic. While we had no problem

with electronic components forming part of the visual presence of the instruments, the

initial layout of copper pads and traces were both functionally problematic and aesthetically

problematic. Our primary aesthetic concern was the they were too obviously hand-formed,

but our research led us to the conclusion that digitally fabricating patterns in metal foils

would be prohibitively difficult.

13Laser cutting many plastics releases toxic fumes, particularly chlorine. As a result, many laser cutting
facilities, including the McGill architecture faculty, won’t laser cut these materials
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Iterative Design

From the course of the second workshop until June 2012, the aesthetics of these rib-shapes

were changed through a process of iteration. During this period we gained access to the

laser cutter at the McGill faculty of architecture in the spring and used it for the creation of

a wide variety of rib shapes. We explored a succession of different approaches to fabricating

copper shapes for pads before settling on a transparent conductive plastic material. The

traces connecting these pads went from copper strips to ribbon cable to magnet wire.

The basic visual aesthetics for the Ribs came to be laser cut 1/8” acrylic panels with

grooves etched for the magnet wire, with transparent conductive plastic for touch sensing.

When we were using copper strips for the traces we were happy that their layout should

be straight, orthogonal lines – visually evoking a circuit board pattern. Once we moved

to a transparent material for both the basic shape and the touch pads, we decided that a

more organic, curved shape to both the rib outline and the magnet wire traces was more

desirable.

Fig. 5.6 The final Rib designs showing their laminated composition and
final shapes and configuration. (Dancer: Sophie Bréton, Photographs: Ian
Hattwick & Audréane Beaucage, used with permission)

The Final Rib Prototypes

Once the Rib design became fully transparent it was necessary to continue making their

overall shape larger in order to maintain a strong visual impact. As they grew larger they
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began to suffer from structural issues due to their cantilevered design. In order to resolve

these issues we moved to a multi-layer laminated structure that both added structural

rigidity and strength and also incorporated a protective enclosure for the electronics.

The final design called for three differently sized Ribs with a specific shapes and cur-

vatures in order to complement the dancers’ bodies, as seen in figure 5.6. Many iterations

were created in order to find the correct curvatures and ultimately jigs were designed to

allow for their accurate reproduction.

5.6.3 Visor

Fig. 5.7 Soula Trougakos wearing the Visor in a performance of Les Gestes.
(Photograph by Audreane Beaucage, used with permission.

These Visor shapes are based closely on the functionality of the ribs, utilizing the same
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materials both for the physical and electronic construction. The primary differences are

their shape and structure and the way in which they are mounted.

Because the visors remained close to the original size of the ribs, and were also subjected

to less interaction by the dancers’ hands and arms, we did not find it necessary to add the

secondary support layer that the ribs required. However, due to differences in the shape

of the dancers’ heads we found it necessary to give each visor a unique shape. This is in

contrast to the Ribs, for which the same shapes were found to work for both dancers.

Our original conception was for the visor to use the same mount as the top of the spine,

directly behind the dancer’s head. However, as the visor extends in front of and around the

face, mounting only behind the head makes the visor extremely cantilevered. This didn’t

create a stable connection and allowed the visor quite a bit of movement separate from the

movement of the dancer’s head. The addition of a second mounting point near the dancer’s

left ear stabilized the visor a great deal, especially since most of the mass of the visor is

contained in the electronic enclosure situated between the two mounting points.

5.7 Discussion

5.7.1 Discussion I: Fast Iteration using Digital Fabrication Techniques

Over the years we have designed and constructed many DMIs for exploring the potential of

different shapes, materials, sensors, and control concepts. Since these new instruments are

not intended for commercial sale, they are usually produced in extremely small numbers

(typically only one or two). The T-Stick DMI is the most extreme exception from our

work, with the production of around 20 instruments over the course of five years. At these

small scales most construction and assembly work is done by hand, since it is usually not

economical to use industrial processes for small runs.

The advent of affordable digital fabrication technologies is quickly changing this bal-

ance, since they bring many of the benefits of industrial production – notably precise control

over output – without requiring commitment to manufacturing thousands of units. Since

the parts are manufactured directly from digital models, making a small change to a part

is much simpler than rebuilding moulds or jigs. Additive manufacturing is still quite ex-

pensive, however we estimate that its use saved us both money and time; it is doubtful

whether we could have developed and improved the design of our mounting hardware as
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Fig. 5.8 Marjolaine Lambert and Sophie Breton playing the Ribs during a
rehearsal for the piece Les Gestes. Photo by Michael Slobodian, used with
permission.
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quickly without access to the 3D printer.

In addition to producing more consistent parts and saving us time, the use of laser-

cutters for producing acrylic parts also enabled a rapid solution to structural issues in the

design of the Ribs. When it became clear that the longer Ribs required additional rigidity

with a minimal increase in cantilevered weight, it was relatively easy to modify the CAD

model to create a narrow support layer which follows the Ribs’ shape. Similar alterations

were used in the creation of the laminated electronics enclosure for the Ribs, which includes

a interlocking magnetic closure allowing the top to be removed for installation and repairs.

Scaling to Production

As production deadlines approached and the number of instruments required for the over-

seas tour of Les Gestes increased, it became clear that we had to optimize the instrument

production as much as possible. To satisfy the (perhaps justified) paranoia surrounding

productions depending on new untested technology, we committed to manufacturing a full

set of back-up instruments in addition to those scheduled for use in the actual performance.

To make production faster, we outsourced the laser-cutting orders to an outside company

instead of doing it ourselves, and recruited a number of students from the lab as assistants

for soldering and some assembly.

Once the acrylic vertebra segments have been laser-cut, the Spines are relatively easy

to assemble. Threading the vertebrae onto the PVC rails is simply a process of stretching

the PVC to reduce its diameter and adjusting the locations of the acrylic segments. The

interference fitting between PVC and acrylic is sufficient to hold in place even during the

rigours of performance, but still relatively easy to adjust when desired. We also outsourced

the IMU fabrication, using two of the ckDevices Mongoose IMUs per spine. Some effort

was still required wiring the IMUs and fitting them in project boxes, preparing another

box for the wireless transceiver, loading firmware and testing.

Even with the fabrication of all of the Visor and Ribs’ components outsourced, they

are still much more time-consuming to produce. The specificity of the curved shapes,

intricate laminated structure with twelve interlocking parts, and custom capacitive sensing

all demand significant labor to reproduce. Due to these requirements, all shaping and

assembling of the acrylic parts as well as the electronic design and assembly was all done in

the lab. The careful refinement of the CAD models and electronics, as well as fabrication
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aids such as bending jigs, helped to streamline the process, but the successful manufacturing

of the final 16 Ribs and Visors still took a considerable effort.

5.7.2 Discussion II: Integration with Mapping Tools

After designing and constructing the physical instruments, adding sensors and applying

signal processing to extract interesting gestural signals, there is still a crucial link missing:

we still need to design the “aesthetic” mapping layer which links gesture or movement

to specific control of media synthesis or processing. Our experience on past projects has

made it clear that this design process is very difficult and time-consuming, especially in a

collaborative setting. The process of mapping also necessarily involves the establishment of

at least a minimal gestural vocabulary or style of interacting with the instrument in order

to supply some performance data to be mapped; an ideal approach might involve workshop

experimentation with a variety of mapping configurations, choreographic material, and

media synthesis tools. In practice, we have found this kind of scenario often results in

frustration while performers wait for technical changes, and also severely limits the amount

of mapping experimentation that can realistically take place in the workshop context14.

Starting during the McGill Digital Orchestra Project [104], we began building a software

infrastructure for aiding in the mapping design process. Our tools are built on a central

software library – called libmapper – which supports a “plug-and-play” approach to map-

ping, in which various devices such as physical controllers, synthesizers, etc. represent their

inputs and outputs on a network, and connections can be freely created between them (cf.

Chapter 2 in this thesis). The software takes care of all necessary translation between end-

points, meaning connections are fast to implement, but can also be customized to calibrate

to a particular gesture or to apply some data transformation to the signals. Crucially, users

interact with a semantic abstraction of the network: all entities use descriptive names and

connections are created by simply drawing lines between them on one of the graphical in-

terfaces. Knowledge of networking protocols, computer IP addresses and ports, and even

which computer an interface is connected to, are not required.

The use of libmapper and some related tools allowed us to focus fully on the instru-

14It is important to note that recording data from the performers for use in off-line mapping experimen-
tation is of limited use, since we are attempting to create new performable musical instruments rather than
“sonifying movement”, and that the performers will presumably move very differently when using different
mappings.
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ments themselves without concern for connection- or protocol-compatibility with the media

synthesis side of things. This division of work occurs on a technical level but also a con-

ceptual level, which avoids confusion and discourages premature assumptions about the

eventual mapping. The software design approach was to simply expose all interesting sig-

nals describing the state or dynamics of the instruments, whether or not we thought at

the time that they might be interesting for a particular mapping or piece. At the time

of performance, the device drivers for the Gestes instruments make available for mapping

25 output parameters for each Spine (Table 5.1) and 9 output parameters for each Rib or

Visor (Table 5.2), leading to more than 100 parameters available simultaneously for the

Gestes workshops and performances.

Table 5.1 Output Parameters for each Spine DMI

Parameter Type Length Minimum Maximum Units

For each IMU:
.../accel/x float 1 −2 2 g
.../accel/y float 1 −2 2 g
.../accel/z float 1 −2 2 g
.../rot/x float 1 −π/2 π/2 radians/second
.../rot/y float 1 −π/2 π/2 radians/second
.../rot/z float 1 −π/2 π/2 radians/second
.../orientation float 4 −1 1 unit quaternion
.../tilt float 1 −π/2 π/2 radians
.../roll float 1 −π π radians
.../azimuth float 1 −π π radians
.../motion float 1 0 5 na

For the instrument:
.../bend/x float 1 −π π radians
.../bend/y float 1 −π π radians
.../twist float 1 −π π radians

During our collaborative workshops, the use of these tools also allowed us to easily add

new signals describing the instruments in real-time, even while the dancers were wearing

the instruments and the composers were using data from them. As each new signal was

added to our device driver software, its description would simply appear as another possible

source in the mapping interfaces.

Our colleague Marlon Schumacher undertook to build a “mapper” bridge for the soft-
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Table 5.2 Output Parameters for each Rib and Visor DMI

Parameter Type Length Minimum Maximum Units

/accel/x float 1 −2 2 g
/accel/y float 1 −2 2 g
/accel/z float 1 −2 2 g
/tilt float 1 −π π radians
/roll float 1 −π/2 π/2 radians
/motion float 1 0 50 na
/touch float 1 0 1 normalized
/brush float 1 0 5 na
/coverage float 1 0 1 normalized

ware framework CLEF 15 so that its various synthesis and processing modules would be

declared as available destinations for mapping connections. In addition, he integrated

mapping management functionality (normally embedded in a GUI) into CLEF, so that

mapping configurations could be saved and reloaded directly using the same mechanisms

and interface used to load presets for his sound synthesis and processing system. The

standard mapping GUI was still used for the initial design and modification of mappings

during workshops, but during rehearsals and performances it was used only to monitor the

changes instigated by CLEF.

The composers involved in the project decided that they wished to use dynamic map-

ping for their piece, in which the mapping connections change over time. As various

scenes are loaded in CLEF, the resources being used for synthesis might change, for exam-

ple one scene might involve granular reprocessing of incoming audio from the two string

instrumentalists, while another spatializes prerecorded sound or produces sound using a

different synthesis model. As proponents of the mapping-as-instrument paradigm (rather

than mapping-as-piece) [30], we believe that dynamic mappings are generally confusing for

the performer, and make it difficult for them to acquire expertise with a new interface.

In addition, we have found that sometimes the description of a dynamic mapping scheme

simply adds unnecessary temporal organization to an underlying static scheme: often the

separate mappings do not even address the same gestural material, and could be folded

15The CIRMMT Live Electronics Framework, a modular system built in Max/MSP for composition and
performance of music with both live and electronic components, developed at McGill University since 2009
[143].
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into a single static mapping scheme which affords more control to the performer while also

remaining consistent. Within the challenging context of live workshops, however, mapping

schemes tend to be designed as “vignettes” that are appropriate for the movement and

media material being explored, and are not arranged in any systemic fashion. This is a

natural and necessary artifact of the workshop process, and using these mapping vignettes

serially in a piece is the obvious outcome.

The Gestes project provided us with further proof of the utility of our concepts and tools

for aiding collaborative mapping design: we have vastly simplified and streamlined the pro-

cess of experimenting with mapping configurations. Moving forward, we are giving thought

to how we can help organize and hopefully combine various mapping sketches or vignettes

into more complex, consistent behaviours and qualities for our instruments. We believe

that placing control in the hands of the performers is the entire point of gesture-controlled

media systems, and that the “acousmatic+” paradigm – in which the composer/system

has all the power but a performer is used to inject “liveness” – does a disservice to both

performer and audience.

5.8 Conclusion

We have presented a new family of prosthetic digital musical instruments, developed over

three years in an intensive collaboration with dancers, instrumental musicians, composers

and a choreographer. Rough prototypes of the instruments were developed in early work-

shops where they could be mounted to the dancers’ bodies and evaluated in parallel with ex-

ploration of related gestural vocabulary. The designs were subsequently developed through

rapid iteration, aided when possible by the use of digital fabrication technologies which

allowed us to consistently reproduce small desired variations and refinements to the pre-

vious generation. This approach aided us further when we needed to scale-up production

of instrument copies and production deadlines approached, since we could easily outsource

parts of the production process.

Finally, the instruments were used in live performance of the contemporary dance/music

piece Les Gestes, which toured parts of Canada and Europe during the spring of 2013. Our

approach to designing robust instruments proved sufficient, since no instruments were bro-

ken during the tour (which travelled with backups) and the technology worked seamlessly

as part of the artwork.
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Part III

Conclusion
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Chapter 6

Conclusions and Future Work

In this dissertation we have described the design of a system for supporting configurable

inter-connections between the parts of digital musical instruments (e.g., control interfaces

and digital audio synthesizers) or other interactive systems. This system is conceived as

a distributed, zero-configuration network of devices with no central server, with mapping

connections transported as peer-to-peer data streams. All such streams are labelled with

strong semantics, and wherever possible carry metadata representing the real ranges and

units of the phenomenon being sensed or the parameter to be controlled. Rather than

enforcing data normalization or other system-representation standards, our system provides

inter-device compatibility by automatically translating datatypes and ranges as necessary.

Each connection also allows arbitrary signal processing to allow transformation of the data

stream as conceived by the mapping designer. This system has been implemented as an

open-source, cross-platform software library called libmapper written in the C programming

language and accompanied by language bindings for a number of popular languages.

We have also presented work on supporting mapping connections between data streams

representing properties of entities that might have multiple copies or instances. Such sys-

tems include multi-touch interfaces, in which instances of “touch” may exist in varying

numbers over time, and polyphonic synthesizers, which might play varying numbers of

“sounds” or “voices” simultaneously. The concept of instances can also be applied to

temporally-segmented performer gestures, in which the “end” of a performed gesture sig-

nals the destruction of an instance of that gesture. A generalization and formalization of the

multi-instance problem was presented, followed by details of the extensions to libmapper
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for supporting this feature.

Finally, we have presented two case studies for the use of our mapping software, both of

which culminated in successful public performances in multiple countries. The first of these

are the T-Stick digital musical instruments, a family of tube-shaped gestural controllers

featuring sensors for pressure, multitouch, deformation, orientation and movement. The

hardware and firmware for the T-Stick has gone through three major design iterations

over a period of eight years, and has been adapted for use by dancers and for controlling

spatialization of sound within a concert venue. Mapping for the T-Stick is designed and

implemented exclusively with the mapping tools mentioned previously, in fact our needs

for the T-Stick were a driving force for both development of new mapping features and

improvements to the software dependability and ease of use.

The second case study concerns the more recent development of prosthetic musical in-

struments for use by dancers and musicians, which were developed in a series of rapid

iterations over the past three years. Unlike the T-Stick, mapping design for the prosthetic

instruments – the “Spine”, the “Rib”, and the “Visor” – was carried out primarily in the

context of intensive collaborative workshops involving dancers, a choreographer, and com-

posers tasked with both musical composition and mapping design. The mapping tools were

invaluable in these workshops, in that they allowed new mapping ideas to be quickly exe-

cuted, modified, and archived without requiring reprogramming of the instrument drivers.

As new versions of the instruments were completed, they were automatically integrated

into the workflow as sources of data for controlling audio synthesis or musical processes.

6.1 Contributions

The main contribution of this work to the research community – and to industry – is to

provide compatibility and “mappability” between the disparate parts of interactive systems

without compromising on design flexibility or imposing any particular workflow or design

process. This should allow designers of digital musical instruments and other interactive

systems to freely experiment with collaborative interconnections between their creations,

while encouraging them to use whatever tools are appropriate for the job or are personally

preferable.

To our knowledge, the flexible support for multi-instance mapping described in Chapter

3 is a feature not present in other mapping systems. It will enable new types of control
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interfaces and synthesis systems to be interconnected with the existing ecosystem of devices

and services.

6.1.1 Impact of libmapper

As a testament to the usability of this work by a larger community, the concepts and

software being produced are already being used in a variety of large and smaller projects,

spanning laboratory work, department-wide and inter-university collaborations (the McGill

Digital Orchestra, Sense/Stage, E[MERGE], and Gestes Projects), many on-stage perfor-

mances (e.g., with the T-Stick digital musical instrument (see chapter 4), and use by

external companies and institutions including Moment Factory, Concordia University, the

University of Lethbridge and Janro Imaging Lab.

Although not explicitly presented here, support of the mapping tools also includes the

creation and maintenance of library documentation, mailing lists for developers, and a

website1 with background information, tutorials, and links for downloading the software.

6.1.2 DMI Case-Studies

The relative success of the new DMIs presented in Part II indicates that our design decisions

have merit. For the T-Stick, these included prioritizing robustness of the instrument above

all other concerns, as well as hiding the sensors from view to discourage perception of the

instrument as a collection of disparate sensors and encourage integral, holistic interaction

with the instrument.

The development of the Spine instrument yielded several contributions: an approach

to instrument construction that is lightweight, affordable, attractive, flexible and yet very

strong; a novel approach to sensing the shape of a deformable object using inexpensive

inertial and magnetic sensors; open-source firmware for estimating orientation by combining

the IMU sensor signal; and software tools for manipulating quaternions in Max/MSP/Jitter.

Since both the T-Stick and the prostheses are intended for performance of music, we

must also claim as related results the compositions and performances using the instruments.

1http://libmapper.org
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6.2 Future Work

The software library and surrounding tools are completely functional, and are actively

used for mapping and performance, however the project is by no means over and we have

very ambitious goals for features and language compatibilities. Our detailed development

roadmap includes a number of planned improvements and new features, some of our top

priorities are:

Improved installers, integration with package managers – in order to support non-

technical users, it is especially important that our tools are easy to install and run.

We plan to submit packages to popular package management utilities for various op-

erating systems, and for programming environments that include their own library

management tools (e.g. Processing, Max/MSP).

Alternate connection transport – network-based tools for musical performance typi-

cally use UDP for networking since they prioritize low latency messaging over guar-

anteed delivery. For certain mapping scenarios, some connections might be better

transported over TCP or another protocol - we are implementing a choice of proto-

cols as a configurable connection property.

More flexible vector support – currently mapping of signals with vector datatypes is

not well supported, since our expression syntax engine does not support specification

of vector indexes. One of our top priorities is a revision to add this support.

Embedded devices – another avenue we are actively exploring is running our tools on

microprocessors embedded in the instrument hardware instead of using dedicated

driver software. We are working with adaptations of the Firmata protocol/firmware2

for the Arduino micro-controller platform3 as well as implementations for more pow-

erful embedded computers.

We also plan future improvements to the DMIs discussed in this dissertation. As stated

in chapter 4, we have been working towards a fourth version of the T-Stick hardware,

making improvements to the resolution of touch sensing. This version is also planned

2http://firmata.org/wiki/Main_Page
3http://www.arduino.cc/
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to include a wireless transceiver and run an embedded version of libmapper rather than

requiring a separate driver running on a PC. A similar solution may be adapted for the

Spine instruments discussed in chapter 5, along with a planned increase in the number

of IMUs used for sensing orientation and shape. In planning the instrument design, we

anticipated the near-future availability of affordable, IC-scale IMUs designed for use in the

mobile-phone industry. Unfortunately the sensors did not become available before the final

instruments were constructed for the performances of Les Gestes, restricting our solution to

more expensive, power-hungry versions, but the new sensors will be integrated into future

versions of the Spine instrument.
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Part IV

Appendices
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Appendix A

The T-Stick DMI: Public

Appearances

Date Type Event Location

2006/04 concert seminar concert Montreal, Canada

2006/11 recital Fernando Rocha lecture recital Montreal, Canada

2007/06 presentation New Interfaces for Musical Ex-

pression

New York, USA

2007/09 demonstrations Wired Nexfest Los Angeles, USA

2008/02 demonstrations Innovaction Udine, Italy

2008/03 concert MusiMars Festival Montreal, Canada

2008/04 concert Music+Technology Incubator Montreal, Canada

2008/07 concert, workshop Sound Symposium St. John’s, Canada

2008/09 concert Le Vivier relaunch Montreal, Canada

2008/10 concerts Duo pour un violoncelle et un

danseur

Montreal, Canada

2009/02 competition Guthman competition Atlanta, USA

2009/07 workshop SMC Summer School, used T-

Stick to control robotic gamelan

Porto, Portugal

2009/08 concert International Computer Music

Conference

Montreal, Canada
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2009/10 workshop Society for music theory, work-

shop on listening through time

Montreal, Canada

2009/12 concert live@CIRMMT Montreal, Canada

2010/04 concert CHI conference Atlanta, USA

2010/04 concert Viagem (5 T-Sticks played by

blind performers)

Porto, Portugal

2010/07 launch of 2010 T-Stick Composi-

tion Workshops

Montreal, Canada

2010/08 talk, performance Expansive Spirits, Toronto Elec-

troacoustic Symposium

Toronto, Canada

2010/12 talk Electronic Music Foundation New York

2011/02 concert Ghost in the Machine conference Montreal, Canada

2011/03 concert Concerto for T-Stick and two lap-

top orchestras, Concordia Laptop

Orchestra and McMaster Cyber-

netic Orchestra

Montreal, Canada

2011/04 concert Open Ears festival Kitchener, Canada

2011/05 concert Issue project room New York, USA

2011/05 concert New Interfaces for Musical Ex-

pression

Oslo, Norway

2011/06 concerts Universidade Federal de Minas

Gerais

Belo Horizonte, Brazil

2011/06 concert Sforzando Late Night Concert,

Electroacoustic Music Studies

Network

New York, USA

2011/11 concert Sea of Sound festival Edmonton, Canada

2012/03 concert Experimental music from Brazil

and beyond

Lethbridge, Canada

2012/06 concert Concierto: Andrew Stewart y En-

samble 3

Mexico

2012/09 concert Moving Sound, Electroacoustic

works by D. Andrew Stewart (t-

stick) and Rolf Boon

Lethbridge, Canada



A The T-Stick DMI: Public Appearances 144

2012/11 concert 24 Frames, Improvisation with

Tim Brady (electric guitar) dur-

ing Brady’s cross-Canada tour

Lethbridge, Canada

2013/03 concert From Up There and Down, New

Works Calgary

Calgary, Canada

2013/05 concert New Interfaces for Musical Ex-

pression

Daejeon, Korea Re-

public

2013/09 concert Percussive Arts Society Interna-

tional Convention

Indianapolis, USA
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Appendix B

The Digital Orchestra Toolbox for

MaxMSP

The Digital Orchestra Toolbox is a collection of Max/MSP abstractions — modular func-

tions instantiable as objects — that we have found useful in creating gesture processing

patches for digital musical instruments. The toolbox currently contains more than 100

abstractions, contributed by Joseph Malloch, Stephen Sinclair, and Marlon Schumacher.

Each patch is accompanied by a help patch to demonstrate its use.

Collision Detection

dot.alloc Using a shared bus, deliberate to allocate a unique

identifier.

dot.alloc2 Using a shared bus, deliberate to allocate a unique

identifier. Peer with root index suggests identifiers

to newcomers.

Control

dot.for Outputs a sequence of incremented numbers when

banged.

dot.line Wrapper for the line object so it accepts trajectory

lists like line∼.

dot.probgate A probabilistic gate with remote control.
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dot.repeat Repeats a message a specified number of times.

dot.route∼ Separates signals from max-messages.

dot.swap Like the swap object, but for symbols and lists too!

Data

dot.atoi Convert a symbol that starts with a decimal number

to an integer.

dot.bytetobits Converts a single decimal byte into 8 binary bits.

dot.bitstobyte Converts 8 bits into a single decimal byte.

dot.filein Adds dump command to the filein object.

dot.getindex Retrieves indexes of coll data entries that match the

query.

dot.index Generates the lowest unused index (for coll storage).

Argument sets maximum index.

dot.playabsolute Play files recorded by dot.recordabsolute.

dot.properties regexp wrapper for parsing tagged message proper-

ties expressed in the form @¡label¿ ¡data¿. Second

outlet outputs number of backreferences.

dot.recordabsolute Record an arbitrary number of datastreams with ab-

solute timestamping.

dot.reg Like zl reg but right outlet bangs when empty.

dot.sparkline Draws a sparkline from a list or stream onto an lcd

object.

dot.typecheck Route input according to data type.

dot.urn Generate random numbers without duplicates (like

urn), but you can put numbers back in the pot.

dot.xmlread A native-Max XML parser - no externals!

dot.xmlwrite A native-Max XML parser - no externals!

Filters

dot.asyncdemod∼ Asynchrouous demodulation of baseband signal

from an AM-carrier.
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dot.attackslope Given two thresholds, determine the slope between

the points at which they are crossed in the positive

direction. (i.e., attack speed)

dot.autoscale Rescales signals according to auto-detected maxi-

mum and minimum values.

dot.autoscale∼ Automatically scale incoming signal to a defined

output-range.

dot.boundary Mutes, clamps, wraps, or folds a stream of numbers

at a predefined minimum and/or maximum value.

dot.cartopol3 Converts 3D Cartesian coordinates to polar repre-

sentation.

dot.centre Automatically offsets input to re-centre signal

around zero, with user-definable delay, ramp time,

and time grain.

dot.change Just like the change object, but works for symbols

and lists.

dot.clip Clips a stream of numbers to a minimum, maximum,

or both.

dot.dampedenvelope Audio-rate envelope-generator with damping.

dot.distance Finds maximum or minimum distance between a

scalar and a list.

dot.dynamicexpression User-definable expr-based scaling with autoscale.

dot.extrema Outputs values of local maxima and minima.

dot.fraction Looks at divisions of a list and outputs the high-

est value corresponding to nodes at 2 3 4 5

and 6 part divisions. Intended for use with

dot.harmonicfilter.

dot.fromsignal∼ Samples a signal triggered by change.

dot.harmonicfilter For damping gains in modal synthesis based on a

harmonic series. Handles “string divisio” at 0.5, 0.3,

0.25, 0.2, 0.167

dot.history Outputs list of delayed samples: x[n], x[n-1], . . . ,

x[n-m].
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dot.hz↔samp∼ Converts between frequency in Hz (cycles/second)

and samples/cycle.

dot.interpolate4∼ A sort of spectral interpolation of 4 signals via mag-

nitude and phase vector.

dot.jab Detect “jabbing” gestures in acceleration data.

dot.leakyintegrator An accumulator with a hole in it. The leakiness is

highly customizable.

dot.leakyintegrator2 Integrator with a leak — handles floating-point

numbers, signed values, leak expressions.

dot.mass-spring Implements a simple mass-spring-damper model.

dot.median Outputs median value of a user-definable sample

size.

dot.mix4∼ mixes four signals via XY-coordinates.

dot.normalize Normalizes a list of ints or floats, or a windowed

stream.

dot.polar Converts x/y into amplitude and angle. Change in

angle with wrap-around correction is also calculated.

dot.poltocar3 Converts 3D polar coordinates to Cartesian repre-

sentation.

dot.rad→norm∼ Scales 2pi-radians to normalized range (0-1) with

optional wraparound.

dot.region Outputs and centre of multiple selected areas of a

list (binary).

dot.scale∼ MSP version of Max’s scale-object (with ’proper’ ex-

ponent).

dot.schmitt A trigger with hysteresis.

dot.schmitt∼ Detect triggers from envelope of a signal.

dot.signaccum Accumulates positive vs. negative same-sign deltas.

dot.slope Output the slope between each successive point.

dot.smooth Simple sample-averaging filter.

dot.split Right outlet if greater then threshold, left outlet oth-

erwise.

dot.thresh A little hack to allow thresh to work with symbols.
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dot.threshtrig Output a value only once after passing the threshold

in the positive or negative directions.

dot.timedextrema Outputs the minimum and maximum value received

with the last n milliseconds.

dot.timedsmooth Downsampled audio-rate averaging filter.

dot.timedsmooth2 Time-windowed averaging filter in which each input

sample has the same weight.

dot.transfer Table-based waveshaping with customizable transfer

function.

dot.unwrap Assumes input is polar and lies between arg1 and

arg2. Output is the shortest polar distance from the

last sample.

dot.vscale Just like the scale object, but for vectors. Includes

clipping-feature.

dot.windowedextrema Outputs the minimum and maximum value received

with the last n samples. Also outputs the order of

the extrema in the window.

dot.wrap Simple offset with wrap-around.

List Processing

dot.listinterpolate Interpolates/extrapolates between two lists of equal

length.

dot.listinterpolate4 The same for four lists.

dot.listpipe Delays a stream of input like pipe, but also works

for lists.

dot.matchNth Outputs message if the nth item matches the argu-

ment.

dot.matcNth Outputs message if the nth item address pattern

matches the argument.

dot.nth Works like zl nth, but can match multiple indexes.

MIDI
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dot.combinote Combines 8 input signals into a single value such

that any given combination will be a unique number.

dot.MIDIout Helper for quickly configuring MIDI output.

dot.MIDIpedal∼ Detect triggers from a MIDI-pedal through an

audio-input.

OSC

dot.appendaddr Append text to the end of the first item of a list.

dot.OSCalias Shortens long OSC addresses by giving them aliases.

dot.OSCcompress Simply removes spaces in OSC address strings.

dot.OSCexpand Simply expands OSC address strings so that the

route object can parse them.

dot.OSCroute Native-max OSC parser allowing multiple OSC ad-

dresses to be dynamically added and removed. Ar-

guments or right inlet set addresses to route. Left

outlet outputs matches with index corresponding to

argument order.

dot.OSCunalias Restores OSC addresses that have been aliased using

dot.OSCalias.

dot.prependaddr Prepend text to the beginning of the first item of a

list.

Quaternions

dot.jit.quaternion.conjugate Calculate the conjugate of a quaternion stored in the

planes of a jitter matrix.

dot.jit.quaternion.inverse Calculate the inverse of a quaternion stored in the

planes of a jitter matrix.

dot.jit.quaternion.multiply Multiply two quaternions stored in the planes of a

jitter matrix.

dot.quaternion.conjugate Calculate the conjugate of a quaternion.

dot.quaternion.inverse Calculate the inverse of a quaternion.
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dot.quaternion.multiply Multiply two quaternions.

dot.quaternion.normalize Normalize a quaternions.

dot.quaternion.SLERP Performs Spherical Linear Interpolation between

two quaternions.

dot.quaternion2axis Convert quaternion to axis/angle representation.

Sensors

dot.fqa Factored Quaternion Algorithm for calculating ori-

entation from magnetometer and accelerometer

data.

dot.orient Calculates absolute orientation from gravity and

magnetic field vectors.

dot.wmp Process the data from aWii Motion Plus and remove

gyro bias.

Serial

dot.doubleSLIPdecode Parses double-ended SLIP-encoded data with user-

defined start, end, and escape characters.

dot.doubleSLIPencode Encodes data using double-ended slip-coding with

user-defined start, end, and escape characters.

dot.serial An abstraction containing the serial object, with

menu generation and built-in polling and repeated-

reading functionality.

dot.SLIPdecode Parses slip-encoded data with user-defined delimiter

and escape character.

dot.SLIPencode Encodes data using slip-coding with user-defined de-

limiter and escape character.

Statistics

dot.aggregate Calculates aggregate of a list or a windowed stream.
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dot.covariance Calculates covariance of two windowed streams of

numbers.

dot.ema Calculates the Exponential Moving Average of a

stream of numbers.

dot.emd Calculates the Exponential Moving Deviation of a

stream of numbers.

dot.exemplarcovariance Calculates covariance of a windowed stream of num-

bers and an example.

dot.phase→freq∼ Instantaneous frequency estimation from phase

deltas.

dot.sintrack∼ Track magnitude, instantaneous phase, and instan-

taneous frequency of a sinusoid.

dot.std Calculates the Standard Deviation of a windowed

stream of numbers.

Timing

dot.channelthresh Combines ID-tagged channels into lists using a delay

threshold. Like thresh, but keeps channel informa-

tion.

dot.debounce Filters multiple messages.

dot.randometro Like the metro object but outputs randomly within

a range.

dot.squeuedlim Limits the speed of messages passing through like

speedlim, but queued like zl queue.

dot.wait bangs when values are over-threshold for wait time.

XBee

dot.decodeXBeeAPI Communicate withan XBee radio in “API mode”

dot.encodeXBeeAPI Communicate withan XBee radio in “API mode”
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