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ABSTRACT

Audio streaming is often pictured as a networking applica-
tion that is not concerned with packet loss or data integrity,
but is otherwise very latency-sensitive. However, some
usage scenarios may be identified, such as remote record-
ing, that shift concerns towards more conservative views
regarding stream integrity. Although many streaming ap-
plications today use the UDP protocol, there are some al-
ternative transport layer protocols that are worth investi-
gating, especially in applications other than Voice-over-IP
(VoIP) or live distributed performance. This paper com-
pares audio streaming in local-area computer networks
over four different transport protocols on the TCP/IP stack:
TCP, UDP, STCP and DCCP. Each of these protocols and
their features will be discussed, first from a theoretical
point-of-view, and then through experimental results.

1. INTRODUCTION

With the growth of computer networks and their specific
uses in networked audio and music, the desire for shar-
ing realtime audio has inspired research by both musicians
and network engineers.

To measure the performance of realtime network stream-
ing systems, some parameters, such as bandwidth, latency,
jitter and packet loss, can be used.

Latency corresponds to how long a message takes to
travel from one end of a network path to the other [12],
and in the case of audio streaming, latency is perceived
as delay. Jitter is defined as variation in latency over time
and it is calculated as the standard deviation of latency
measurements. Packet loss is the percentage of packets
lost in transmission, received corrupted or received out of
order and therefore rejected.

A point raised frequently in the computer networking
literature ([5], [19]) is that multimedia streaming requires
high bandwidth and low latency. It is also a common view
in the same literature that data loss is not a crucial im-
pairment to audio streaming, because lost packets might
only result in small glitches in the resulting audio/video
streams, without compromising intelligibility.

Different audio application scenarios may not agree
with the aforementioned views, and according to specific
requirements they may allow the trade-off between latency
and packet loss to tilt to one side or the other. For instance,

in a distributed music rehearsal one would not worry so
much about packet loss but would with latency, whereas in
a distributed musical recording there should be no packet
loss, but high latency values might be overlooked [14].

From a low-level networking point of view, latency
and packet loss are features directly related to the proto-
col implementation and to the concept of protocol relia-
bility. Thus, a reliable network protocol uses techniques
to achieve reliability that would normally increase the de-
livery time of a network packet, resulting in increased
latency. Since an unreliable protocol like UDP is usu-
ally faster than a reliable protocol, UDP is suggested by
many computer networking textbooks as the best protocol
choice for audio streaming. In fact we do see the use of
the UDP protocol in many existing realtime audio stream-
ing applications, such as NetJack [3], SoundJack [4] and
JackTrip [2].

As we examine different usage scenarios, like rehearsal
and recording, we are invited to review the way audio is
distributed over computer networks and to consider other
transport protocols besides UDP [13]. TCP [10], for in-
stance, is a reliable protocol and its use should have less
packet loss rates as compared to UDP. Other protocols that
will be investigated in this paper are SCTP [9], which is
reliable and has been used in VoIP, and DCCP [6], which
is an unreliable protocol with congestion control.

In this paper we explored certain aspects of network
communication to support the development of Medusa [15],
a distributed audio environment.

In this paper we have considered the specific case of
audio streaming within local computer networks, as a first
testbed for future discussion of audio streaming over wide-
area networks. The remainder of this paper is organized
as follows: Section 2 presents the network architecture
and the four transport layer protocols we studied, Sec-
tion 3 presents the implementation of a tool for multi-
channel audio streaming using these protocols, and Sec-
tion 4 presents the experimental setup and numerical re-
sults. Conclusions and future steps are presented in Sec-
tion 5.

2. BACKGROUND

This section presents some features about the TCP/IP pro-
tocol stack, the IP protocol and the four transport proto-
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cols that are considered in this research: TCP, UDP, SCTP
and DCCP.

2.1. TCP/IP protocol stack

The TCP/IP protocol suite is divided into five layers for
division of labor and ease of new alternative layer imple-
mentations [11]. The layers of the TCP/IP protocol are
presented in Figure 1

Figure 1. The layers of the TCP/IP protocol stack [8]

Modern operating systems have a separation between
user processes and operating system processes. Applica-
tion layer protocols are run as user processes, while trans-
port layer protocols and layers below (network and link
layer protocols) are normally provided as part of the op-
erating system kernel [18]. This means that new appli-
cation protocols can be created and implemented by any-
one, while a transport protocol should be provided by the
operating system, and its deployment requires superuser
privileges.

This paper will investigate the use of four different
transport layer protocols of the TCP/IP stack as possible
alternatives for networked audio streaming.

Although many books suggest also the RTP protocol
for sending multimedia streams, it should be noted that
RTP is actually not a transport layer protocol but an ap-
plication layer protocol, created as an addendum to UDP,
with a timestamp and sequence number added to each
UDP datagram. RTP always appears together with RTCP
(Real Time Control Protocol) [20], a control protocol used
for providing reliability to RTP. Another application layer
protocol used for streaming audio media is RTSP (Real
Time Stream Protocol) [16]. RTSP was designed for stream-
ing and also features commands like START and PAUSE.
Since our research is focused in transport protocols, ap-
plications protocols like RTP, RTCP and RTSP will not be
covered in this paper.

The IP protocol will be presented first, and then the
UDP, TCP, SCTP and DCCP transport protocols will fol-
low.

2.2. Internet Protocol (IP)

IP is the network layer protocol in the TCP/IP protocol
suite [17] that is used to carry almost all user data in TCP/IP
networks. IP packets are called datagrams, and user data
is sent as a packet with an IP header. The normal size of
an IP header is 20 bytes, unless other options are present,
as shown in Fig. 2. With extra options and IPV6 informa-
tion, the maximum size of an IP header is 60 bytes [11].

Besides encapsulating data to be sent over the net-
work, IP has two important features: MTU measurement

Figure 2. Format of an IP datagram header [17]

and TTL management.
MTU is the Maximum Transmission Unit of the Link

layer, and represents the upper limit on the size of data
packets that can be sent. Since IP is implemented inde-
pendently of the Link layer, the MTU can be of any size; if
an IP datagram is larger than MTU, it will be broken into
fragments smaller than MTU [17], increasing the trans-
mission overhead, since each fragment requires a new IP
header. Meanwhile, the ethernet payload size, adopted as
a standard packet length, is defined as 1500 bytes, and
thus defines the upper bound on any packet size [19].

TTL (Time to Live) is the life time of a network packet,
which is used to avoid packets left wandering around in-
definitely. Although the name suggest a timestamp, this
unit refers to the number of hops that a packet can reach
between the packet sender and the receiver. Every hop
that a packet reaches should decrease its TTL and then
forward it. If a datagram’s time to live is zero, devices on
the packet path can ignore it and simply remove it from
the sending queue. Thus TTL management is directly
linked to packet loss, because a network device can dis-
card a packet if TTL reaches zero.

2.3. User Datagram Protocol (UDP)

UDP is the most simple transport protocol that runs over
IP. Like an IP packet, a UDP message is also called a
datagram, and each datagram is handled independently of
all others. The UDP protocol merely encapsulates appli-
cation data with its 8-byte header [17], shown in Fig. 3.
Thus, UDP is a lightweight transport protocol with a min-
imalist service model, that basically demultiplexes mes-
sages to the application layer [8, 12].

Figure 3. Format of an UDP datagram [17]

Just as with normal IP packets, UDP datagrams can
be lost, duplicated or arrive out of order, which is why
UDP is referred to as an unreliable transport protocol. The
only guarantee that a UDP datagram has is its checksum;

through it a datagram’s contents can be checked for con-
sistency. However, UDP does not specify what will be
done if a checksum does not match a datagram’s contents;
this protocol does not entail package retransmission. For
this reason, applications that use UDP must be prepared
to deal with error recovery, packet loss, packet reordering,
flow control, congestion control and so on [5, 11].

At the application level, each transmission request is-
sued by a process produces exactly one UDP datagram,
which causes one or more IP packets to be sent, depend-
ing on the network physical MTU. Theoretically, the max-
imum size of a UDP datagram is 65535 bytes, including
data and headers [17].

Finally, UDP has no acknowledgement messages, nei-
ther initial or final handshaking messages. There is no
way to know if a packet was correctly sent or if a client is
still connected to a server [8].

2.4. Transmission Control Protocol (TCP)

TCP is the classical reliable transport protocol from the
TCP/IP suite. Since TCP is a byte-stream protocol, TCP
messages are called “segments” of the data stream. Each
segment is packaged with a 20-byte TCP header as de-
picted in Fig. 4.

Figure 4. Format of a TCP segment [17]

TCP provides a connection-oriented, reliable byte-stream
service [17] consisting of the following:

1. MSS: The largest chunk of data that TCP is allowed
to send is called Maximum Segment Size (MSS).
When a connection is established, each side can in-
form its MSS [17], in order to prevent overflows.

2. ACK: When TCP receives a segment it sends an ac-
knowledgement packet (ACK), to inform the sender
that this segment was correctly received.

3. ACK timeout: TCP maintains a timer for each seg-
ment sent, waiting for the other end to acknowledge
reception. If an ACK is not received in due time the
segment is retransmitted.

4. Checksum: Similarly to UDP, TCP has a check-
sum header field to check a message for consis-
tency. TCP will discard a segment with an invalid
checksum, and will not ACK receiving it; it expects

the sender to retransmit it when the ACK timeout
expires.

5. Buffer: Independently of MSS, a TCP segment must
fit in the IP payload [19]. Since IP packets may ar-
rive out-of-order, a TCP receiver has to sort data
when necessary. Packet sorting and duplicate re-
moving are done by the transport layer and every
data received by the application layer is guaranteed
to be in order and not duplicated.

6. Flow control: Since each end of a TCP connection
has a finite buffer space, a TCP receiver informs the
sender how much buffer space it has to receive data,
preventing overrunning its capacity.

7. Congestion control: While flow control is an end-
to-end agreement, congestion control cares about
link capacity. This control will prevent TCP to in-
ject more data than the link or switches can hold [12].

A TCP connection is always point-to-point, mainly
due to the nature of its reliability mechanisms. Multicas-
ting communication, with one sender that sends data to
many receivers, is not possible in TCP [8].

2.5. Stream Control Transmission Protocol (SCTP)

SCTP is a connection-oriented transport protocol that pro-
vides a reliable full-duplex association [18]. This proto-
col was originally developed to transport voice over IP
(VoIP). An SCTP packet contains a fixed 12-byte header,
and is divided into chunks, as depicted in Fig. 5. Each
chunk is preceded by a 4-byte header containing its type,
a set of flags and the chunk length [18].

Figure 5. Format of an SCTP packet [9]

Reliability of SCTP is provided through the following
features:

1. Multihoming: Instead of regular point-to-point
connections, SCTP provides general associations be-
tween clients and servers. This feature provides
increased robustness against network failure, since
an endpoint may have multiple redundant network
connections. SCTP can use a workaround in case
of a faulty path across the Internet, by switching to
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cols that are considered in this research: TCP, UDP, SCTP
and DCCP.
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The TCP/IP protocol suite is divided into five layers for
division of labor and ease of new alternative layer imple-
mentations [11]. The layers of the TCP/IP protocol are
presented in Figure 1

Figure 1. The layers of the TCP/IP protocol stack [8]
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card a packet if TTL reaches zero.
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UDP is the most simple transport protocol that runs over
IP. Like an IP packet, a UDP message is also called a
datagram, and each datagram is handled independently of
all others. The UDP protocol merely encapsulates appli-
cation data with its 8-byte header [17], shown in Fig. 3.
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imalist service model, that basically demultiplexes mes-
sages to the application layer [8, 12].
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Just as with normal IP packets, UDP datagrams can
be lost, duplicated or arrive out of order, which is why
UDP is referred to as an unreliable transport protocol. The
only guarantee that a UDP datagram has is its checksum;

through it a datagram’s contents can be checked for con-
sistency. However, UDP does not specify what will be
done if a checksum does not match a datagram’s contents;
this protocol does not entail package retransmission. For
this reason, applications that use UDP must be prepared
to deal with error recovery, packet loss, packet reordering,
flow control, congestion control and so on [5, 11].

At the application level, each transmission request is-
sued by a process produces exactly one UDP datagram,
which causes one or more IP packets to be sent, depend-
ing on the network physical MTU. Theoretically, the max-
imum size of a UDP datagram is 65535 bytes, including
data and headers [17].

Finally, UDP has no acknowledgement messages, nei-
ther initial or final handshaking messages. There is no
way to know if a packet was correctly sent or if a client is
still connected to a server [8].

2.4. Transmission Control Protocol (TCP)

TCP is the classical reliable transport protocol from the
TCP/IP suite. Since TCP is a byte-stream protocol, TCP
messages are called “segments” of the data stream. Each
segment is packaged with a 20-byte TCP header as de-
picted in Fig. 4.

Figure 4. Format of a TCP segment [17]

TCP provides a connection-oriented, reliable byte-stream
service [17] consisting of the following:

1. MSS: The largest chunk of data that TCP is allowed
to send is called Maximum Segment Size (MSS).
When a connection is established, each side can in-
form its MSS [17], in order to prevent overflows.

2. ACK: When TCP receives a segment it sends an ac-
knowledgement packet (ACK), to inform the sender
that this segment was correctly received.

3. ACK timeout: TCP maintains a timer for each seg-
ment sent, waiting for the other end to acknowledge
reception. If an ACK is not received in due time the
segment is retransmitted.

4. Checksum: Similarly to UDP, TCP has a check-
sum header field to check a message for consis-
tency. TCP will discard a segment with an invalid
checksum, and will not ACK receiving it; it expects

the sender to retransmit it when the ACK timeout
expires.

5. Buffer: Independently of MSS, a TCP segment must
fit in the IP payload [19]. Since IP packets may ar-
rive out-of-order, a TCP receiver has to sort data
when necessary. Packet sorting and duplicate re-
moving are done by the transport layer and every
data received by the application layer is guaranteed
to be in order and not duplicated.

6. Flow control: Since each end of a TCP connection
has a finite buffer space, a TCP receiver informs the
sender how much buffer space it has to receive data,
preventing overrunning its capacity.

7. Congestion control: While flow control is an end-
to-end agreement, congestion control cares about
link capacity. This control will prevent TCP to in-
ject more data than the link or switches can hold [12].

A TCP connection is always point-to-point, mainly
due to the nature of its reliability mechanisms. Multicas-
ting communication, with one sender that sends data to
many receivers, is not possible in TCP [8].

2.5. Stream Control Transmission Protocol (SCTP)

SCTP is a connection-oriented transport protocol that pro-
vides a reliable full-duplex association [18]. This proto-
col was originally developed to transport voice over IP
(VoIP). An SCTP packet contains a fixed 12-byte header,
and is divided into chunks, as depicted in Fig. 5. Each
chunk is preceded by a 4-byte header containing its type,
a set of flags and the chunk length [18].

Figure 5. Format of an SCTP packet [9]

Reliability of SCTP is provided through the following
features:

1. Multihoming: Instead of regular point-to-point
connections, SCTP provides general associations be-
tween clients and servers. This feature provides
increased robustness against network failure, since
an endpoint may have multiple redundant network
connections. SCTP can use a workaround in case
of a faulty path across the Internet, by switching to
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another address defined in the same SCTP associa-
tion [18].

2. Multiple streams: SCTP can provide multiple
streams between connected endpoints, each with its
own reliably sequenced messages. If one message
is lost in one of the streams, SCTP does not block
messages in any of the other streams [18].

3. Transport-layer fragmentation: SCTP keeps track
of a fragmentation point based on the smallest MTU
in the path to all peer addresses, and this smallest
MTU size is used to split large user messages into
smaller pieces that can be sent using a single IP
packet [18]. Like TCP and unlike UDP, this frag-
mentation occurs at the transport-layer instead of
the IP layer.

4. Fast retransmission: SCTP, like TCP, uses ACK
to allow detection of packet losses. But instead of
a normal ACK, it uses selective acknowledgement
(SACK) and a mechanism that sends SACK mes-
sages faster than usual when losses are detected [11].

5. Non-blocking head of the line: Unlike TCP, which
is stream-based, SCTP is message-oriented or message-
based like UDP. This allows SCTP to distinguish
signaling messages at the transport layer, which are
delivered to the application layer as soon as they ar-
rive [11].

SCTP, like TCP, also provides reliability, sequenc-
ing, flow control, congestion control, and full-duplex
data transfer, through message chunk building, check-
summing, packet validation and path management [18].

There are two types of SCTP socket implementations:
one-to-one sockets and one-to-many sockets.

2.6. Datagram Congestion Control Protocol (DCCP)

DCCP is a transport protocol that combines TCP-friendly
congestion control with unreliable datagram semantics,
for applications that transfer fairly large amounts of data [6].
It uses a lightweight 12-byte header, as shown in Fig. 6,
to avoid network overhead [1].

Figure 6. Format of a DCCP packet [6]

This protocol was developed for delay-sensitive appli-
cations that favor timeliness over reliability [7]. DCCP
may use ACK messages, and does not interpret checksum
errors as network congestion problems. Since DCCP does
not use retransmissions, TCP-like fast-recovery mecha-
nisms are not available. Unlike UDP, DCCP will avoid

congestion collapse. It aims to add to UDP a minimum
mechanism to support congestion control, such as reliable
transmission of ACK information [7].

DCCP, like TCP, provides a single bidirectional uni-
cast connection: both data and acknowledgements flow in
both directions. At the startup of the connection the end-
points must agree on a set of parameters, such as which
congestion control mechanism will be used [7].

2.7. Comparison Draft

To show the main differences between these protocols, a
draft table is provided below.

Table 1. Feature draft table
Feature UDP TCP SCTP DCCP
Message oriented X X X
Connection oriented X X X
Full duplex X X X X
Reliable data transfer X X
Ordered data delivery X X
Unordered data delivery X X X
Flow control X X
Congestion control X X X
Multicasting X
Broadcasting X
Path MTU discover X X
Fragmentation X X
Checksum X X X X

3. IMPLEMENTATION

For the purpose of this protocol comparison, a front-end
for multichannel audio communication was implemented
using the Jack audio Server and the Linux socket API. De-
spite all these protocols being able to support full duplex
communication, the implementation distinguishes the roles
of sender and receiver.

The sender takes audio from the Jack server, resam-
ples it to the desired representation, packs it and puts the
resulting packet into a ring buffer to be sent by another
thread. This data will be fragmented into blocks of 1024
bytes before sending to the network. Because of this im-
plementation, some fragmentation can happen in the mid-
dle of a packet. Thus, the receiver must identify the begin-
ning of a packet, and then separate header and data. The
header is logged for measurement and the data is then re-
sampled and put into a ring buffer to be consumed by the
Audio API.

To measure the performance in the following tests, we
created a packet header as depicted in Fig. 4.

This packet header is used to calculate packet loss (us-
ing the seq number), the latency (using the timestamp) and
the amount of data transmitted (using the data size). The
key is used by the receiver to identify the beginning of a
package.

To perform tests over the network, we also developed
a loopback application that uses the same network imple-

Figure 7. Medusa Application Protocol

mentation of sender and receiver. The loopback applica-
tion does not have an Audio API and does not open the
packets, but only receives a packet from the sender and
sends it back to the receiver, as presented in Fig.8.

Figure 8. RTT latency calculation with a loopback.

Since the sender and receiver are in the same machine,
the packet timestamp can be used to calculate latency per
packet. The latency was logged to a text file for poste-
rior jitter calculation. Because of this configuration, all
measurements results are round-trip time.

Some socket flags option were used in this implemen-
tation. In all cases, SO SNDTIMEO was configured to
40ms and SO PRIORITY to a value 6 (max value without
root privileges). The former controls the maximum time-
out for sending packets before an error is reported, while
the latter controls the priority ordering of outgoing pack-
ets in the send queue. The protocols TCP and SCTP also
used a NODELAY flag to disable the Nagle algorithm1.

4. NETWORK PERFORMANCE
MEASUREMENT ENVIRONMENT

For the performance test we used an HP Notebook Pavil-
ion DV62 (Computer A) to send and receive data, and an
ASUS netbook Eee PC Seashell Series3 (Computer B) as
the loopback machine, both running Ubuntu 12.04. We
configured these machines for real-time priority by set-
ting kernel parameters rtpio = 99 and nice = -19
in /etc/security/limits.d/audio.conf.

Streaming performance was measured under different
connections, such as localhost, crossover cable, through
a switch, direct wireless connection and wireless connec-
tion with an access point (AP). With the exception of lo-
calhost, in all settings Computer A was sending, receiving
and measuring, and Computer B was merely looping back
the received data. In the localhost scenario both machines
ran sender, loopback and receiver.

In all tests, Jack was configured for a 48 kHz sam-
pling rate and 32-bit sample size, with 512 samples per

1The Nagle algorithm is responsable for grouping together as much
data as it can between ACK packets from the other end of the connection.

2Intel(R) Core(TM)2 Duo CPU T6600 2.20GHz 4GB Mem RAM
3AMD Athlon(tm) II Neo K125 Processor 2GB Mem RAM

block. Internally, the audio was re-sampled to CD quality
(44.1 kHz, 16 bits). It means a fixed bandwidth require-
ment of ∼689 Kbps of data for each transmitted channel
and a package with 940 Bytes per processing block per
channel.

We ran all tests for 10000 process blocks per channel
or ∼106.6 seconds.

We implemented separately the two transport options
available in SCTP. We call SCTP 1 the one-to-one imple-
mentation and SCTP 2 the one-to-many implementation.

We calculated latency as the average of all packages
round trip time (1) and jitter as the latency deviation aver-
age (2):

latency(∆t) =
1
n

n

∑
i=1

t(i); (1)

jitter =
1
n

n

∑
i=1

|t(i)−∆t|. (2)

First we will present the raw results, then the data
analysis and then some discussion of the results from our
measurements.

4.1. Performance tests

We made the performance tests in 5 different connections:
localhost, crossover cable, cable switch, direct wi-fi and
wi-fi with an access point.

4.1.1. Localhost

The first test was made using a localhost connection. The
localhost is a virtual interface, presented by the special IP
address 127.0.0.1, used for system management. The pre-
liminary test using localhost presents the system latency
independently of network delay, i.e. the time that the sys-
tem spends to pack the audio data, fragment it, copy the
data to the kernel space, copy it back to user space and
finally unpack the data.

The time to copy data from the audio API and to re-
sample the audio was ignored in this measurement. Alto-
gether, this time can be considered the JACK block pro-
cessing time.

Table 2 presents the localhost measurements. There
was no packet loss with any protocols in this connection.

4.1.2. Crossover

A crossover cable is a special network cable with some
transmission and reception wires inverted to directly con-
nect one computer to another without an intervening de-
vice. This connection is an efficient way to connect two
computers because it does not demand any network de-
vices like hubs, routers or switches.

Table 3 presents the measurements in this connection.
As in localhost connection, no packets were lost in this
configuration.
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another address defined in the same SCTP associa-
tion [18].

2. Multiple streams: SCTP can provide multiple
streams between connected endpoints, each with its
own reliably sequenced messages. If one message
is lost in one of the streams, SCTP does not block
messages in any of the other streams [18].

3. Transport-layer fragmentation: SCTP keeps track
of a fragmentation point based on the smallest MTU
in the path to all peer addresses, and this smallest
MTU size is used to split large user messages into
smaller pieces that can be sent using a single IP
packet [18]. Like TCP and unlike UDP, this frag-
mentation occurs at the transport-layer instead of
the IP layer.

4. Fast retransmission: SCTP, like TCP, uses ACK
to allow detection of packet losses. But instead of
a normal ACK, it uses selective acknowledgement
(SACK) and a mechanism that sends SACK mes-
sages faster than usual when losses are detected [11].

5. Non-blocking head of the line: Unlike TCP, which
is stream-based, SCTP is message-oriented or message-
based like UDP. This allows SCTP to distinguish
signaling messages at the transport layer, which are
delivered to the application layer as soon as they ar-
rive [11].

SCTP, like TCP, also provides reliability, sequenc-
ing, flow control, congestion control, and full-duplex
data transfer, through message chunk building, check-
summing, packet validation and path management [18].

There are two types of SCTP socket implementations:
one-to-one sockets and one-to-many sockets.

2.6. Datagram Congestion Control Protocol (DCCP)

DCCP is a transport protocol that combines TCP-friendly
congestion control with unreliable datagram semantics,
for applications that transfer fairly large amounts of data [6].
It uses a lightweight 12-byte header, as shown in Fig. 6,
to avoid network overhead [1].

Figure 6. Format of a DCCP packet [6]

This protocol was developed for delay-sensitive appli-
cations that favor timeliness over reliability [7]. DCCP
may use ACK messages, and does not interpret checksum
errors as network congestion problems. Since DCCP does
not use retransmissions, TCP-like fast-recovery mecha-
nisms are not available. Unlike UDP, DCCP will avoid

congestion collapse. It aims to add to UDP a minimum
mechanism to support congestion control, such as reliable
transmission of ACK information [7].

DCCP, like TCP, provides a single bidirectional uni-
cast connection: both data and acknowledgements flow in
both directions. At the startup of the connection the end-
points must agree on a set of parameters, such as which
congestion control mechanism will be used [7].

2.7. Comparison Draft

To show the main differences between these protocols, a
draft table is provided below.

Table 1. Feature draft table
Feature UDP TCP SCTP DCCP
Message oriented X X X
Connection oriented X X X
Full duplex X X X X
Reliable data transfer X X
Ordered data delivery X X
Unordered data delivery X X X
Flow control X X
Congestion control X X X
Multicasting X
Broadcasting X
Path MTU discover X X
Fragmentation X X
Checksum X X X X

3. IMPLEMENTATION

For the purpose of this protocol comparison, a front-end
for multichannel audio communication was implemented
using the Jack audio Server and the Linux socket API. De-
spite all these protocols being able to support full duplex
communication, the implementation distinguishes the roles
of sender and receiver.

The sender takes audio from the Jack server, resam-
ples it to the desired representation, packs it and puts the
resulting packet into a ring buffer to be sent by another
thread. This data will be fragmented into blocks of 1024
bytes before sending to the network. Because of this im-
plementation, some fragmentation can happen in the mid-
dle of a packet. Thus, the receiver must identify the begin-
ning of a packet, and then separate header and data. The
header is logged for measurement and the data is then re-
sampled and put into a ring buffer to be consumed by the
Audio API.

To measure the performance in the following tests, we
created a packet header as depicted in Fig. 4.

This packet header is used to calculate packet loss (us-
ing the seq number), the latency (using the timestamp) and
the amount of data transmitted (using the data size). The
key is used by the receiver to identify the beginning of a
package.

To perform tests over the network, we also developed
a loopback application that uses the same network imple-

Figure 7. Medusa Application Protocol

mentation of sender and receiver. The loopback applica-
tion does not have an Audio API and does not open the
packets, but only receives a packet from the sender and
sends it back to the receiver, as presented in Fig.8.

Figure 8. RTT latency calculation with a loopback.

Since the sender and receiver are in the same machine,
the packet timestamp can be used to calculate latency per
packet. The latency was logged to a text file for poste-
rior jitter calculation. Because of this configuration, all
measurements results are round-trip time.

Some socket flags option were used in this implemen-
tation. In all cases, SO SNDTIMEO was configured to
40ms and SO PRIORITY to a value 6 (max value without
root privileges). The former controls the maximum time-
out for sending packets before an error is reported, while
the latter controls the priority ordering of outgoing pack-
ets in the send queue. The protocols TCP and SCTP also
used a NODELAY flag to disable the Nagle algorithm1.

4. NETWORK PERFORMANCE
MEASUREMENT ENVIRONMENT

For the performance test we used an HP Notebook Pavil-
ion DV62 (Computer A) to send and receive data, and an
ASUS netbook Eee PC Seashell Series3 (Computer B) as
the loopback machine, both running Ubuntu 12.04. We
configured these machines for real-time priority by set-
ting kernel parameters rtpio = 99 and nice = -19
in /etc/security/limits.d/audio.conf.

Streaming performance was measured under different
connections, such as localhost, crossover cable, through
a switch, direct wireless connection and wireless connec-
tion with an access point (AP). With the exception of lo-
calhost, in all settings Computer A was sending, receiving
and measuring, and Computer B was merely looping back
the received data. In the localhost scenario both machines
ran sender, loopback and receiver.

In all tests, Jack was configured for a 48 kHz sam-
pling rate and 32-bit sample size, with 512 samples per

1The Nagle algorithm is responsable for grouping together as much
data as it can between ACK packets from the other end of the connection.

2Intel(R) Core(TM)2 Duo CPU T6600 2.20GHz 4GB Mem RAM
3AMD Athlon(tm) II Neo K125 Processor 2GB Mem RAM

block. Internally, the audio was re-sampled to CD quality
(44.1 kHz, 16 bits). It means a fixed bandwidth require-
ment of ∼689 Kbps of data for each transmitted channel
and a package with 940 Bytes per processing block per
channel.

We ran all tests for 10000 process blocks per channel
or ∼106.6 seconds.

We implemented separately the two transport options
available in SCTP. We call SCTP 1 the one-to-one imple-
mentation and SCTP 2 the one-to-many implementation.

We calculated latency as the average of all packages
round trip time (1) and jitter as the latency deviation aver-
age (2):

latency(∆t) =
1
n

n

∑
i=1

t(i); (1)

jitter =
1
n

n

∑
i=1

|t(i)−∆t|. (2)

First we will present the raw results, then the data
analysis and then some discussion of the results from our
measurements.

4.1. Performance tests

We made the performance tests in 5 different connections:
localhost, crossover cable, cable switch, direct wi-fi and
wi-fi with an access point.

4.1.1. Localhost

The first test was made using a localhost connection. The
localhost is a virtual interface, presented by the special IP
address 127.0.0.1, used for system management. The pre-
liminary test using localhost presents the system latency
independently of network delay, i.e. the time that the sys-
tem spends to pack the audio data, fragment it, copy the
data to the kernel space, copy it back to user space and
finally unpack the data.

The time to copy data from the audio API and to re-
sample the audio was ignored in this measurement. Alto-
gether, this time can be considered the JACK block pro-
cessing time.

Table 2 presents the localhost measurements. There
was no packet loss with any protocols in this connection.

4.1.2. Crossover

A crossover cable is a special network cable with some
transmission and reception wires inverted to directly con-
nect one computer to another without an intervening de-
vice. This connection is an efficient way to connect two
computers because it does not demand any network de-
vices like hubs, routers or switches.

Table 3 presents the measurements in this connection.
As in localhost connection, no packets were lost in this
configuration.
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Table 2. Localhost results
1 channel 2 channels

Protocol Latency Jitter Latency Jitter
Computer A

UDP 0.13ms 0.08ms 0.20ms 0.09ms
TCP 0.15ms 0.09ms 0.22ms 0.10ms
DCCP 0.19ms 0.14ms 0.23ms 0.13ms
SCTP 1 0.19ms 0.09ms 0.31ms 0.10ms
SCTP 2 0.21ms 0.09ms 0.35ms 0.13ms

Computer B
UDP 0.30ms 0.19ms 0.50ms 0.20ms
TCP 0.31ms 0.14ms 0.54ms 0.23ms
DCCP 0.31ms 0.14ms 0.53ms 0.17ms
SCTP 1 0.40ms 0.20ms 0.60ms 0.13ms
SCTP 2 0.38ms 0.11ms 0.69ms 0.21ms

Table 3. Crossover connection
1 channel 2 channels

Protocol Latency Jitter Latency Jitter
UDP 0.54ms 0.13ms 0.62ms 0.15ms
TCP 0.58ms 0.14ms 0.69ms 0.15ms
DCCP 0.58ms 0.14ms 0.67ms 0.18ms
SCTP 1 0.65ms 0.17ms 0.77ms 0.20ms
SCTP 2 0.66ms 0.17ms 0.78ms 0.21ms

4.1.3. Cable switch

In this scenario, a router was used to connect the comput-
ers by cable. We used a D-Link DIR-615 switch with stan-
dard CAT.5E network cables. The results for this connec-
tion are presented in Table 4. Again, there was no packet
loss.

Table 4. Switch connection
1 channel 2 channels

Protocol Latency Jitter Latency Jitter
UDP 0.72ms 0.13ms 0.81ms 0.15ms
TCP 0.73ms 0.15ms 0.93ms 0.16ms
DCCP 0.75ms 0.13ms 0.85ms 0.17ms
SCTP 1 0.82ms 0.15ms 0.94ms 0.17ms
SCTP 2 0.82ms 0.14ms 0.98ms 0.20ms

4.1.4. Direct Wireless

For the direct wireless connection, we created an 802.11 G
wireless network (“Wi-Fi”) in computer A and connected
computed B in this network. Thus, the Wi-Fi connection
is direct between the two machines and there is no ac-
cess points to connect them. The 802.11 G standard has
a theoretical maximum transmission rate of 54 Mb/s. The
measurement of direct Wi-Fi connection is presented in
Table 5.

4.1.5. Access Point Wireless

Our last scenario is a domestic Wi-Fi connection. A D-
Link DSL 2640T router was used as the access point to

Table 5. Direct wireless connection
Protocol Latency Jitter Packet loss

1 channel
UDP 16.76ms 27.30ms 17 (0.17%)
TCP 20.12ms 33.41ms 1 (0.01%)
DCCP 3.41ms 1.90ms 0
SCTP 1 21.00ms 34.85ms 0
SCTP 2 20.94ms 35.11ms 0

2 channels
UDP 20.10ms 32.08ms 30 (0.15%)
TCP 31.21ms 51.29ms 1 (0.005%)
DCCP 5.02ms 3.16ms 140 (0.7%)
SCTP 1 27.09ms 44.40ms 0
SCTP 2 26.22ms 42.40ms 0

connect both computers. The result of these measure-
ments is presented in Table 6.

Table 6. Wireless connection with AP
Protocol Latency Jitter Packet loss

1 channel
UDP 14.73ms 17.67ms 137 (1.37%)
TCP 16.76ms 20.52ms 0
DCCP 15.65ms 18.58ms 552 (5.52%)
SCTP 1 26.39ms 35.64ms 0
SCTP 2 26.56ms 37.33ms 0

2 channels
UDP 19.99ms 24.48ms 324 (1.62%)
TCP 19.88ms 22.48ms 31 (0.155%)
DCCP 14.70ms 13.26ms 1413 (7.065%)
SCTP 1 67.49ms 106.79ms 0
SCTP 2 72.06ms 166.49ms 0

4.2. Data analysis

The previous data can be organized in two diagrams to
give a better overview of each protocol performance. Fig. 9
presents the latency and Fig. 10 presents the packet loss
for all protocols using 2 audio channels.
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Figure 9. Latency draft - 2 channels.

Considering each localhost connection as one connec-
tion, in Fig. 9 we can note that the UDP protocol presented
the lowest latency in 4 out of 6 connections. DCCP pre-
sented the lowest latency in Wi-Fi connections. TCP la-
tency varied been the highest latency in direct Wi-Fi and
the second lower using an AP. SCTP, both implementa-

tions, presented the highest latency in 4 out of 5 connec-
tions.

The congestion control mechanism present in DCCP
seems to be more compatible with 802.11 rules and it
led to better performance of this protocol in this scenario.
Since when the transmission channel is occupied DCCP
fails to send a package, the DCCP sender will discard data
instead of retrying forever. This data discard appears as
packet loss in Fig. 10.
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Figure 10. Packet loss draft - 2 channels.

Analyzing packet loss as presented in Fig. 10, we may
observe that SCTP lost no packets in all connections; DCCP,
as presented before, lost more packages in connections
where it was faster. TCP also lost a few packets in Wi-Fi
connections. The TCP packet loss can be understood as a
result of sender timeout flag set for this protocol. In this
case, the send() function returns an error that is discarded
by the sender application.

A summary of the data analysis can be done by di-
viding the protocols into groups: UDP and DCCP being
faster and unreliable, TCP in a middle term and SCTP be-
ing slower but reliable.

Grouping the protocols this way, we have a protocol
evaluation that allows us to choose between faster proto-
cols or reliable protocols, according to the specific appli-
cation scenario considered.

4.3. Discussion

Besides the actual data analysis, the tests made allow some
further discussion related to audio streaming performance
measurements.

A first observation derived from our data regards the
localhost connection, which can be used to calculate sys-
tem latency in a single machine. Since computer B is
less powerful than computer A and its results are inferior,
we may observe that the machine configuration indeed in-
fluences network audio streaming performance. Because
network communication is affected by latency in both nodes,
we might expect that in no scenarios would we obtain bet-
ter latency results than the ones with localhost connection
on computer B.

A second observation regards the results on crossover
connection as compared to cable switch connection. This
comparison indicates the impact of adding other network
devices in the middle of the network. To add other net-
work devices means adding another set of receiving and
sending buffers, and also introducing a new set of packet
routing policies. For the specific equipment used, these

buffers and routing policies increased the latency about
0.16 ms in switch connection compared to a crossover
connection.

Despite the transport protocol choice, our data shows
that the physical layer is also an important factor to be
considered in a network music performance. For all pro-
tocols, the latency with a Wi-Fi connection with an AP is
at least 20 times larger than with a crossover connection,
considering the same transport protocols. This huge per-
formance difference is explained in the physical connec-
tion. While network cables have different pair of wires to
send and receive data, a Wi-Fi connection uses the same
channel for both sending and receiving data. Therefore the
network channel is a shared resource and there are some
race conditions to access it. For this reason, the Wi-Fi pro-
tocol has to have a workaround to avoid system starvation,
which is included in the physical layer protocol (802.11
family). This includes a congestion control mechanism to
avoid channel flooding by one sender, resulting in a better
shared environment.

Since UDP and DCCP have no ACK or packet loss
recovery, these protocols have less communication over-
head. Less communication overhead implies a faster trans-
fer rate but also more packet losses.

5. CONCLUSION

This paper presented a group of transport protocols avail-
able to implement realtime connections for audio trans-
mission in local computer networks. We chose to focus on
these transport protocols because they run in kernel space,
are present in most commonly-used operating systems and
do not need special privileges to be deployed. Because
of our focus on the transmission part of the streaming
problem, this paper did not consider a plethora of post-
processing techniques that would be available at the re-
ceiving end, such as buffering or glitch removal for in-
stance.

We presented each protocol’s features from a theoret-
ical point of view, to assess their performance measure-
ments in different connection conditions using the same
audio networking tool. Measurements were made using
five different connection types: localhost, crossover, switch,
direct wireless and wireless with access point. These con-
nections are commonly-employed means to connect com-
puters in a local network.

The results of these measurements showed that the
protocol choice may emphasize the connection speed or
the stream integrity, according to the application’s needs.
A protocol that makes no confirmation of packet arrival
will be faster and lose more data, whereas a reliable pro-
tocol will try to ensure stream integrity at the cost of in-
creased latency. Thus, we have sorted the investigated
protocols between fastest and most unreliable to slowest
and most reliable, presenting alternatives for different net-
work music scenarios.

Besides, the experiments also endorse the importance
of having different protocol implementations and offering
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Table 2. Localhost results
1 channel 2 channels

Protocol Latency Jitter Latency Jitter
Computer A

UDP 0.13ms 0.08ms 0.20ms 0.09ms
TCP 0.15ms 0.09ms 0.22ms 0.10ms
DCCP 0.19ms 0.14ms 0.23ms 0.13ms
SCTP 1 0.19ms 0.09ms 0.31ms 0.10ms
SCTP 2 0.21ms 0.09ms 0.35ms 0.13ms

Computer B
UDP 0.30ms 0.19ms 0.50ms 0.20ms
TCP 0.31ms 0.14ms 0.54ms 0.23ms
DCCP 0.31ms 0.14ms 0.53ms 0.17ms
SCTP 1 0.40ms 0.20ms 0.60ms 0.13ms
SCTP 2 0.38ms 0.11ms 0.69ms 0.21ms

Table 3. Crossover connection
1 channel 2 channels

Protocol Latency Jitter Latency Jitter
UDP 0.54ms 0.13ms 0.62ms 0.15ms
TCP 0.58ms 0.14ms 0.69ms 0.15ms
DCCP 0.58ms 0.14ms 0.67ms 0.18ms
SCTP 1 0.65ms 0.17ms 0.77ms 0.20ms
SCTP 2 0.66ms 0.17ms 0.78ms 0.21ms

4.1.3. Cable switch

In this scenario, a router was used to connect the comput-
ers by cable. We used a D-Link DIR-615 switch with stan-
dard CAT.5E network cables. The results for this connec-
tion are presented in Table 4. Again, there was no packet
loss.

Table 4. Switch connection
1 channel 2 channels

Protocol Latency Jitter Latency Jitter
UDP 0.72ms 0.13ms 0.81ms 0.15ms
TCP 0.73ms 0.15ms 0.93ms 0.16ms
DCCP 0.75ms 0.13ms 0.85ms 0.17ms
SCTP 1 0.82ms 0.15ms 0.94ms 0.17ms
SCTP 2 0.82ms 0.14ms 0.98ms 0.20ms

4.1.4. Direct Wireless

For the direct wireless connection, we created an 802.11 G
wireless network (“Wi-Fi”) in computer A and connected
computed B in this network. Thus, the Wi-Fi connection
is direct between the two machines and there is no ac-
cess points to connect them. The 802.11 G standard has
a theoretical maximum transmission rate of 54 Mb/s. The
measurement of direct Wi-Fi connection is presented in
Table 5.

4.1.5. Access Point Wireless

Our last scenario is a domestic Wi-Fi connection. A D-
Link DSL 2640T router was used as the access point to

Table 5. Direct wireless connection
Protocol Latency Jitter Packet loss

1 channel
UDP 16.76ms 27.30ms 17 (0.17%)
TCP 20.12ms 33.41ms 1 (0.01%)
DCCP 3.41ms 1.90ms 0
SCTP 1 21.00ms 34.85ms 0
SCTP 2 20.94ms 35.11ms 0

2 channels
UDP 20.10ms 32.08ms 30 (0.15%)
TCP 31.21ms 51.29ms 1 (0.005%)
DCCP 5.02ms 3.16ms 140 (0.7%)
SCTP 1 27.09ms 44.40ms 0
SCTP 2 26.22ms 42.40ms 0

connect both computers. The result of these measure-
ments is presented in Table 6.

Table 6. Wireless connection with AP
Protocol Latency Jitter Packet loss

1 channel
UDP 14.73ms 17.67ms 137 (1.37%)
TCP 16.76ms 20.52ms 0
DCCP 15.65ms 18.58ms 552 (5.52%)
SCTP 1 26.39ms 35.64ms 0
SCTP 2 26.56ms 37.33ms 0

2 channels
UDP 19.99ms 24.48ms 324 (1.62%)
TCP 19.88ms 22.48ms 31 (0.155%)
DCCP 14.70ms 13.26ms 1413 (7.065%)
SCTP 1 67.49ms 106.79ms 0
SCTP 2 72.06ms 166.49ms 0

4.2. Data analysis

The previous data can be organized in two diagrams to
give a better overview of each protocol performance. Fig. 9
presents the latency and Fig. 10 presents the packet loss
for all protocols using 2 audio channels.
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Figure 9. Latency draft - 2 channels.

Considering each localhost connection as one connec-
tion, in Fig. 9 we can note that the UDP protocol presented
the lowest latency in 4 out of 6 connections. DCCP pre-
sented the lowest latency in Wi-Fi connections. TCP la-
tency varied been the highest latency in direct Wi-Fi and
the second lower using an AP. SCTP, both implementa-

tions, presented the highest latency in 4 out of 5 connec-
tions.

The congestion control mechanism present in DCCP
seems to be more compatible with 802.11 rules and it
led to better performance of this protocol in this scenario.
Since when the transmission channel is occupied DCCP
fails to send a package, the DCCP sender will discard data
instead of retrying forever. This data discard appears as
packet loss in Fig. 10.
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Figure 10. Packet loss draft - 2 channels.

Analyzing packet loss as presented in Fig. 10, we may
observe that SCTP lost no packets in all connections; DCCP,
as presented before, lost more packages in connections
where it was faster. TCP also lost a few packets in Wi-Fi
connections. The TCP packet loss can be understood as a
result of sender timeout flag set for this protocol. In this
case, the send() function returns an error that is discarded
by the sender application.

A summary of the data analysis can be done by di-
viding the protocols into groups: UDP and DCCP being
faster and unreliable, TCP in a middle term and SCTP be-
ing slower but reliable.

Grouping the protocols this way, we have a protocol
evaluation that allows us to choose between faster proto-
cols or reliable protocols, according to the specific appli-
cation scenario considered.

4.3. Discussion

Besides the actual data analysis, the tests made allow some
further discussion related to audio streaming performance
measurements.

A first observation derived from our data regards the
localhost connection, which can be used to calculate sys-
tem latency in a single machine. Since computer B is
less powerful than computer A and its results are inferior,
we may observe that the machine configuration indeed in-
fluences network audio streaming performance. Because
network communication is affected by latency in both nodes,
we might expect that in no scenarios would we obtain bet-
ter latency results than the ones with localhost connection
on computer B.

A second observation regards the results on crossover
connection as compared to cable switch connection. This
comparison indicates the impact of adding other network
devices in the middle of the network. To add other net-
work devices means adding another set of receiving and
sending buffers, and also introducing a new set of packet
routing policies. For the specific equipment used, these

buffers and routing policies increased the latency about
0.16 ms in switch connection compared to a crossover
connection.

Despite the transport protocol choice, our data shows
that the physical layer is also an important factor to be
considered in a network music performance. For all pro-
tocols, the latency with a Wi-Fi connection with an AP is
at least 20 times larger than with a crossover connection,
considering the same transport protocols. This huge per-
formance difference is explained in the physical connec-
tion. While network cables have different pair of wires to
send and receive data, a Wi-Fi connection uses the same
channel for both sending and receiving data. Therefore the
network channel is a shared resource and there are some
race conditions to access it. For this reason, the Wi-Fi pro-
tocol has to have a workaround to avoid system starvation,
which is included in the physical layer protocol (802.11
family). This includes a congestion control mechanism to
avoid channel flooding by one sender, resulting in a better
shared environment.

Since UDP and DCCP have no ACK or packet loss
recovery, these protocols have less communication over-
head. Less communication overhead implies a faster trans-
fer rate but also more packet losses.

5. CONCLUSION

This paper presented a group of transport protocols avail-
able to implement realtime connections for audio trans-
mission in local computer networks. We chose to focus on
these transport protocols because they run in kernel space,
are present in most commonly-used operating systems and
do not need special privileges to be deployed. Because
of our focus on the transmission part of the streaming
problem, this paper did not consider a plethora of post-
processing techniques that would be available at the re-
ceiving end, such as buffering or glitch removal for in-
stance.

We presented each protocol’s features from a theoret-
ical point of view, to assess their performance measure-
ments in different connection conditions using the same
audio networking tool. Measurements were made using
five different connection types: localhost, crossover, switch,
direct wireless and wireless with access point. These con-
nections are commonly-employed means to connect com-
puters in a local network.

The results of these measurements showed that the
protocol choice may emphasize the connection speed or
the stream integrity, according to the application’s needs.
A protocol that makes no confirmation of packet arrival
will be faster and lose more data, whereas a reliable pro-
tocol will try to ensure stream integrity at the cost of in-
creased latency. Thus, we have sorted the investigated
protocols between fastest and most unreliable to slowest
and most reliable, presenting alternatives for different net-
work music scenarios.

Besides, the experiments also endorse the importance
of having different protocol implementations and offering
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the user a choice depending on his/her connection goals.
One unforeseen result of this experiment is the observa-
tion that DCCP can be even faster than UDP in Wi-Fi
connections, for example.

As observed in our results, other factors besides the
transport protocol choice can influence latency, such as
the machine setup, the number of network devices and the
physical connection. Since repeating these tests is feasible
in a short period of time, it would be interesting to add
them as a performance measurement feature in a network
music tool. With this feature users would be able to test
their given connections and to choose the best protocol for
the specific scenario at hand.

As future work we intend to test and compare these
protocols over Internet connections.

6. ACKNOWLEDGMENTS

A special thanks to Beraldo Leal, Daniel Batista and Stephen
Sinclair who helped with ideas, feedback and reviews.
The authors would like also to thank the support of the
funding agencies CNPq (grant no

¯
141730/2010-2), FAPESP

- São Paulo Research Foundation (grant no
¯

2008/08632-8)
and CAPES (grant no

¯
BEX 1194/12-7).

7. REFERENCES

[1] H. V. Balan and L. Eggert, “An experimental evalu-
ation of voice quality over the datagram congestion
control protocol,” in Proc. IEEE INFOCOM 2007,
2007, pp. 6–12.
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ANIMATED MUSIC NOTATION ON THE IPAD
(Or: Music stands just weren't designed to support laptops.)
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Western Australian Academy of
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INTRODUCTION

Experimentation  with  graphic  scores  has  enabled

composers  to  free  themselves  from  the  constraints  of

traditional  music  notation.  Avant  garde  composers  in

1950s  America  and  Europe  began  to  develop  an

increasing array of new symbols to supplement the music

that  appeared  on  the  stave,  while  those  from the  more

experimental  New  York  School  often  did  away  with

traditional  notation  entirely,  leaving  performers  to

interpret  a vast  range of geometric shapes and patterns.

But in spite of these developments, the essentially static

nature of the printed score remained. With the advent of

the micro computing era,  however, this limitation could

be trivially overcome, and graphic scores can now be set

in  motion  in  ways  that  are  entirely  predetermined  or

generated  in  real  time.  Recent  developments  in  tablet

computing  have  also  meant  that,  for  the  first  time,

hardware capable of rendering such graphics now exists

in a form factor that is portable and fits comfortably on

any music stand. [8]

Decibel New Music Ensemble has been performing from

such animated graphic scores for the past three years, with

many of the works being written by the group's members,

commissioned  and  extant  works  being adapted  to  their

ongoing  development  of  a  'score  player'  for  music

featuring predominantly graphic scores. Initially, laptops

were used for the task, with the scores being set in motion

using networked Max/MSP patches created by ensemble

members  Lindsay Vickery and Stuart  James.  It  became

apparent as time went on (and as my laptop went hurtling

to the ground no less than three times)  that  there were

limitations to this set up, and so the group embarked on a

project  to bring these scores to the iPad by developing

their own software in house. The result is a flexible and

modular application that aids not just the performance of

these works, but their rehearsal and distribution as well.

This app is the Decibel ScorePlayer. [6]

WHY ANIMATE?

Scores  that  'move'  on  a  computer  screen  provide

opportunities for composers to engage in new paradigms

of music creation. [15][16] They also enable new ways

for  musicians  to  engage  with  such  works.  [11]

Networking  moving  scores  enables  a  level  of

synchronisation between performers that would be almost

impossible otherwise, especially from open scores where

proportion is key to the realisation of the work. [5] Music

that  requires  a  timeline  (ie  a  stopwatch  or  other  time

measurement that does not involve tempo or bar lines) is

facilitated, as are non linear forms, animated scores and

any score that requires real time generation. This can be

realised by scrolling real time ordering and rendering of

material,  random processes,  interactive  processes  and a

range of animations.

Two extent scores that lend themselves to such animation

are  Small Worlds (2004) by Werner Dafeldecker and  In

the  Cut (2010)  by  Cat  Hope.  Small  worlds is  an

improvised work for sextet that  divides the players into

two trios. Each trio has one person leading their particular

improvisation,  and  as  the  work  progresses,  the

membership  of  these two groups  changes,  with players

swapping  from  one  to  the  other  and  with  new  group

leaders  being appointed periodically. In  the score,  each

player is represented by a labeled line that moves between

the two trios, with a timeline indicating when transitions

should  occur.  [4]  By  setting  this  in  motion  across  a

playhead, it becomes much easier for the players to see

how far through any given section or transition they are

without the need to check an external timepiece. This type

of score is referred to in the app (and in this paper) as a

scrolling score.

Figure 1. Excerpt from Small Worlds (2004), by 

Werner Dafeldecker

In the Cut is also suited to being presented as a scrolling

score,  and  it  benefits  particularly  from  the  level  of

synchronisation  offered  by  having  the  score  players

networked together.  The work  consists  largely of  long,

droning sounds and glissandi, which would be difficult to

represent with traditional notation. (Because of this, the

score has  only ever  existed in animated form, with the

original version implemented in Max.) As can be seen in

the excerpt below, a line for each instrument represents

pitch, proportionally over time. Displayed in this way, the

performers are easily able to see when and how rapidly

they should  be  altering  their  pitch,  as  their  line  moves

across the playhead.  They can also see how their  pitch

should  relate  to  that  of  the  other  instruments  in  the

ensemble, as well as being able to quickly see and judge

where  entries  or  cut-offs  should  coincide.  (Significant

relationships between parts are marked on the score with

a dotted vertical line.) The networked nature of the player
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