MOTION RECURRENCE ANALYSIS IN MUSIC PERFORMANCES

Euler Teixeira, Hani Yehia, Mauricio Loureiro
Universidade Federal de Minas Gerais, CEFALA
Av. Antonio Carlos 6627, Belo Horizonte, Brazil
euler.teixeira@cpdee.ufmg.br

Marcelo Wanderley
McGill University, IDMIL - CIRMMT
555 Sherbrooke St. W., Montreal, Canada
marcelo.wanderley@mcgill.ca

ABSTRACT

This work presents a method to represent, segment and analyze the recurrence patterns on motion data during musical performances. Physical gestures were extracted during clarinet performances and analyzed according to gestural features, comparing different musicians, musical passages and performance styles. The gestural aspects of the performances were related to the musical structure and its expressive content, and an acoustical analysis validated the results. Results show a recurrent sequence of clarinet gestures inside a defined region of interest, shown to be a key moment in the music.

1. INTRODUCTION

Musical expressiveness is a concept that is hard to be formalized by objective data. There has been recently a growing search for methods to describe and analyze it according to a set of quantitative parameters. This has been done mainly through the audio analysis of musical performances, extracting musical content information directly from the acoustical data [1, 2]. Studies have shown that musicians make use of small deviations, regarding note durations, articulations, intensity, pitch and timbre, in order to convey their musical intentions [3, 4].

This study expands acoustical analysis methods for investigating musicians’ expressive intentions, incorporating information about their body movements during musical performances. We present a method to define and analyze the physical gestures executed by the musicians while playing their instruments, and to extract motion parameters that can be objectively related to their expressive intentions and to the musical structure [5, 6]. This sort of multi-modal investigation has also been successfully employed in studies related to the analysis of speech [7] and dance [8], examining the coupling between their acoustical and visual components.

Observing a musical performance, it is possible to notice that the body movements executed by the musicians, besides being in many cases essential to the instrument’s sound production itself, are also closely related to the musician’s expressive intentions in a particular performance [9, 10]. Even with some recent studies in this direction [11–14], there is not so far a unique and objective method that can be widely used to extract and analyze such information from the motion capture data. Despite this, there is strong evidence that such expressive information is present in musicians’ body movements, providing valuable information to better comprehend expressiveness from a multi-modal point of view [15, 16].

In order to establish relations between performers’ body movements and their expressive musical intentions, there are three key steps [6,17]. The first step is to track points of interest in the musicians’ body and instrument, during several musical performances, searching for patterns of temporal and spatial evolution, in order to define significant and recurrent physical gestures. After that, it is necessary to compare the gestures of different performers, performance styles and musical passages, taking into account spatial, temporal and musical parameters. The final step is to conduct an analysis over the corresponding acoustical data, searching for related parametric patterns coupled with the motion analysis.

With this method, it is possible to investigate where the expressive content can be found in the musicians’ body movements, what is its behaviour, and how it relates to the musical structure, ultimately defining a musical significance for the physical gestures of musicians during performances. In this paper, the proposed method is applied to clarinet players’ body movements, performing solo pieces of the classical repertoire.

2. EXPERIMENTAL METHODOLOGY

The objective of the study is to analyze the expressive content of musical performances by a group of clarinet players, based on the corresponding motion and acoustical data. In the proposed experiment, motion tracking is done with a high-end 3D motion capture device, the Optotrak Certus. It consists of a tracker, built with three infra-red cameras positioned along one axis, tracking the spatial position of active infra-red LED markers, inside a tridimensional measurement volume, together with synchronous audio recording.

The studied group of musicians consists of 10 classical clarinet players, 8 males and 2 females. The selected musical excerpt is presented in Figure 1. The musicians were asked to perform it according to two distinct performance styles. First, in the standard style, each musician performed.

Copyright: ©2013 Euler Teixeira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The clarinet bell marker’s trajectory, calculated in this case using the Euclidean distance between the positions of the marker in two subsequent samples. This unidimensional parameter captures a large amount of information from the musician’s movements [11].

Through the extraction of pitch and energy envelope curves from the audio signal, it is possible to determine all note onsets and offsets, and thus to segment the acoustical data into musical notes and phrases. It is also very important to develop a procedure to segment the movement data accordingly. Unlike the acoustical data, there are no basic units established to segment the movements into, but it is possible to divide those movements into representative segments, according to their geometrical and temporal attributes.

This can be done based on the tangential velocity representation of movement, shown in Figure 3 after appropriate filtering, assuming that its local minima corresponds to inflection points in the musician’s movement, where the motion direction or character is most likely to suffer a sudden change [11]. These points were thus used as a basis for the segmentation procedure, defining movement segments between subsequent local minima in the tangential velocity curve.

4. MOVEMENT RECURRENTNESS

In order to relate the musicians’ movements to their expressive intentions and to the musical structure, we analyzed the recurrence of movements within the excerpt, along different performances by the same musician. The search for recurrent patterns in the movements of the musicians was made by using the instantaneous correlation algorithm developed in [18]. It calculates the correlation coefficient between a pair of signals for each instant in time and also for different time offsets between them, generating a bidimensional correlation map between the two signals, as shown in the bottom half of Figure 4. The horizontal axis represents time, from the first note onset to the last note offset of the music, and the vertical axis represents the time offset between the two analyzed signals, from -0.5 to +0.5 seconds. The blue areas on the map indicate low correlation values between the signals, while the red areas indicate high correlation values.
they were discarded on further analysis.

Six of these musicians exhibited high movement recurrence regions, especially during standard performances, and two exhibited no significant movement recurrence. As the four players who did not follow the dominant movement recurrence pattern are students with less expertise, they were discarded on further analysis.

Figure 4. Clarinet bell motion recurrence map for the 6 performances by Musician 1. Top: tangential velocity curves, standard performances in blue, metronome performances in red. Bottom: motion recurrence map, blue indicates low recurrence, red indicates high recurrence.

For each musician, a correlation map was calculated for each of the 15 possible signal pairs of the 6 clarinet tangential velocity curves. These 15 correlation maps had their negative correlation values truncated to 0 and were then summed and normalized to 1, generating a resulting map that provides a recurrence measure for that musician’s clarinet bell movement over his/her 6 performances. In order to highlight the regions of interest, of high recurrence, an empirical threshold was applied to the recurrence map, removing values below 0.7. Also, to guarantee a perfect temporal alignment between the signals, in accordance with the musical structure of the excerpt, the 6 velocity curves were time-warped [19], using the note onsets as reference points in the timing model. Figure 4 illustrates the result of this recurrence map analysis for Musician 1.

Analyzing Figure 4 it is possible to see the regions in the music where this musician employs recurrent movements along his performances. Most noticeably at the final part, after the 10 seconds mark, where all the 6 velocity curves at the top plot are all highly correlated. This is confirmed by the large dark red areas in the corresponding region of the recurrence map. Some moderate recurrence can also be identified in other regions, but for most of the excerpt, the blue areas on the map indicate the absence of recurrent movement patterns.

This motion recurrence map analysis was conducted for all 10 clarinet players. Figure 5 shows another example. Six of these musicians exhibited high movement recurrence regions in the final part of the music, similarly to the examples shown, two exhibited varying movement recurrence regions, especially during standard performances, and two exhibited no significant movement recurrence. As the four players who did not follow the dominant movement recurrence pattern are students with less expertise, they were discarded on further analysis.

Figure 5. Clarinet bell motion recurrence map for the 6 performances by Musician 9.

5. REGIONS OF INTEREST

The 6 expert musicians with similar recurrence patterns were selected for a detailed movement analysis over their high recurrence regions. The movement segments obtained by the tangential velocity minima criteria, and the motion recurrence map analysis were used together to define regions of interest in each of these 6 musicians’ performances. These regions of interest were defined along the final part of the excerpt and consist of the movement segments contained inside the high recurrence areas, for each of the performances selected. The 3D spatial trajectory of the clarinet bell was analyzed along each region of interest, in order to group its constituent movement segments into representative physical gestures, based on visual inspection of their geometrical and temporal characteristics. Figure 6 illustrates the definition of the regions of interest and their constituent gestures for Musician 4. Figure 7 shows a 2D frontal view of each of their spatial trajectories, according to the reference plane shown in Figure 2.

According to figures 6 and 7, the musician executes recurrent and well defined gestures with the clarinet, inside
6. RECURRENT GESTURES

The definition of proper regions of interest in the musical performances, and their subdivision into representative and recurrent physical gestures, made possible a further local parametrical analysis on these gestures.

The resulting gestures were subjected to Principal Component Analysis (PCA), in order to investigate the spatial dimensionality of their trajectories. Calculating the percentage of total variance accounted for by the first principal component alone, by the first two principal components, and then by the three components, it is possible to define if the gesture trajectory is mainly unidimensional, mainly bidimensional or tridimensional. The percentage of variance accounted for by the first two principal components in each gesture represents a planarity index for its trajectory, while the percentage of variance accounted for by the first principal component represents a unidimensionality index for its trajectory. The results reveal that all recurrent clarinet gestures are highly planar, with planarity indexes always above 97%, and above 99% in 80% of the cases. They also show that a significant part of these gestures is also highly unidimensional, since 50% of them exhibit unidimensionality indexes above 95%, and 80% exhibit unidimensionality indexes above 80%.

A comparison was also established between the two performance styles, based on three gestural features: the total spatial distance covered along its trajectory (cm), the time duration of the gesture (s), and the mean tangential velocity along its trajectory (cm/s). The results indicate that during standard performances, within the defined regions of interest, the clarinet players execute recurrent clarinet gestures with greater spatial amplitude (28% larger on average) and at larger mean velocities (26% larger on average) than in the metronome controlled performances. The use of the metronome as a control device makes the musicians’ gestures and their respective mean velocities smaller in general, but exerts little effect over their time durations, which became only slightly smaller.
7. ACOUSTICAL ANALYSIS

The movement analysis indicated that the most significant recurrent clarinet gestures occurred during the final part of the musical excerpt, according to Figure 1. In order to further investigate the importance of this final part of the music, the relative note durations were also analyzed along the performances. To do that, the intra-onset intervals (IOI’s) were calculated, based on the note onsets extracted from the audio signals. In order to get a relative idea of the note durations, according to their expected nominal durations in the score, the IOI’s were normalized relative to a quarter-note. This way, if all notes were executed precisely with the note durations defined in the score, the plot representing the evolution of note IOI’s along the performance would show a straight horizontal line. Any deviation from this expected horizontal line indicates a note duration manipulation by the musician. Figure 10 exemplifies this analysis for Musician 1.

The evolution of the note intra-onset intervals also reveals a great contrast between the initial and final part of the excerpt. In the initial part, there is little manipulation of the note durations by the musician, while in the final part, inside the red rectangle, the musician executes significant and recurrent manipulation over the note durations, indicated by the large deviation of the IOI curves around the black horizontal dashed line. This sort of behaviour was observed for almost all of the musicians in the study. Figure 11 shows another example. This validates the previous assumption of a strong expressive content being imposed by the musicians in this final part of the music, and being reflected in their corresponding clarinet gestures, since both movement and note duration analysis led to related results.

8. CONCLUSION

The method defined for movement representation, segmentation and recurrence analysis led to consistent and representative clarinet gestures. Based on it, preliminary relations were pointed between gestural and musical aspects during the performances, and also between the two proposed performance styles, regarding gestural features. A recurrent sequence of planar gestures, more restrained in the metronome guided performances, was found in each region of interest, which was shown to be a key moment in the musical excerpt.

The strong recurrence and relation to the musical structure found in these physical gestures reinforce the assumption of a musical significance in the musicians ancillary movements, related to their expressive intentions and important for the desired musical outcome.

This method will now be applied to a quite larger data set, including new musical excerpts and groups of musicians, aiming at a detailed musical analysis and characterization of individual musicians, musical passages and performance styles.

Acknowledgments

The authors would like to thank the brazilian agencies CNPq, CAPES and FAPEMIG for funding this research.

9. REFERENCES


