
A Software Tool for
Creating and Visualizing Mappings

in Digital Musical Instruments

Jonathan Wilansky

Department of Music Technology
Schulich School of Music, McGill University

Montreal, Canada

December 2013

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts.

c© 2013 Jonathan Wilansky

2013/12/12

i

Abstract

In acoustic instruments, physical properties of the instrument determine both the gestures

that can be performed on it and the sound produced by it. This is not the case with digital

musical instruments (DMIs) that consist of three distinct parts: the playable interface, the

sound generating component, and the mapping between them. The implication is that

mapping from sensors to sound is an integral part in the design of a DMI, and a process

highly influential on how the instrument is played and sounds. Creating mappings in a

DMI is a non-trivial task, and typically a lot of different mappings are explored throughout

the stages of prototyping, composition, and production. Furthermore, production environ-

ments involving DMIs will typically bring together engineers, composers, and performers

in valuable and often short meeting times, requiring configuration and visualization of the

mapping layer to be quick and simple, catering to both technical and nontechnical partici-

pants.

This thesis presents two software components developed at the Input Devices and Mu-

sic Interaction Laboratory to aid in the mapping process: libmapper, a software library

enabling connections to be made between data signals declared on a shared network, and

Webmapper, a list-based graphical user interface to libmapper. An extension to Webmap-

per was created to address the following two concerns: to provide alternate interfaces for

configuring mappings, and to provide an alternate visualizations of the mapping layer.

Two new interfaces were created to investigate the tasks: a grid inspired view and a hive

plot inspired view. The system was developed using HTML5 compliant technologies, and

a framework architecture inspired by the model-view-controller paradigm was added to

Webmapper for code modularity and maintainability.

Advantages and disadvantages of the three different interfaces from Webmapper and

its new extension are discussed in regards to their ability to act both as a software user

interface and a data visualization tool. The contribution of the work is the demonstration

of benefits to alternate methods for configuring and visualizing the mapping layer in DMIs,

and the laying of a foundation for future investigations using the created HTML5 compliant

software.

ii

Résumé

Dans le monde des instruments acoustiques, les propriétés physiques des instruments déterminent

les gestes effectués ainsi que les sons produits; ce n’est pas le cas avec les Instruments de

Musique Numériques (IMNs) constitués trois parties distinctes: une interface de contrôle,

un système de production sonore et le système de correspondance entre les deux (“map-

ping”). Ceci implique que l’interaction entre les capteurs et le son fait partie intégrante

de l’IMN et influence fortement comment l’instrument sonne et joue. La création de cor-

respondance dans un IMN n’est pas une tâche triviale, et généralement l’exploration de

différentes correspondances est nécessaire durant les phases de prototype, composition et

production. De plus, les environnement de productions incluant l’utilisation d’IMN peuvent

créer des opportunités de rencontre entre les ingénieurs, les compositeurs et les interprètes

car la configuration et visualisation des correspondances, qui se doit d’être simple et rapide,

requiert un mélange de savoir-faire technique et non-technique.

Cette thèse est basée sur deux logiciels développés au sein du laboratoire IDMIL (In-

put Devices and Music Interaction Laboratory) aidant le processus de correspondance:

Libmapper, une logithèque permettant de connecter des signaux numériques et Webmap-

per, une interface graphique pour Libmapper. Une extension de Webmapper a également

été crée afin d’adresser les deux problèmes suivants: pour offrir une interface alternative

de configuration de correspondance et pour offrir une visualisation alternative des couches

de correspondance. Deux nouvelles interfaces ont également été crées afin d’ajouter deux

nouvelles vues: une en forme de ruche et une en quadrillée. Le système a été développé en

HTML5, utilisant une architecture inspiré par le patron modèle-vue-contrôleur.

Les avantages et les désavantages des trois différentes interfaces de Webmapper ainsi que

de sa nouvelle extension seront traités vis à vis de leur capacité d’agir en tant qu’interface

et en tant qu’outil de visualisation. Les contributions de ce travail résident dans la

démonstration des avantages des méthodes alternatives de configuration et de visualisa-

tion des couches de correspondances dans les IMN, ainsi que dans les fondations pour de

futures recherches utilisant le logiciel HTML5.

iii

Acknowledgments

First and foremost, I am deeply grateful to Marcelo Wanderley for welcoming me to his

lab, directing me to this thesis topic, and for his constant guidance amidst hectic schedules.

I was greatly inspired by my talented colleagues in the McGill Music Technology area.

Thanks to Stephen Sinclair and Joseph Malloch for the development of the libmapper and

Webmapper mapping tools, with a special thanks to Joseph for his generous help that

began since the very beginning of my thesis.

Thanks to Aaron Krajesky for his efforts into refining Webmapper and for being the

number one supporter of the new interfaces. Thanks to those at the IDMIL who tested

and provided feedback: Mailis Rodrigues, H̊akon Knutzen, and Clayton Rosa Mamedes.

Thanks to D. Andrew Stewart for feedback and his donation of mapping data, and Carolina

Brum Medeiros for the inspiring discussions.

Finally, thanks to my family; Fran and Melvin–my mother and late father– for pushing

me to be the best I can be; Mark, Barbara, Mitchell, and Warren for your support over the

years; and Vanessa, Ariella, Cole, and now Misha, for understanding why ‘Uncle Jonny’

has been so busy!

iv

Contents

1 Introduction & Motivation 1

1.1 Project Overview . 2

1.2 Thesis Overview . 3

1.3 Contributions . 3

2 Background 4

2.1 Mapping . 4

2.1.1 Sound Production in Acoustic Instruments 4

2.1.2 Mapping in Traditional Musical Instruments 5

2.1.3 Components of a Digital Musical Instrument 6

2.1.4 An Example Digital Musical Instrument 7

2.1.5 The Importance of Mapping in Digital Musical Instruments 9

2.2 Software Tools for Mapping in DMIs . 10

2.2.1 Background on Libmapper . 10

2.2.2 The Libmapper Model . 11

2.2.3 The Libmapper GUI . 12

2.2.4 The Vizmapper GUI . 14

2.3 Summary . 16

3 Design 17

3.1 Goals of the Webmapper Extension . 17

3.2 An Approach to the Representation of Data 18

3.2.1 Analysis of the Data . 18

3.2.2 Analysis of the graphic system . 19

3.2.3 Guidelines for the Visual Representation 20

Contents v

3.2.4 Representation Using The Display 22

3.2.5 Types of Constructions . 22

3.2.6 Analysis of the Libmapper Data . 23

3.3 An Approach to User Interface Design . 24

3.3.1 The Object-Action Interface Model 24

3.3.2 The Eight Golden Rules of User Interface Design 26

3.4 Summary . 27

4 Implementation 28

4.1 Webmapper Data Components . 29

4.2 Webmapper Task and User Interface Task Hierarchies 29

4.3 The Grid View . 33

4.4 The Hive View . 38

4.5 Technical Implementation Details . 42

4.5.1 MVC and PAC Architectural Patterns 43

4.5.2 Final Architecture . 44

4.6 Summary . 47

5 Discussion 49

5.1 Properties of the Data Set . 49

5.1.1 Size . 49

5.1.2 Complexity . 50

5.2 Evaluation Criteria . 51

5.2.1 Human Factors for Evaluation . 51

5.2.2 Evaluation of the Secondary Goal 51

5.3 Evaluation . 52

5.3.1 Time to Learn . 52

5.3.2 Speed of Performance . 54

5.3.3 Rate of errors by users . 56

5.3.4 Retention over time . 58

5.3.5 Subjective satisfaction . 59

5.3.6 Ability to Visualize . 60

5.4 Summary . 63

Contents vi

6 Conclusions and Future Work 65

6.1 Conclusions . 65

6.2 Future Work . 67

6.2.1 Enhancements to the New Interfaces 67

6.2.2 Hive Plot Node Assignment . 67

6.2.3 Introducing Orderable Components 67

6.2.4 Introducing a difference utility . 68

vii

List of Figures

2.1 A possible approach to the representation of a digital musical instrument,

adapted from [18]. 7

2.2 An image of the first T-Stick prototype before being covered by the shrink

wrap, adapted with permission from [15]. 8

2.3 A sample of the Webmapper GUI. 13

2.4 A depiction of the navigation in Vizmapper: (A) Shows the top-most level,

with details of nested levels excluded from view; clicking the grey circle show

details of the second level (B); clicking again on the grey circle will advance

to the deepest level (C). 15

2.5 A screenshot of the Vizmapper graphical user interface. 15

3.1 Example use of the first six visual variables from table 3.1. 20

3.2 Example usage of the property of connectedness while comparing its percep-

tual ability to some of the visual variables from table 3.1: (a) size, (b) shape,

(c) color, and (d) position. 21

4.1 A sample of the grid view interface with arbitrary data. The devices grid

is on the left and it has one device pair added to the signals grid on the

right. Cells of included source and destination devices have a vertical and

horizontal line respectively. Blue cells correspond to links or connections,

and selected cells have a red border. The image shows the visual feedback

created by placing the mouse cursor over a cell in the grid. 34

List of Figures viii

4.2 A sample of the signals view mode with arbitrary data at a custom zoom

level. The zoom-scroll bars provide feedback on the zoom level and position

inside the grid. The image shows the user clicking and dragging a handle

(highlighted orange) to adjust the zoom level. The right hand side of the

upper menu bar can be used to switch between signal view presets. 36

4.3 A sample of the devices view mode with arbitrary data. The left hand side

of the upper menu bar can be used to switch between view modes or to add

devices into the signals grid. 37

4.4 An example of the hive view’s hive plot interface with arbitrary data. The

mouse cursor can be seen in the plot hovering over the source device “/Source2”,

causing all its connections to be highlighted. 39

4.5 An example of the Hive view’s adapted hive plot interface with arbitrary

data. The connection between “/Source1/Signal3” and “/Destination5/Signal1”

has been selected by the user and the interface provides visual feedback: sig-

nal names are highlighted in the table, the nodes and connection line in

the plot are highlighted and bolded, and the signal names are shown in the

blue bar at the bottom of the interface. Additionally, the mouse cursor can

be seen in the plot hovering over the source device “/Source1” causing it’s

connections to be highlighted. 41

4.6 Webmapper’s final architecture and an example flow of interaction. 48

5.1 Example of a large and complex data set in the list view. The image shows

many-to-many mappings in an arbitrary and generic set of devices. 61

5.2 Example of a large and complex data set in the grid view. The image shows

many-to-many mappings in an arbitrary and generic set of devices. 62

5.3 Example of a large and complex data set in the hive view. The image shows

many-to-many mappings in an arbitrary and generic set of signals. The

interface highlights connections interactively based on the position of the

mouse. 63

5.4 Ranking of the alternate interfaces according to each criterion. Note that

ranking for subjective satisfaction was for small to medium sized data sets

only. 64

List of Figures ix

6.1 Patterns of null correspondence (A), perfect correspondence (B) and non-

variation of one of the dimensions (C) in a reorderable grid. 68

6.2 Diagonalization of a reorderable grid with three orderable components. The

hypothetical components are represented and ordered by position in each

axis and by color value. (A) shows perfect correspondence and (B) shows

null correspondence. 68

x

List of Tables

2.1 Example signal namespaces . 11

3.1 Eight visual variables of the graphic system. 19

3.2 Libmapper components for a network representation 23

3.3 Libmapper components for a digram representation 24

4.1 The Webmapper components with their levels of organization and lengths . 29

4.2 Interface Task Hierarchy A (Hive Plot) . 31

4.3 Interface Task Hierarchy B (List View) . 31

4.4 Interface Task Hierarchy C (Adapted Hive Plot) 32

4.5 Interface Task Hierarchy D (Grid View) 33

xi

List of Acronyms

DMI Digital Musical Instrument

GUI Graphical User Interface

TUI Text-based User Interface

UI User Interface

IDMIL Input Devices and Music Interaction Laboratory

MIDI Musical Instrument Digital Interface

OAI Object-Action Interface

OSC Open Sound Control

MVC Model-View-Controller

HTML HyperText Markup Language

CSS Cascading Style Sheet

JS JavaScript

SVG Scalable Vector Graphics

1

Chapter 1

Introduction & Motivation

Sound production in early musical instruments were dependent on the physical and me-

chanical properties of the instrument, and typically the instrument’s playable parts were

directly connected to the sound generating parts. In digital musical instruments (DMIs),

there exists a separation between the instrument’s playable parts (i.e., its “control sur-

face”) and the sound synthesis model it uses to generate sound [18]. This gives rise to the

intermediate layer known as “mapping”, an integral part in the design of a DMI requiring

a strategy to map gestures on the control surface to parameters of sound. The strategy

is a determinant factor in the “expressivity” of control possibilities in the instrument [20],

and creating mappings is a non-trivial task [20]; altering the mapping between a control

surface and sound synthesis model can change the entire character of the instrument, and

can elicit different psychological and emotional responses from the user [8].

Software applications exist that facilitate the technical process of creating mappings;

examples include OSCulator 1 and junxion2. Although these applications facilitate map-

pings between various multimedia devices, they are commercial closed-source products and

are therefore inflexible and non-expandable. Furthermore, they were designed to handle

the fundamental task of connecting a small number of multimedia devices, and lack func-

tionality designed for inquiries into the mapping layer and for representing large data sets;

in a research environment where DMIs are constantly being explored, there is a greater

need to experiment with mappings of various sizes and complexities, and in investigative

ways.

1http://www.osculator.net/
2http://steim.org/product/junxion/

1 Introduction & Motivation 2

At the Input Devices for Music Interaction Laboratory (IDMIL), and part of the ongoing

mapper tools project [17], the software solutions libmapper and Webmaper were conceived

as open-source prototyping tools for mapping DMI control surfaces to sound generating

devices. These tools have been used in various contexts ranging from the prototyping of

smaller-scale individual projects to larger-scale collaborations amongst researchers from

various fields. An example larger-scale project was the production of “Les Gestes” [11],

where engineers, composers, and performers were participating in production workshops

and experimenting with the mappings for a network of DMIs. Typically during a work-

shop, a large number of mapping configurations were created and explored. Due to the

complexity of the mappings and the real-time nature of the experimentation, participants

from various technical backgrounds were confronted with the need to interact with the

mapping layer and modify large numbers of connections. All the aforementioned software

solutions facilitate the creation of mappings, however, their methods of interaction be-

come challenged when dealing with large sets of data, and they lack functionality designed

specifically for visualization of the mapping layer.

This master’s thesis addresses the shortcomings of the previous tools in attempts to

provide an open-source software solution that can be used in small to large scale projects.

Principles of software user interface design and data visualization provide methodological

strategies to overcome issues encountered when interacting with software and represent-

ing data. This thesis project intends to exploit these principles and expand on the tools

previously developed at the IDMIL, aiming to provide alternative and effective means to

interact with mappings in DMIs.

1.1 Project Overview

The project aims to investigate the potential for alternate representations of mapping

data in order to interact with and gain insight into the mapping layers of DMIs. The

investigation is guided by the following key objectives: to extend an existing software

system for configuring mappings in a DMI environment, to provide alternative means to

configure and visualize the mapping layer in DMIs, and to overcome shortcomings of the

existing tool when dealing with large data sets.

To satisfy these objectives, the project builds upon a previously created software to

provide it with two new and alternate user interfaces. These new interfaces were designed

1 Introduction & Motivation 3

to incorporate principles from the domains of user interface design and data visualization

in order to enhance the pre-existing software and its interaction with the mapping layer.

The project also includes the implementation of a software architectural design pattern to

create a codebase that is easy to maintain and simple to expand.

1.2 Thesis Overview

Chapter 2 traces the origins of mappings from traditional to digital musical instruments,

and emphasizes the important influence that mapping has on a DMI; it also introduces

the existing software tools for creating mappings that were extended as part of the thesis

project. Chapter 3 details the principles of data visualization and user interface design

applied to the new interfaces. Chapter 4 provides the implementation details of the two new

interfaces that were created as part of software’s extension; it also describes the technical

details of the enhanced software architecture. Chapter 5 explains relevant criteria for

evaluation of user interfaces, and presents a thorough evaluation of all three interfaces

included in the software. An in depth discussion points to strengths and weaknesses of

each interface. Chapter 6 presents conclusions, points to future work that will continue

after this thesis, and suggests various directions that future research can take.

1.3 Contributions

The contributions of this thesis work are the exploration of issues relevant to creating

mappings between networks of DMIs; the creation of two alternate visual representations

of the mapping layer in DMIs; the design and implementation of an expandable software

system for alternate representations of mappings; and this thesis document that describes

and explores the research in detail.

4

Chapter 2

Background

This chapter is divided into two main sections. Section 2.1 traces the origins of mappings

from traditional to digital musical instruments, and emphasizes the important influence

that mapping strategies have in DMIs. Section 2.2 introduces the existing software tools

for mapping.

2.1 Mapping

2.1.1 Sound Production in Acoustic Instruments

In acoustic instruments, mechanical and physical properties of the instrument determine

the sound produced by the instrument. For example, a drummer’s hand strikes the drum’s

membrane causing it to vibrate, and a sound is created determined by the physical prop-

erties of the head and shell; a flutist blows a stream of air directed across a hole in the

instrument, exciting the air in its resonant cavity, and a sound is created determined by

the physical properties of the flute body. There are many sources available describing the

physics of the sound produced by musical instruments, along with detailed mathematics

for quantifying the behavior. The topic is beyond the scope of this thesis, but the following

is a non-detailed introduction adapted from [5]. It is presented here to note the direct

relationship between the instrument’s playable parts and the sound produced.

In the case of an acoustic guitar, the mechanical vibrations of the strings are the sources

of sound in the instrument. The guitarist will pluck a string, causing it to be displaced; the

string then creates a restoring force causing it to return to and overshoot its equilibrium

2 Background 5

position, sending it into an oscillatory motion. The oscillatory motion resembles a mass

and spring following simple harmonic motion, and it is the source of sound generated by

the guitar [5].

In terms of energy, as the string oscillates it alternates between potential and kinetic

energy, losing energy as it gradually returns to its equilibrium position. Like in most

acoustic instruments, sound production actually depends upon the collective behaviour of

several vibrators (e.g., the body of the guitar), which may be weakly or strongly coupled

together. This causes the instrument as a whole to behave as a complex vibrating system.

It is this mechanical nature of the instrument’s sound and the musician’s ability to excite

these mechanisms that result in music; energy is transferred from the guitarist to the string,

and the string is the source of sound [5].

2.1.2 Mapping in Traditional Musical Instruments

As the design of certain musical instruments evolved to become more complex, a new degree

of separation developed between the instrument’s playable parts and its sound producing

mechanisms. Components were added to enhance playing techniques, thereby introducing

an intermediate layer between the physical actions that excite the instrument and the

resulting sound. The following two examples are presented in [8] and demonstrate this

separation.

The first example is that of the piano, where the pianist excites the embedded strings

only indirectly through the piano’s keyboard mechanism; a finger pushes a piano key, and

the piano key causes a hammer to strike the string. As the pianist’s energy is transferred

from his body and through the key to the string, he is indirectly contributing to the sound.

The keys act as an interface to the sound generating mechanism, affecting it through other

embedded mechanical procedures. This defines a mapping strategy from the interface to

sound; a simple one-to-one mapping of a key to a string. The musician’s actions, or musical

“gestures”, are therefore only indirectly connected to the production of sound through the

keyboard interface and the mapping strategy. In this way, the musician has less control

over the timbre of the resulting sound, but other mechanisms can be introduced to modify

the parameters of sound, like the piano pedals controlled by the feet.

The second example describes elements of a pipe organ that add an even further degree

of separation between the interface and sound. The pipe organ consists of a set of pipes that

2 Background 6

produce sound when air travels through them. However, unlike some other instruments

that use a column of air to generate sound (e.g., flute, clarinet), the organ player does

not supply the air that generates the sound; the energy and mechanism supplying the

air comes historically from at least one other person operating the bellows, or nowadays

with electricity. The player controls the flow air by using one or many keyboards and a

pedalboard; the keys and pedals operate valves that control the flow of air through the pipes,

affecting musical parameters like pitch and timbre. The use of an external energy supply

in combination with the often complex routing of keys and pedals to pipes separates the

musician’s gestures from the resulting sound through an interface and a mapping strategy.

2.1.3 Components of a Digital Musical Instrument

A digital musical instrument (DMI) contains three parts[18]:

1. the sound generating component : a DMI generates sound by means of digital sound

synthesis. The signal generated by the sound synthesis model is made audible by

sending it to an electromechanical device (e.g., loudspeakers) that converts the digital

signal into mechanical vibrations in the air.

2. the playable interface: the DMI provides a means to control the parameters of the

synthesis engine in real-time; this is referred to as the “control surface”, “controller”,

or “(hardware) interface” and it defines the set of gestures that can be performed on

the instrument. It is typically composed of sensors capable of detecting various kinds

of user input.

3. the mapping : a mapping strategy is then needed to map gestures from the control

surface to the parameters of the sound synthesis model.

A diagram of the three components is shown in figure 2.1. When creating a DMI, the

designer is faced with a vast array of possibilities for designing each component of the

instrument. The designer can be inspired to replicate traditional acoustic instruments,

enhance traditional instruments, or create entirely new designs altogether. The DMI can

be an object to hold, an attachment to the body, or part of the room itself (e.g., interactive

floor, motion capture). In each case, details for each part of the instrument are carefully

selected.

2 Background 7

Fig. 2.1 A possible approach to the representation of a digital musical in-
strument, adapted from [18].

Sound synthesis models are able to simulate acoustic sounds or generate entirely new

sounds. They can trigger pre-recorded samples or MIDI1 notes, use digital signal processing

to alter pre-recorded sounds or sounds captured through a microphone in real-time, or

generate new sounds entirely through sound synthesis models.

For gesture acquisition from the control surface, numerous types of sensors are readily

available and affordable. A review of sensors that are commonly used in musical applica-

tions can be found in [18], and they include force-sensitive resistors, accelerometers, bend

sensors, piezoelectric sensors, infrared sensors, ultrasonic sensors, and more. Sensors facili-

tate the acquisition of many kinds of gestures or measurements from the user, such as: the

pressing of a button; the swiping of a surface; distances to a part of the body or another

object; the motion or acceleration of the instrument; the bending of a limb; tracking of the

entire body; and more.

Finally, a mapping strategy is required between the control surface and sound generating

model. This determines how the playable interface and the corresponding gestures will

correlate to parameters of the sound generating component. The mapping defines what

sensors and gestures control what parts of the sound and how.

2.1.4 An Example Digital Musical Instrument

As a practical example, I refer to the T-Stick, a family of DMIs developed at the IDMIL

by Joseph Malloch [16]. The T-Stick is among the few new DMIs that have surpassed the

prototyping stage to emerge with a standardized definition for the family of instrument.

It has been used by a reasonable number of artists and researchers in the nearby music

1a technical standard for communication between electronic musical instruments, computers and other
related devices

2 Background 8

technology community. It is therefore a good example with sufficient documentation, with

access to substantial mapping data that has been explored during the development of the

thesis project.

A T-Stick is constructed with a cylindrical tube of ABS plumbing pipe whose length

determines its classification in the T-Stick family. Sensors and electronics are placed in-

side and on the surface of the pipe, which is then sealed with shrink wrap plastic. This

method provides a structure and reinforcement that makes the instrument durable and

water resistant. A photo of a T-Stick is shown in figure 2.2.

Fig. 2.2 An image of the first T-Stick prototype before being covered by the
shrink wrap, adapted with permission from [15].

Its specifications of sensors enables the T-Stick to respond to a variety of different

gestures. One side of the pipe is covered with numerous capacitive sensors (48 in the first

prototype). The other side is equipped with one or two pressure sensors that span most of

its length. There is an accelerometer at each end of the pipe and a piezoelectric sensor in

the middle. The combination of these sensors means that the T-Stick has a low-resolution

multi-touch position sensor covering the length of the pipe, capable of providing the center,

width, and velocity of areas touched along its length, coupled with a pressure sensitive

surface on the opposing side. It can sense movement, acceleration, or tilting of the pipe,

along with deformations such a bending or twisting. Higher-level gestures, such as jabbing,

smacking or swiping, can also be inferred from analysis of the raw sensor data.

These specifications allow the T-Stick to be an interesting interface for musical perfor-

mance. At the time the article was written in 2006, the T-Stick appeared in four concerts

and numerous demonstrations, including hundreds of collective practice hours by users.

Pieces have been written for it by student composers, including D. Andrew Stewart[23]

whose mappings were made available for the thesis project. Example performances using

the T-Stick can be seen on the IDMIL website2.
2http://www.idmil.org/projects/the_t-stick

2 Background 9

2.1.5 The Importance of Mapping in Digital Musical Instruments

While the mapping layer is inherently defined in most acoustic instruments by the physical

and mechanical characteristics of the instrument, it is not inherently defined in the case

of DMIs with control interfaces that are distinctly detached from the sound generating

mechanisms. The implication is that mapping from sensors to sound is an integral part in

the design of a DMI, and a process highly influential on how the instrument is played and

sounds. The mapping layer can therefore be seen as a link between technical hardware and

expressive sound, and the common ground shared between the designers of the instrument

and the designers of the music.

Experiments were described by Hunt, Wanderley and Paradis [9] that explore effects

of the mapping layer; the setups described consisted of fixed synthesis models and control

surfaces that were investigated through alternate mapping strategies. Results showed that

simple “one-to-one” mappings to parameters of sound were not very stimulating for the

test users, whereas more complex mappings enabled more expressive results. Additionally,

more complex mappings entailed a learning curve that was observed to be more appealing

to the test users. The experiments demonstrate that by changing only the mapping layer

in a DMI, the quality of the instrument is changed in regards to its control and expressive

capabilities, affecting the behaviour of the instrument and its feel to the performer.

The non-triviality of mapping in DMIs was already presented in 1997 in [20] and the

work focused on the influence of the mapping strategy in the context of musical expres-

sion. It notes the example of the additive synthesis model that “has the power to virtually

synthesize any sound, but is limited by the difficulty encountered in simultaneously con-

trolling hundreds of time varying control parameters”. Mapping strategies are commonly

categorized into a small number of groups that are determined by the number of corre-

spondences between the gestures and parameters of sound ([20], [8]). Ng points out how

different mapping strategies have different usages in different contexts, and the complex

relationships that can arise with multilayered mapping strategies [19].

2 Background 10

2.2 Software Tools for Mapping in DMIs

Although commercial software applications that facilitate mappings between multimedia

devices exist (e.g., OSCulator 3 and junxion4), they are closed-source, platform-dependent

products, lacking functionality designed for inquiries into the mapping layer and for rep-

resenting large data sets. In a research environment where DMIs are constantly being

explored, there is a greater need to experiment with mappings of varying sizes and com-

plexities, and in investigative ways; this section presents mapping tools relevant to the

thesis project that were developed at the IDMIL as collaborative and flexible open-source

alternatives to the pre-existing tools.

2.2.1 Background on Libmapper

Since defining the mapping layer is a non-trivial task (see section 2.1.5), and because it

is unlikely that there can ever be a single ‘best’ mapping strategy, the process of defining

the mappings in DMIs becomes one of exploration, experimentation, and trial and error.

At the IDMIL, and part of the ongoing mapper tools project5, a software solution called

Libmapper6 was conceived as a prototyping tool for mapping DMI interfaces to sound

generating devices.

We can trace the origins of Libmapper to the McGill Digital Orchestra project7, a

project that brought together researchers from different fields, working collaboratively in

developing tools for live performance with digital technologies. As described in [17], the

work involved collaborations between engineers, composers and performers in all stages of

production from building new DMIs, to composing the musical pieces that would be per-

formed. Because these tasks were occurring simultaneously, researchers found themselves

in need of tools to optimize the workflow during valuable and often short meeting time.

Furthermore, composers and performers who were not experienced in the technical aspect

of the DMIs were expected to be involved in the experimentation and decision-making pro-

cess with regards to how the instruments would be played and sound. Researchers therefore

needed a new, easy, and quick way to modify the mappings of their instruments in a way

3http://www.osculator.net/
4http://steim.org/product/junxion/
5http://www.idmil.org/projects/mappingtools
6http://libmapper.github.io/
7http://www.music.mcgill.ca/musictech/digitalorchestra/

2 Background 11

that catered to both technical and non-technical people.

The result of this situation was the creation of a software plug-and-play “orchestral

neighborhood” where instruments and synthesizers could announce their presence on the

network and be made available for connections. In addition, a graphical user interface

(GUI) was created as the visual means to display the devices available on the network, for

making the connections between them, and for modifying connection properties.

2.2.2 The Libmapper Model

This section describes the structure of the libmapper’s data, and terminology will be ad-

dressed to avoid confusion with the various terms that have been applied to the same

concepts in different contexts.

In mathematics, mapping refers to a rule that assigns elements from one set, called its

domain, to another set, called its range [24]. The number of elements in a set is referred

to as its cardinality.

The Libmapper network consists of a set of devices, each with its own set of signals.

Libmapper formats messages similarly to the Open Sound Control (OSC) protocol[27], and

devices and signals are identified by their announced OSC namespace. Namespaces are

inherently hierarchical with forward slashes separating levels in the hierarchy. Libmapper

places no restrictions on the length or depth of a device or signal namespace. In this

paper, the terms “name” and “namespace” will be used interchangeably when applied to

the identification of a device or signal. Signals have a direction and are either an input or

an output signal.

Namespace Description
tstick.1/raw/accelerometer/1/x the data stream of T-Stick number one’s

accelerometer values in the x dimension
tstick.2/cooked/accelerometer/2/amplitude the data stream of T-Stick number two’s

combined accelerometer data

Table 2.1 Example signal namespaces

Output signals contain a stream of data pertaining to a sensor on the DMI’s control

surface, and will be referred to as source signals. A device containing at least one source

signal can be referred to as a source device. Table 2.1 lists two example signals, demon-

strating that signals can represent raw data sensor values or higher-level “cooked” values

2 Background 12

with semantic meaning.

Parameters of the sound synthesis engine that are controlled by another stream of data

(i.e., a source signal) will be referred to as destination signals, and a device containing at

least one destination signal will be referred to as a destination device.

The terminology of sources and destinations was chosen for the remainder of this thesis

as it is appropriate in context of mapping “something to something”. Note that a device

can contain both source and destination signals, and can therefore be considered both a

source and destination device.

Libmapper is organized into a two-tiered structure. Before signals of any device can

be mapped to each other, their corresponding devices must first be mapped. A potential

mapping between devices is called a link, and a mapping between signals is called a connec-

tion. A connection implies a routing from the source signal’s data stream to the destination

signal’s input parameter. Libmapper currently supports one-to-one or one-to-many map-

pings.

A basic connection has no signal processing applied to the stream of data, but functions

can be used to modify the signal’s data before it is routed to the destination. We will refer

to these signal processing functions as transformations or transfer functions.

In computer science, a map is a data structure that stores elements based on key-value

pairs[6], and we will borrow this term to describe the entire set of connections, links, and

transfer functions on a given libmapper network.

2.2.3 The Libmapper GUI

The Libmapper GUI provides the interface through which the user is able configure the

mappings for devices that have been announced on the network. Originally developed for

Max/MSP8, Stephen Sinclair, a developer of Libmapper and Ph. D. student of the IDMIL,

developed the interface known as “Webmapper” that enables a web browser to communicate

with the Libmapper network through a Python9 based server. Aaron Krajeski, a Master’s

student of the IDMIL, has continued the development and refinement of the Webmapper

GUI as part of his thesis. A sample of the current interface can be seen in figure 2.3. This

section describes the interface and typical workflow when using Webmapper.

8http://cycling74.com/products/max/
9http://www.python.org/

2 Background 13

Fig. 2.3 A sample of the Webmapper GUI.

Device namespaces are arranged into two tables on screen, with source devices on the

left hand side and destination devices on the right. A device that is both a source and

destination will be listed in both sides. Each row corresponds to a single device, displaying

its name, number of input or output signals, IP address, and port number. The design

resembles a bipartite graph with each table representing a set whose elements can be

mapped to the other’s.

In accordance with libmapper’s two-tiered structure described in section 2.2.2, a link

is created by clicking and dragging a row from one of either tables to the other. The link

is represented on screen with a curved line connecting the two rows, and a new tab is

created containing the signals of each device. The interface becomes organized by tabs,

with the leftmost tab always displaying the devices on the network, and subsequent tabs

displaying signals of each linked device. Note that a tab is created for every one-to-many

device mappings, meaning there will be one tab for each linked source device and it contains

signals of the source device and signals of all linked destination devices.

A tab containing signals behaves in the same way as the devices tab, except that rows

2 Background 14

correspond to signals. Dragging a signal from one table’s row to the other’s creates a

connection between them, telling libmapper to route the source signal’s data stream to the

destination. Each row displays the signal-specific properties:

• the signal’s name, data type (e.g., integer, floating point number, etc.)

• unit type (e.g., Hertz, centimeter, etc.)

• its minimum and maximum values

When a connection is made, the default transfer function is set to “bypass”, where no

mathematical operation is performed on the the data (i.e., the function f(x)=x). To modify

connection parameters (e.g., transfer functions) the user clicks on the line representing the

connection; the GUI then highlights the connection in red and its parameters can be set

using the ‘edit bar’ at the top of the interface. Parameters include scaling, clipping, or

setting an expression that will be applied to the signal’s data. A connection is deleted

using the “delete” keyboard shortcut.

2.2.4 The Vizmapper GUI

The GUI to Libmapper was intended to be a tool to configure mappings in a simple and

intuitive way. Vijay Rudraraju, for his Master’s thesis [21], worked on an extension to the

GUI called “Vizmapper” that uses principles of data visualization to represent the network

in a different way. Although not currently part of the Webmapper software, Vizmapper

demonstrated that alternate interfaces can provide new and interesting ways to interact

with the mapping layer.

Vizmapper was inspired by a method to represent hierarchical data called the balloon

tree visualization [7]. In a balloon tree, nodes are positioned and grouped using enclosing

circles that differentiate between different levels in the hierarchy. Curved lines are used

to represent adjacency relations between terminal elements (black dots), and straight lines

represent inclusion relations between intermediate elements (grey dots) and different levels

of the hierarchy. Since both the straight lines and enclosing circles represent inclusion rela-

tions, Vizmapper removes the straight lines in attempts to reduce clutter, thereby creating

a modified balloon tree visualization. Furthermore, Vizmapper provides an interactive hi-

erarchical interface through which the user can navigate between nested branches in the

hierarchy. Figure 2.4 describes this navigation.

2 Background 15

Fig. 2.4 A depiction of the navigation in Vizmapper: (A) Shows the top-
most level, with details of nested levels excluded from view; clicking the grey
circle show details of the second level (B); clicking again on the grey circle will
advance to the deepest level (C).

Fig. 2.5 A screenshot of the Vizmapper graphical user interface.

In the actual Vizmapper interface (figure 2.5), the dots represent signals, with source

and destination signals constrained to the left and right portion of the screen respectively.

Signals are grouped by enclosing circles according to the hierarchy defined by the sig-

nal’s namespace (ex: “body/arm/hand/finger/index”). A filled circle represents a terminal

signal (one that can be connected), and a circle with no fill represents a signal at an in-

2 Background 16

termediate level in the hierarchy. Clicking on an unfilled circle will traverse deeper to the

next level in the corresponding signal’s namespace. For reverse traversal, two columns are

provided in the center of the screen that display a trace of the path taken in namespace

hierarchy, and clicking on a button in a column will return the visualization to a previous

level in the hierarchy.

The interface is divided into two modes, called view and edit. The former is used

to navigate the hierarchy and place the desired source and destination signals into view.

The latter is used to select the signals and create the connection between them, using the

transfer function if one was supplied.

2.3 Summary

In this chapter, the background context for the thesis project was provided and terminology

was addressed. Mapping is presented as an important part in the design digital musical

instruments, and software tools were presented that facilitate the configuration of mappings

between digital instruments and sound generating devices. Two graphical user interfaces

to the software mapping tools developed at IDMIL were presented as different methods to

configure and visualize the mappings in a digital musical instrument network.

17

Chapter 3

Design

The previous chapter introduced the software tools for mapping that would be extended as

part of the thesis project. This chapter introduces the goals of the extension and the design

principles guiding its development. Section 3.1 lists the motivations for the project. The

relevant data visualization and user interface design principles are introduced in Section

3.2 and Section 3.3 respectively.

3.1 Goals of the Webmapper Extension

The Libmapper and Webmapper software solutions address the need to create and modify

mappings in a simple and intuitive way. Additionally, Vizmapper has demonstrated that

principles of data visualization can be used to offer alternate means to interact with and

represent the mapping layer. After significant experience in using both the Webmapper

and the Vizmapper GUI, the developers of Libmapper have come to believe that there is no

single ‘best’ user interface, and that different interfaces and network representations could

be useful to different users in different situations.

The tool developed by the author is an enhancement to the Webmapper software, and it

will be referred to in this chapter as the “Webmapper extension”. Its concern is threefold:

1. to provide an alternate interface for configuring mappings

2. to provide an alternate visualization of the mappings

3. to provide a means for comparing different mappings to each other

3 Design 18

The focus of this thesis is on the first two concerns. Development of the extension was

guided by principles of user interface (UI) design and data visualization that are presented

in the following sections, and two alternate interfaces were created as part of the thesis

project.

3.2 An Approach to the Representation of Data

Bertin’s “Semiology of Graphics” [1] is often cited as the first to provide a methodology to

the visual representation of data. This seminal work was acclaimed to be ahead of its time,

and it became a source of inspiration to other dominant contributors in the field. Bertin has

become a recognized authority in the study of graphics, and his work is still relevant today.

Some of his principles are presented here as a basis for an informed methodology when

representing the mappings in the Webmapper extension. They are presented in two parts:

analysis of the data (Section 3.2.1) and analysis of the graphic system (Section 3.2.2).

3.2.1 Analysis of the Data

Analysis of the data involves breaking down its information into what Bertin calls the

invariant and one or more components. The invariant is the complete and invariable notion

common to all aspects of the data, and the components are the variational concepts. For

example, in a hypothetical graph depicting the daily average temperatures for July 2013,

the invariant is “the average temperature on a given day”, and the components are “average

temperature” and “a given day”.

The length of a component represents its number of possible values; a short component

has length of less than five, and a long component has greater than fifteen. The notion of

length does not apply to continuous variables with a series of infinitely divisible numbers.

Bertin describes three levels of organization or levels to categorize the components, and

they are ordered by metaphor of height. They are presented in the following list from low

to high:

1. qualitative (or nominal)

2. ordered

3. quantitative

3 Design 19

Qualitative components are at the lowest level and are characterized by elements that

cannot be ordered in a universal manner. For example, “types of trees” are qualitative

because there is no universally accepted way to order different species of trees.

Ordered components are at the middle level and are characterized by having a univer-

sally accepted ordering with equidistant elements. An example is a classification of size into

three groups: “small”, “medium”, and “large”. There is a universally accepted ordering of

size from small to large and reordering the middle category would impart a source of con-

fusion in the representation of the range. Additionally, classifying elements into qualitative

groups of size defines equidistant elements because there are no measurable units for the

comparison.

Quantitative components are at the highest level and are characterized by components

with countable units and measurable ratios. “Distance in meters” is an example of a

quantitative component because the distance is measured in meters and ratios can be

determined from it.

3.2.2 Analysis of the graphic system

Analysis of the graphic system provides a methodical means to overcome practical prob-

lems encountered when representing data; it is through the appropriate association of the

properties of the data with properties of the graphic system that make for a systematic

representation. Bertin describes the eight visual variables listed in table 3.1 that can be

used in the representation of data. The first six are exemplified in figure 3.1

1. size
2. value
3. texture
4. color
5. orientation
6. shape
7. horizontal position in the display
8. vertical position in the display

Table 3.1 Eight visual variables of the graphic system.

Similarly to properties of the data, each visual variable has a length determined by the

3 Design 20

Fig. 3.1 Example use of the first six visual variables from table 3.1.

number of different steps that can be perceived as dissimilar. Also like properties of the

data, each visual variable can be characterized by a level of organization:

• A variable is selective when it allows for the immediate isolation of any graphic

elements sharing the same quality of the variable.

• A variable is associative when it allows for the immediate grouping of all graphics

elements differentiated by the variable.

• A variable is ordered when the visual ordering of its variations is immediate and

universal.

• A variable is quantitative when its variations can be immediately identified and ex-

pressed by a numerical ratio.

Bertin’s list of visual variables does not include the property of connectedness : lines

connecting different graphical elements. Ware reminds us that this property is perceptually

more dominant than size, shape, color, and proximity [26] as shown in figure 3.2. When

using lines to connect elements, smooth continuous lines are preferable to lines with abrupt

changes in direction because they are easier for the eye to follow.

3.2.3 Guidelines for the Visual Representation

Bertin prescribes the following principles as a set of guidelines to follow when choosing a

visual variable to represent a given component:

3 Design 21

Fig. 3.2 Example usage of the property of connectedness while comparing
its perceptual ability to some of the visual variables from table 3.1: (a) size,
(b) shape, (c) color, and (d) position.

1. The number of visual variables used to represent a set of data must be equal to or

greater than the number of components of the data.

2. The variable chosen to represent a component must have a length equal to or greater

than the length of the component

3. The variable must have a level of organization equal to or higher than the level of the

component.

All of the components in Webmapper’s data are qualitative (see Section 4.1). Since

qualitative components are equidistant, each element has equal importance and the graphic

representation should not disturb this notion by highlighting any particular element. Since

qualitative components have no universally acknowledge order, they can be reordered arbi-

trarily for the purposes of information processing. Two perceptual approaches can be used

when representing qualitative components:

1. A selective approach is engendered by questions of an elementary or intermediate

reading level, and it enables us to find a specific element (e.g., a specific device).

When questions relating this level of reading are pertinent, it is important that the

component be represented by a selective variable.

2. An associative approach is engendered by questions of intermediate or overall reading

level, and it enables us to group a set of elements (e.g., all source devices). When

questions relating this level of reading are pertinent, it is important that the compo-

nent be represented by an associative variable.

3 Design 22

3.2.4 Representation Using The Display

Position in both dimensions of the display (i.e., visual variables numbers 7 and 8 from table

3.1) are the most robust graphical elements and can represent any component of the data.

Position has the longest length1, with the number of divisions limited by the capabilities

of the graphic rendering system and the viewer’s perceptual ability. Tufte [25] points out

that 625 different points can easily be perceived in one square inch. Furthermore, all four

levels of organization can be perceived in the display:

1. Selective: graphic elements differing in position can be isolated and seen as different

2. Associative: graphic elements sharing an area in the display can be grouped together

3. Ordered: The position of graphic elements along either axis will be perceived by an

immediate order; left to right, top to bottom, or degree of orientation around a fixed

point.

4. Quantitative: the display can be divided into units of measurable size that allow the

perception of ratios of lengths, angles, or areas between different graphic elements.

Ware [26] reminds us of the related gestalt principle of proximity as a powerful way

to emphasize relationships between different data entities. The principle explains that

graphical elements in close proximity are perceptually grouped together, and elements not

in close proximity are seen as distinct, confirming the notions of selective and associative

in the display.

3.2.5 Types of Constructions

Bertin divides graphical representations, or constructions, into four groups. Two of these

groups—diagrams and networks—can be applied to Webmapper’s data (Section 3.2.6) and

are introduced here.

A diagram can be constructed when the correspondences in the data are established

between elements of one component and elements of another component. To construct a

diagram, first the decision is made on how each component will be represented, and then

the correspondences are recorded.

1shape actually has the longest length but not mentioned here because the number shapes that can be
perceived as different is significantly reduced at smaller sizes

3 Design 23

A network can be constructed when the correspondences in the data are established

between elements of a single component. The order of steps to construct a network is

opposite to the diagram; first the correspondences are recorded and then a representation

is deduced that will produce the simplest structure.

Note that a network can also be represented as a diagram by simply doubling the

component through which the correspondences are made; correspondences are then made

between the original component and its copy.

3.2.6 Analysis of the Libmapper Data

This section categorizes libmapper’s underlying data structure based on Bertin’s data vi-

sualization principles presented in section 3.2.1. This categorization is the basis for the

metaphors that were used to create the interface objects and actions described in Section

4.2. Several categorizations are possible and presented here.

The most fundamental task facilitated by libmapper is the creation of connections be-

tween signals. This translates simply into the notion of:

• the invariant: “a mapping between a source signal and a destination signal”.

Libmapper does not differentiate between the different concepts of a source and desti-

nation device or signal in the data structures containing the device and signal objects. As

explained in Section 2.2.2, a device can contain both source and destination signals, making

it both a source and destination device. Therefore, a direct translation of libmapper’s data

structure into components for representation is shown in table 3.2. Using this classification

of components, correspondences of the invariant are made between all elements of a single

component (i.e., signals) and a network representation can be constructed.

1. devices
2. signals
3. links between devices
4. connections between signals
5. transformations applied to connections

Table 3.2 Libmapper components for a network representation

3 Design 24

As explained in Section 3.2.5, a diagram can be constructed from any network by sim-

ply doubling the component through which correspondents of the invariant are made. In

this case, a better approach to creating a diagram would be to differentiate between the

notion of sources and destinations; by doing so, irrelevant elements (i.e., those that cannot

be mapped) are removed from the sets. Table 3.3 lists the components for representation

according to this differentiation. Using this categorization, correspondences are made be-

tween two different components and a diagram can be constructed. This is the approach

currently taken by all the constructions in Webmapper and its extension because when

faced with the task of mapping a source signal to a destination parameter, it becomes

more intuitive and efficient to separate the notion of sources and destinations in the rep-

resentation. This is not a requirement, and additional constructions can use a network

representation if desired.

1. source devices
2. destination devices
3. source signals
4. destination signals
5. links between devices
6. connections between signals
7. transformations applied to connections

Table 3.3 Libmapper components for a digram representation

It should be noted that because the presence of a link can be inferred through the pres-

ence of a connection, the construction does not necessarily need an explicit representation

for links between devices. We will see in Section 4.4 that the hive plot representation does

not represent links explicitly.

3.3 An Approach to User Interface Design

3.3.1 The Object-Action Interface Model

Graphical user interfaces provide an alternative to text-based user interfaces (TUIs) through

visual representations of the commands that can be performed by the application. Actions

that were performed in TUIs through commands typed into the command line are replaced

3 Design 25

by the manipulation of GUI objects and their corresponding actions.

To distinguish how tasks are carried out in these different types interfaces, the action

of moving a file from one folder to another is presented for the case of the Unix command

line (a TUI) and the Microsoft Windows GUI. In the GUI, the action of moving a file is

performed by dragging a visual representation of the file (an icon with a string file name)

to the visual representation of the destination folder (an icon of a folder with a string folder

name). The process exploits the metaphor to the real world objects of files and folders. In

the Unix TUI, the user types the command for moving a file (i.e. “mv oldname newname”)

into the command line. The user must therefore have the command memorized (or consult

the manual), and type it free of syntactical errors.

Although TUIs are still popular, their appeal is generally to those with higher level of

technical expertise; GUIs have undoubtedly become the dominant type of interface provided

by modern computer operating systems and software.

The theory of design called the object-action interface (OAI) model [22] provides insight

into the processes that can occur for users to be successful in using a GUI to accomplish

a task. For this reason, this OAI model was chosen to help guide the development of the

new Webmapper GUI. It describes how users accomplish tasks facilitated by the software

through the linkage of the task domain with the interface domain.

The task domain object and actions correspond to the ‘real-world’ objects or concepts

that the user works with to accomplish their intentions, and the actions that can be ap-

plied to them. The interface domain object and actions are the visual representation of the

task objects inside the GUI, and the actions that can be applied to them by the software.

Performance of the tasks becomes more intuitive if a clever visual representation of the

real world objects and actions are provided because it creates metaphors for the manipu-

lation of familiar objects. Interface objects and actions can be more easily understood and

remembered when they have a logical structure that is anchored to familiar task objects

and actions. An example is the “desktop” metaphor of the Microsoft Windows operating

system, or its file structuring metaphor that organizes digital “files” into “folders”.

A TUI requires commands to be memorized and issued based on strict syntax, shifting

the user’s energy from the task domain to the interface domain. This places more em-

phasis on the user to memorize commands, something hard to do unless the knowledge is

applied frequently. Because the syntactic details of textual commands are de-emphasized

or non-existent in GUIs, users familiar with the task domain can learn the interface rela-

3 Design 26

tively easily through demonstrations, explanations of features, or simply by trial-and-error.

Furthermore, recognition is emphasized more than recall, and visual clues assist the user

to recall the underlying functionality. The OAI model mimics the sequence of actions that

would take place in the real world by first selecting an object and then performing an action

on it; in the TUI paradigm it is the reverse sequence, first by selecting an action that will

be performed and then selecting the objects.

TUIs have their own advantages. For example, once commands are memorized they

can be issued with relative ease, perhaps even faster considering that use of the computer

mouse can be slower than typing from a keyboard. Furthermore, GUIs are not ideal for

applying a sequence of actions onto different sets of objects (i.e. ‘batching’), nor are they

ideal for feeding the result of one action into subsequent actions on the same object (i.e.

‘pipelining’), both processes that a TUI handles with relative ease.

The OAI model emphasizes the need for the assessment of user profiles and recognizes

the potential for diversity among users. Users can vary in their social, cultural or technical

background; their physical, cognitive or perceptual abilities; their level of expertise in the

task domain; their familiarity with the interface domain (i.e., experience and familiarity

with the use of a computer); their frequency of use of the software; and more. Assessment

of the user profiles will help the designer to create the interface domain with informed ideas

of the user’s needs.

This discussion hints towards the driving forces behind the design of the new interfaces

to suit the user profiles described in section 2.2.1; by providing a graphical representation

of the mapping data, the aim is to provide metaphors for a clear representation of the

task domain, allowing for visualization of the mapping layer and an intuitive means for

its configuration; by injecting the UI with keyboard commands, or menus for carrying out

more complicated commands (batching or pipelining routines), we cater to the expert user

who seeks more efficient and powerful means of control.

3.3.2 The Eight Golden Rules of User Interface Design

Along with the theoretical model for the design of the user interface, Shneiderman [22] has

created what he calls “the eight golden rules of interface design”. These rules are presented

here and were applied as much as possible in the Webmapper extension.

1. Strive for consistency. Consistent sequence of actions should be required in similar

3 Design 27

situations, and style and terminology should be consistent in the interface elements

like buttons and menus.

2. Enable frequent users to use shortcuts. Frequent users familiar with the task and

interface domain will likely want to speed up the time required to carry out tasks.

3. Offer informative feedback. Tasks should be coupled with appropriate user interface

feedback. Attention drawn by the feedback should be proportional to the importance

of the task.

4. Design dialogs to yield closure. Sequences of actions should have a clear ordering

from beginning to end.

5. Offer error prevention and simple error handling. The system should be designed to

reduce the chance of errors caused by user actions and provide the ability to correct

them.

6. Permit easy reversal of actions. As much as possible, actions should be reversible, to

help relieve user anxiety and encourage exploration of the interface.

7. Support an internal locus of control. The interface should provide the sense that the

user is in control and that it is responding the user’s input. Surprising events or

tedious interactions should be avoided.

8. Reduce short-term memory load. The interface should be made as simple as possible

to reduce the amount of information needed to memorize in order to perform the

tasks.

3.4 Summary

This chapter described the goals of the Webmapper extension and explained relevant guid-

ing principles from the fields of data visualization and user interface design. A methodolog-

ical approach was used for the representation of the mapping data, and it forms the basis

for the four different methods of interactions explained in the following chapter to describe

the implementation of the original Webmapper interface and to guide the development of

the new interfaces.

28

Chapter 4

Implementation

For the scope of this thesis, two different representations were constructed and imple-

mented by the author as alternate user interfaces to configure and visualize mappings in

the Webmapper GUI.

The alternate interfaces were inspired by aspects of the original system that inhibited

the user to accomplish the mapping tasks; although the original list-based view was quick

and simple to learn, it suffered from an ineffective visualization of signals/connections that

became difficult to decipher when the data set grew large. When the mapping consists of

many signals and many connections, it became difficult to locate signals in the list and

almost impossible to follow connections depicted by lines that are difficult to follow and

that overlap with each other. Furthermore, the original view offered no means to observe

a global view of the entire mapping.

The new and alternate interfaces developed by the author are part of what has been re-

ferred to as the Webmapper extension, and they have been incorporated into Webmapper’s

latest release. For the remainder of this thesis, Webmapper and its extension will simply

be referred to as Webmapper, and each alternate interface (also referred to as a view or

subview) has been given its own name. The new interfaces developed by the author are

the grid view and the hive view ; Webmapper’s original list-based view will be called the

list view.

This chapter describes the implementation details of the alternate interfaces and the

technical implementation of the extension. Section 4.1 describes the components of the

data. Section 4.2 describes the structuring of the user interface tasks. Sections 4.3 and 4.4

4 Implementation 29

describe the grid view and the hive view respectively. Section 4.5 describes the technical

implementation details and the architectural structure of the final software application.

4.1 Webmapper Data Components

The components of the Webmapper from table 3.3 are re-listed in table 4.1 for convenience,

and their corresponding levels of organization and lengths1 were added:

Component Level Length
source devices qualitative variable: short to long
destination devices qualitative variable: short to long
source signals qualitative variable: short to long
destination signals qualitative variable: short to long
links between devices qualitative short (binary: linked or unlinked)
connections between signals qualitative short (binary: connected, unconnected)

Table 4.1 The Webmapper components with their levels of organization and
lengths

Note that transfer functions have been omitted because they are not represented as

part of the constructions; given the endless possibilities for transfer functions, it would be

impossible to conveniently represent them all without introducing unnecessary complexity.

A future version can, however, categorize transfer functions by type (ex: linear, differential,

etc.), to create a more representable component. Transfer functions are therefore left as a

property of a connection to be edited through a separate global “edit” bar at the top of

the interface of each different view. The edit bar can be seen in figure 2.3.

4.2 Webmapper Task and User Interface Task Hierarchies

The process of designing an interface using the OAI model begins with a description of

the tasks. Once the tasks are defined they can then be translated to interface domain

objects and actions through metaphoric representations. Fundamental tasks are usually

high-level and complex, and therefore require a decomposition into several smaller and

1Bertin’s method pertains to a fixed data set, but the context of Webmapper as a user interface implies
possible variations in length. The notion of a variable length has been added to include a range of possible
lengths.

4 Implementation 30

lower-level subtasks. This means that both the task and the interface tasks will be broken

into hierarchies of actions and objects. The goals of the software listed in Section 3.1

translate to two high-level tasks:

1. configure mappings between signals of devices on the libmapper network

2. visualize the devices, signals, links, and connections

As a demonstration of how the OAI model was used to design the new interfaces, the

subtask that is the most fundamental and repeated action performed by the software is

presented. It is then be broken into a hierarchy of even lower-level subtasks before it is

translated into the interface domain. Four different hierarchies of interface subtasks are

actually presented, and each one corresponds to a different view inside Webmapper.

The Task Domain

The subtask presented is: “create a connection between two signals”. The following

list decomposes the subtask into four smaller, lower-level subtasks:

1. select a source signal pertaining to a particular device

2. select a destination signal pertaining to a particular device

3. define the transfer function for the connection

4. create the connection

The User Interface domain

The first interface task hierarchy was created by following a very direct translation into the

user interface domain. It is shown in table 4.2 and it describes the hierarchy associated

with the hive plot that’s implemented in the hive view.

This approach is acceptable for smaller-scale libmapper networks and will allow map-

pings to be created easily between two (or a small number of) devices. However, as the

number of devices increase it makes sense to organize signals by device. This is the ap-

proach libmapper takes by organizing its data into a two-tiered structure: signals pertain

to device, and a link between devices is required before their signals can be connected.

This organizational approach is better suited to larger network environments with multiple

DMIs or software synthesizers, and it creates the task hierarchy that is associated with the

list view shown in table 4.3.

4 Implementation 31

1. view the complete set of signals
2. select a source signal pertaining to a particular source device
3. select a destination signal pertaining to a particular destination device
4. define the transfer function for the connection
5. create the connection

Table 4.2 Interface Task Hierarchy A (Hive Plot)

1. view the entire set of devices
2. select a source device

(a) view the set of source devices
(b) select a source device

3. select a destination device
(a) view the set of destination devices
(b) select a destination device

4. create a link between the selected devices
5. select a source signal

(a) view the set of source signals
(b) select a source signals

6. select a destination signal
(a) view the set of destination signals
(b) select a destination signals

7. define the transfer function for the connection
8. create the connection

Table 4.3 Interface Task Hierarchy B (List View)

4 Implementation 32

Although libmapper’s structure is organized into two steps for creating mappings be-

tween signals (i.e., by first creating a link and then creating a connection), there is no

requirement that all user interfaces follow the same procedure. This is because links can

be made automatically without requiring the user to create them explicitly; when the

user makes a connection between two signals, the software can automatically check if the

corresponding devices have a link, and if not, it can create the link before creating the

connection; when the user requests to remove a connection, the system can check if there

are any other connections between the corresponding devices, and if not, it can remove

the link. For this reason, we can define a third task hierarchy that exclude the steps for

linking, shown in table 4.4. This hierarchy is associated with the adapted hive plot that’s

implemented in the hive view.

1. view the entire set of devices
2. select a source signal

(a) view the set of source devices
(b) view the set of signals of the desired device
(c) select a source signal

3. select a destination signal
(a) view the set of destination devices
(b) view the set of signals of the desired device
(c) select a destination signal

4. define the transfer function for the connection
5. create the connection

Table 4.4 Interface Task Hierarchy C (Adapted Hive Plot)

The fourth and final interface task hierarchy used in Webmapper was designed to modify

the notion of linking by allowing the user to view a set of signals pertaining to unlinked

devices. This is the approach taken by the grid view and the task hierarchy is shown in

table 4.5.

4 Implementation 33

1. view the entire set of devices
2. select a source device

(a) view the set of source devices
(b) select a source device

3. select a destination device
(a) view the set of destination devices
(b) select a destination device

4. create a new view with the selected devices
5. select a pair of signals

(a) select the view with the desired device’s signals
(b) view the set of source signals
(c) view the set of destination signals
(d) select the cell corresponding to a pair of signals

6. define the transfer function for the connection
7. create the connection

Table 4.5 Interface Task Hierarchy D (Grid View)

4.3 The Grid View

Description

The grid view was created by representing the components of links and connections as

cells of a grid. Sources and destinations are grouped associatively and distributed along a

respective dimension of the grid; sources are distributed along the horizontal axis to create

columns and destinations along the vertical axis to create rows. Element namespaces are

used as the label markers along each axis, and elements are ordered lexicographically for a

consistent layout. Cells of the grid represent a possible link/connection between the pair

of devices/signals at the corresponding row and column. An unlinked/unconnected cell is

grey and a linked/connected cell is blue. The assignment of dimension is subjective and

was chosen arbitrarily.

The grid view implements the interface task hierarchy D from table 4.5. The grid

view follows the same pattern as the list view by dividing the mapping description into

two constructions: one for devices (called the “devices grid”) and one for signals (called

the “signals grid”). When the grid view is initialized, the user is presented both grids;

the devices grid is on the left and populated by all devices declared on the network; the

4 Implementation 34

signals grid is on the right and initially empty. Unlike the list view, the ability to see

device signals is not an automated process through device linking. Devices must be added

to the signals grid explicitly by selecting a device label (or a cell corresponding to a pair

of devices) and then pressing the “Add” button; signals of the added devices will then

be displayed in the signals grid. Devices are removed from the signals grid in the same

manner using the “remove” button. Cells of devices that are included in the signals grid

are indicated using texture and orientation; a vertical or horizontal line is added to cells of

added source or destination devices respectively, creating an easily identifiable “+” symbol

for cells corresponding to an included pair. A screenshot of the interface can be seen in

figure 4.1.

Fig. 4.1 A sample of the grid view interface with arbitrary data. The devices
grid is on the left and it has one device pair added to the signals grid on the
right. Cells of included source and destination devices have a vertical and
horizontal line respectively. Blue cells correspond to links or connections, and
selected cells have a red border. The image shows the visual feedback created
by placing the mouse cursor over a cell in the grid.

Preset Views

The grid view is equipped with functionality for managing multiple configurations of the

signals grid using what was named “presets”. Once the desired devices have been added

4 Implementation 35

to the signals grid its configuration can be saved as a preset, causing its list of included

devices to be stored in memory. Presets are managed using a drop down list in the top

right portion of the interface. By creating multiple presets, the user can quickly switch

back and forth between different self-defined sub-views of their system.

Linking and Connecting

To create links or connections, users can select and navigate among cells of the grid using

the computer keyboard or mouse. The selected cell is highlighted in red, and cells of the

corresponding row and column are highlighted to help guide the eye as it searches for the

corresponding labels of the row-column pair. Once a cell is selected, a link/connection

can be made or removed by clicking on buttons at the bottom of the interface or by using

keyboard shortcuts. If a connection is made between signals of unlinked devices, a link

is created automatically and displayed in the devices grid. If the last connected signals

between a pair of devices is removed, the link is also removed. The grids support the

selection of multiple cells at the same time.

As in the list view, the ability to change properties of a connection is done through the

global edit bar at the top of the screen (not shown in figures).

Namespace Filtering

When the data set grows large, it becomes more difficult to find specific labels. Inspired by

the list view, the grids also support namespace filtering. The filters will display only those

devices/signals matching the supplied regular expression criteria. Unmatched elements are

removed temporarily from the display, and can be made visible again by clearing the filter.

Zooming

The grids are equipped with two methods of zooming. By default the grids are set to ‘zoom

to fit’, meaning that the zoom level will constantly resize itself to keep all devices/signals in

view. Users can also set a custom zoom level by using the provided GUI buttons to zoom

in or out, or by using the zoom-scroll sliders for either dimension. These custom sliders

were extended from the JQueryUI2 slider widget. The sliders offer feedback pertaining to

2http://jqueryui.com/

4 Implementation 36

the current zoom level and position; the handle sizes of the sliders are proportional to the

percentage of the grid that is currently in view, and their position reflects the position of

the view with respect to the entire grid. Zooming is achieved by clicking on the button at

either end of the handle and dragging it to the desired proportion. Scrolling is achieved by

clicking and dragging the handle itself. Zooming out in both zoom modes is not restricted

to a certain maximum size, however at a certain point labels begin to overlap; this decision

to allow overlapping labels was made as a trade off for a visualization that can represent

the maximum number of signals. Figure 4.2 shows the signals grid at a custom zoom level.

Fig. 4.2 A sample of the signals view mode with arbitrary data at a custom
zoom level. The zoom-scroll bars provide feedback on the zoom level and
position inside the grid. The image shows the user clicking and dragging a
handle (highlighted orange) to adjust the zoom level. The right hand side of
the upper menu bar can be used to switch between signal view presets.

Maintaining Aspect Ratios

Both methods of zooming maintain aspect proportions, keeping cells of the grid as squares.

This decision was made for aesthetical reasons, but also to avoid distorting the shapes of

the GUI elements that are representing qualitative components (i.e., cells varying in width

4 Implementation 37

and height could impart a misleading representation to elements of equal importance).

When in zoom-to-fit mode, the grid keeps all cells in view by zooming to accommodate

the largest dimension with respect to the aspect ratio of the grid. With the custom zoom

mode, scrollbars are provided for separate dimensions but they are linked when zooming

to maintain aspect ratios.

View Modes

The grid view initially displays both grids, but two additional view modes are available to

display a single grid at a time and maximize the grid area. Grids in all view modes are

dynamic and will resize to fill the maximum space defined by the browser window. An

example of the devices view mode containing 39 source devices and 19 destination devices

is showin in figure 4.3.

Fig. 4.3 A sample of the devices view mode with arbitrary data. The left
hand side of the upper menu bar can be used to switch between view modes
or to add devices into the signals grid.

4 Implementation 38

Keyboard Shortcuts

Keyboard shortcuts are provided for all of the user interface tasks, including adding devices

to the signals grid, switching the view mode to display both or a single grid, saving presets,

cycling between saved presets, moving the selected cell by 1 or 3 indices, toggling a con-

nection, and zooming in or out. When both grids are displayed, a small black square in the

upper left corner of the grid area indicates which grid is active and will receive triggered

keyboard shortcuts. Once familiar with these shortcuts, the interface becomes completely

accessible through the keyboard, eliminating the need to use the mouse, and effectively

increasing the speed at which more experienced users can configure mappings.

4.4 The Hive View

The Hive Plot

Krzywinski’s Hive plot [13] places nodes on radially-oriented linear axes. The plot gets its

name from the orientation of its axes and curved lines connecting nodes resembling the top

of a beehive. The non-overlapping axes provide an uncluttered layout, and unlike network

representations that define their structure based on aesthetics, the hive plot structure is

defined by two attributes derived by the structure of the underlying network. This creates

a consistent layout representation when the network has a consistent structural profile, and

aims to provide a “visual signature” of the underlying data. The hive plot considers three

guidelines:

1. rules that govern assignment of nodes to axes,

2. rules that govern layout profile of axes (i.e., position, scale and orientation), and

3. rules that control the format of edges drawn as curves between nodes.

Description of the Hive View

The hive view was created using the interface task hierarchy A (table 4.2). The catego-

rization of components from table 4.1 translate easily into two axes: one for source signals

and the other for destination signals. Signals are represented by nodes and are assigned

correspondingly to either the source or destination axis. Bezier curves represent connec-

tions between signals. The axes are perpendicular to maximize space, but viewed from a

4 Implementation 39

simulated perspective to mimic a three-dimensional space. Unlike the list view, the hive

plot is not organized into a two-tiered structure and links do not need to be made explicitly.

Furthermore, links and devices are not represented explicitly because they can be inferred

through the representation of connections and signals respectively. Devices (represented

through their nested signals) are grouped by position along their axis using the principle

of proximity, and are color-coded by the assignation of a random color.

Connections are represented by smooth bezier curves joining the connected nodes.

Transfer functions are not represented, but a future version can incorporates categories

of transfer functions through the use of another visual variable, such as color or texture

(e.g., dashed lines) on the connecting lines. A screenshot of the interface can be seen in

figure 4.4.

Fig. 4.4 An example of the hive view’s hive plot interface with arbitrary
data. The mouse cursor can be seen in the plot hovering over the source
device “/Source2”, causing all its connections to be highlighted.

Node coordinates in a hive plot are typically derived from the absolute or rank-ordered

value of a node parameter relating to the network [13]. However, since devices and signals

are qualitative components with no universal ordering, and since the meaning of signals are

4 Implementation 40

established through their names, this was not the route taken in the hive view. Instead,

signals are ranked lexicographically according to their namespace, a property detached

from the structural properties of the network. This decision was made to provide the most

consistent layout when devices, signals, and connections are added or removed, in hopes of

providing the a memorable visual signature as the mapping evolves.

Description of the Adapted Hive View

A second hive view called the adapted hive plot was created by modifying the rule that

governs the layout profile of axes. Motivation for this second view mode was to provide

more variety in the imagery created by the visual signatures of the plot. The containment

of signals to two axes in the hive plot substantially limits the range of positions in both

dimensions at which nodes could be placed, thereby reducing possible variations in the

imagery of the plot. Furthermore, when the mapping description is large, the available

space in which to place nodes becomes problematic when there are only two axes.

In the adapted hive plot an axis is created for every device. Signals are then represented

by nodes placed on the axis corresponding to its parent device. Grouping of nodes by

proximity is replaced by axis assignment, but the assignment of color remains as an aid in

identification. Axes are oriented and spaced out equally around the center of the display,

with the upper half of the display for sources and the lower for destinations. When the

mapping description contains only one source and one destination device, the adapted hive

plot resembles the original hive plot, but as devices are added the visualization becomes

more varied in its display. An example with four source and six destination devices can be

seen in figure 4.5.

Identification of Signals and Visual Signatures

Labels are omitted on the plot itself with the original intention of placing more focus on

the visual signature. However, since elements in the plot can ultimately only be identified

through their namespace, this is achieved using an interactive table found on the left hand

side of the display. The table consists of two hierarchical lists, one for sources and the other

for destinations. The hierarchy is defined by two levels: devices and their nested signals.

The plot and table are equipped with interactive capabilities to aid in identification of

signals and in recognition of subsets of the visual signature; by placing the mouse cursor

4 Implementation 41

Fig. 4.5 An example of the Hive view’s adapted hive plot interface with
arbitrary data. The connection between “/Source1/Signal3” and “/Destina-
tion5/Signal1” has been selected by the user and the interface provides visual
feedback: signal names are highlighted in the table, the nodes and connection
line in the plot are highlighted and bolded, and the signal names are shown
in the blue bar at the bottom of the interface. Additionally, the mouse cursor
can be seen in the plot hovering over the source device “/Source1” causing it’s
connections to be highlighted.

over a device (i.e., a device label in the table, or an axis in the adapted hive) all the nodes

and connections associated with the device are highlighted; by placing it over a signal (i.e.,

a signal label in the table, or a node in either hive view), all the connections associated

with the signal are highlighted. Mousing over a device is shown in both figures 4.4 and 4.5.

Similarly to the grid view, the table is equipped with text filters allowing the user to

enter a regular expression to restrict the displayed signals to matching namespaces.

4 Implementation 42

Connecting and Linking

The adapted hive view uses the interface task hierarchy D from table 4.5. Mappings can

created or destroyed by selecting a source and destination signal either in the table or the

plot, and using the provided “connect” and “disconnect” buttons. As usual, connection

parameters are edited through the global edit bar at the top of display (not shown in

figures).

4.5 Technical Implementation Details

This section describes the technical implementation, introducing the relevant architectural

patterns and describing the final structure.

HTML5 Compatibility

Webmapper was originally developed to run in web browser with intentions of being cross-

platform compatible. Webmapper uses the Python programming language3 to register a

“monitor” that communicate with the libmapper network. The monitor acts as the com-

munication bridge between Webmapper’s HTML components and the libmapper network;

it is thus capable of triggering all libmapper functions such as creating or modifying links

and connections, or querying the libmapper network to discover any aspect of its data.

By running in a web browser, development of the Webmapper extension made use of

HTML54 compliant strategies including:

• Hypertext Markup Language (HTML): the core language of the World Wide Web 5

• Javascript (JS): a scripting language used to script web content 6

• Cascading Style Sheets (CSS): a style sheet language used for describing presentation

semantics of HTML documents. 7

• Scalable Vector Graphics (SVG): an XML-based format for two-dimensional vector

based graphics that supports interactivity and animation 8

3http://www.python.org
4http://www.w3.org/html/wg/drafts/html/master/
5http://www.w3.org/TR/html51/
6http://www.ecma-international.org/publications/standards/Ecma-262.htm
7http://www.w3.org/TR/css-2010/
8http://www.w3.org/TR/SVG11/

4 Implementation 43

In addition, JQuery9, a library built atop JS, was sparingly used to benefit from its

higher-level procedures that require less code than typical JS.

4.5.1 MVC and PAC Architectural Patterns

An overall structure was created and added to Webmapper borrowing strategies from both

the model-view-controller (MVC) and the presentation-abstraction-control (PAC) architec-

tural patterns. Design patterns aim to make code more organized, and this seemed as a

wise route to take considering the specification for multiple interfaces, and to provide a

software tool to the community that is easily maintainable.

The MVC architecture was originally described from its use in the Smalltalk-80 system

[12] and it structures the application into three types of modular components. The model

of an application is the domain-specific software simulation or implementation of the ap-

plication’s central structure. It represents the application’s data, and contains functions

for manipulating the data. Views display aspects of the model and deal with everything

graphical. They can request data from the model and are responsible for its display. Views

can be nested and contain other subviews or be contained within superviews. Controllers

are used to send messages and requests to the model, and provide the interface between the

model with its associated views and the user input devices (e.g., keyboard, mouse). Note

that the MVC specifications include “pluggable views” capable of handling user input like

a controller.

MVC has the notion of dependents, where views and controllers of a model are reg-

istered as dependents of the model to be informed whenever something in the model is

changed. A typical interaction cycle is as follows: the user takes some input action and the

active controller notifies the model to change itself accordingly; the model carries out the

prescribed operations, possibly changing its state, and broadcasts to its dependents (views

and controllers) that it has changed; upon notification of change views can then inquire

to the model about its new state, and update their display if necessary. Controllers may

change their method of interaction depending on new states of the model.

Given that Webmapper will be used to display only a single view at a time, the MVC

architecture was decided as somewhat excessive; instead of defining a controller for each

view, and instead of having both the controllers and views handling user input, the cre-

9http://jquery.com/

4 Implementation 44

ated architecture intends to provide a more centralized interaction cycle that’s simpler to

implement and understand.

Subsequent research and browsing on community-driven forums for practical examples

revealed that there are several differing interpretations and implementations of MVC. For

example, Burbeck describes how active and passive MVC differ in how dependents are

notified of changes in the model [2]. Leff and Rayfield even refer to PAC as the same

thing in spite of notable differences [14]. All MVC implementations, however, share the

key concept of separating the user interface from the underlying data.

The PAC model [3] is similar to MVC, and it structures the application into three parts:

the presentation defines the input and output behavior of the application as perceived by

the user; the abstraction corresponds to the semantics of the application along with the

functions that it is able to perform; the control part contains the mapping between the

abstraction and presentations, and is intended to manage the overall interaction between

the user and the application. PAC differs from MVC in two main points. First, message

passing in MVC must maintain consistency through all the three components, so the notion

of control is spread across all structured components (i.e., the model, view and controller)

whereas it is explicitly centralized in PAC (i.e., in the control). Second, PAC combines

input and output behaviour into one component (i.e., the presentation) whereas MVC

distributes them across two objects (i.e., the view and controller).

4.5.2 Final Architecture

This section describes the final architecture inspired by the MVC and PAC patterns. Ter-

minology from the MVC components has been maintained although their implementations

have been modified.

The View

The view is responsible for displaying desired elements of the model. It is organized by a

main “superview” that holds a container for individual views (e.g., the list, grid, and hive

views) to be loaded in and out. Views can be selected and loaded using the drop down

menu at the top of the display.

When the application is initialized, the main view loads the first subview in the list

(i.e., the list view) and sends a request to initialize the model’s data. When a new subview

4 Implementation 45

is selected, the main view saves any view specific settings, unloads the current sub-view,

loads the new subview, and if necessary, restores the previously saved sub-view settings.

The view contains a reference to the model and the controller notifies the view when

there is a change in the model. The view handles the notification by querying the model

and updating its display. Views query the model, but they do not modify it.

The edit bar is located at the top of the display, and is structured as an MVC style view-

controller pair. It remains static throughout all the subviews and has its own controller

that is responsible for notifying it of any selected connections and for communication with

the python monitor for modifying connection parameters.

The Controller

The controller is responsible for all communication between the views and the monitor;

it takes any updates from the python monitor and passes them to the model; it watches

for any commands triggered by the loaded view and passes it to the monitor; and it is

responsible for notifying the view to update its display when there is any change to the

model.

The Model

The model is constantly maintained (through the controller) to mirror all devices, signals,

links, and connections in the libmapper network. The model contains functions for higher-

level querying from the view. Though views can access the model, only the controller

modifies it.

Flow of Interaction

The final structure of the Webmapper architecture can be seen in figure 4.6. The figure

shows the sequencing of a command issued by a user in the view. Arrows in blue follow

the flow of commands to libmapper; arrows in red follow the flow of data coming from

libmapper. Yellow circles represent elements inspired by the MVC and PAC architectural

patterns. The grey background encompasses all Webmapper components. The flow of

interaction from the user to libmapper is as follows:

1. The user interacts with the view, triggering a command destined for the libmapper

network.

4 Implementation 46

2. The command is sent to the controller.

3. The controller receives the command, formats it, and makes a request to the monitor.

4. The monitor translates and passes the request to libmapper.

5. The result of the processed request is returned to the monitor.

6. The monitor translates the result and passes it to the controller.

7. The controller updates the model with the supplied data from the monitor.

8. The controller notifies the view that the model has been changed.

9. The view queries the model and updates its display.

Note that Webmapper being a collaborative environment, changes can result from other

users modifying the network. In that case, the flow of interaction will begin at number five

(the blue arrows).

Benefits

Although the initial implementation demanded more code, the final modular design cre-

ates a robust system that is easily understandable and maintainable. The set of possible

commands from the task domain is made obvious in a single location (i.e., the controller)

by explicitly listing all events (and their parameters) being watched for from both the sub-

view’s placeholder container and the python monitor. This means that when creating a

new view, the developer does not need to be concerned with lower-level implementation

details of communication with the python monitor or libmapper; he or she simply needs to

be aware of the events that can be triggered by the view and implement them according to

the view’s needs. The view has only a single function that needs to be implemented for up-

dating the display upon notification of a change. Furthermore, the views are isolated from

the monitor and the controller is responsible for mediating messages between them. This

means if implementation details of the monitor or libmapper change, only the controller

needs to accommodate the changes; whereas if the views were communicating directly with

the monitor then all the views would need to be updated as well.

Inheritance

The grid view was faced with needing multiple grids that were mostly identical in function

and behavior. There were, however, notable idiosyncratic differences between functions in

the devices and the signals grid. For example, the device grid has functionality for adding

4 Implementation 47

and removing devices into the signals grid, and displays textures on the cells of included

devices. Another example is that devices and signals have different properties associated

with them. Classical object-oriented inheritance was used to resolve situations that re-

quired additional or modified functionality; a grid “superclass” was created containing all

the shared functionality, and then a class was created for each the devices grid and the

signals grid, inheriting shared functionality from the superclass but adding or overriding

any functions that needed special behavior. A similar situation was faced and resolved in

the hive plot for handling both view modes. The object-oriented principles of inheritance

was invaluable in making the code robust and reusable.

4.6 Summary

This chapter thoroughly described features of the two new interfaces created in Webmap-

per and their different methods of interaction. Their conception was shown to follow a

methodological procedure using principles from data visualization and user interface design

described in the previous chapter. It has been shown that different styles of visualization,

combined with different user interface task hierarchies, enable different methods of inter-

action with the mapping layer. The HTML-based technical implementation details of the

extension were described, and the final structure of the software that was created using

principles from the MVC and PAC architectural design patterns were described to make

the codebase easier to maintain and expand.

4 Implementation 48

Fig. 4.6 Webmapper’s final architecture and an example flow of interaction.

49

Chapter 5

Discussion

This chapter introduces the criteria used for the evaluation of the alternate interfaces in

Webmapper. Informal feedback was collected through a small number of test users, and

discussions pertaining to each criterion is presented for each interface. The three interfaces

are then ranked from one to three (from better to worse) for each criterion.

5.1 Properties of the Data Set

Webmapper was designed to be a generic mapping tool to be used in situations requiring

mappings between DMIs and sound generating devices. For this reason, the data set is not

fixed and will vary among different users and contexts. For example, Webmapper can be

used by a single person creating mappings in a single DMI; at the other extreme, many

users can work in collaboration on the mappings between a network of DMIs. Therefore, a

mapping description in Webmapper can consist of any number of devices, signals, or con-

nections, and the software interfaces must take this into consideration. For issues relating

to the number of devices and signals we refer to the size of the mapping; for issues relating

to the number of connections we refer to the complexity of the mapping.

5.1.1 Size

For practicality we define minimum and maximum values for the number of devices and

signals that typically will not be surpassed. The values were chosen through discussions

with the developers of Libmapper to establish a set of possible scenarios in which the

5 Discussion 50

software would be used based on past and expected applications. The maximum values

defined here are therefore not explicit and the user interfaces should also be able to handle

data sets that surpass these values. Values beyond the minimum are out of scope and

would not require the use of software.

• Minimum: one source device and one destination device, with two signals per device

• Maximum: 80 source devices, 80 destination devices, and 100 signals in a single

device

We define small as less than five, medium as between 5 and 25, and large as greater

than 25. Within the range defined by the minimum and maximum, we can assume any

possible combination of small, medium, or large sizes of source devices, destination devices,

source signals, and destination signals.

5.1.2 Complexity

The libmapper software currently supports one-to-one and one-to-many mappings between

signals1. One-to-one mappings imply that the complexity of any link will not grow beyond

the cardinality of its smallest set; one-to-many mappings imply that the complexity of

a given link is limited by the cardinality of its range (i.e., the set of destination signals).

Libmapper may in the future support many-to-many mappings, implying that theoretically

n by m connections could become possible, where n and m are the cardinalities of the

domain and range2.

When mappings become more complex their representation becomes more challenging,

and each different view can be evaluated on how different levels of complexities can be

perceived. A data set with few connections will be referred to as simple whereas one with

many connections will be called complex.

Note that this notion of complexity can also be applied to links, however complexity

in links do not necessarily correspond to complexity in connections; this is because a link

is defined by libmapper as two devices with a potential connection between their signals.

1Although not officially supported, many-to-many mappings can be created, causing a destination signal
to alternate randomly between data from its connected sources. Ideally many-to-one mappings would have
some algorithm to combine the incoming data, but since that algorithm is not yet implemented many-to-one
mappings are not officially supported.

2though it is unlikely that every source signal will be connected to every destination

5 Discussion 51

Links are actually used differently in all three views. Inside the list view they are an

organizational feature used to place signals of two devices into view inside a newly created

tab; the grid view automates the linking process ensuring that only devices with connected

signals are linked; and the hive view does not represent links at all. Therefore, the concept

of complexity can be applied to links but it should be discussed independently of complexity

in signals. Links can be many-to-many mappings because the connections to signals of a

destination device can come from signals of different source devices.

5.2 Evaluation Criteria

5.2.1 Human Factors for Evaluation

The various views were evaluated based on the five measurable human factors taken from

Shneiderman [22]:

1. Time to learn. How long does it take for typical members of the user community

to learn how to use the commands relevant to a set of tasks?

2. Speed of performance. How long does it take to carry out the fundamental tasks?

3. Rate of errors by users. How many and what kinds of errors do people make in

carrying out the fundamental tasks?

4. Retention over time. How well do users maintain their knowledge over time?

5. Subjective satisfaction. How much did users like using various aspects of the

system?

5.2.2 Evaluation of the Secondary Goal

The adaption from text-based interfaces to graphical interfaces requires the visual repre-

sentation of abstract concepts when designing UI objects and actions [22]. Furthermore,

principles of data visualization studied by Bertin and others ([26] [1] [25]) provide methods

for improving the way data is displayed to achieve informative representations.

Each view inside Webmapper provides an alternate representation of the underlying

network and follows a different set of user interface objects and actions (Section 4.2).

Therefore, each view utilizes a different method of visualization; the list resembles a bipar-

tite graph, the grid displays a matrix of signal pairs with binary values (i.e., mapped or

5 Discussion 52

unmapped); and the hive view provides graphical plots of all the signals in the network.

Therefore, each view has a varying level of abstraction in the visualization that can be

evaluated on its ability to cope with different data sets. A greater ability to visualize was

attributed to representations that could represent larger and more complex data sets.

5.3 Evaluation

User evaluation consisted of the author monitoring three users as they used the software

to accomplish a mapping task. The users were researchers at the IDMIL who expressed

interest in the thesis project and volunteered to test the new user interfaces. They all used

the software to create mappings for their own particular DMI that they were prototyping.

Prior to the evaluation users were familiar with the old GUI to Libmapper described in

section 2.2.3, before its refinement into the current design of the list view. Therefore, at

the time of the evaluation users had some familiarity with the list view and no familiarity

with the grid or hive views. Each user was given a 5-minute explanation of the new views

to describe their workflow. They were then asked to create a mapping for their DMI first

using Webmapper’s list view, and then to erase it and recreate the same mapping first

using the grid view and then using the hive view. The author silently observed the users

while performing these tasks, and the evaluation was followed by a discussion with the

user to investigate the observations made and to collect general user feedback beyond what

was observed. In additional to these three informal user test cases, the author received

feedback from a graduate alumni of the IDMIL who evaluated the new interfaces at his

own discretion.

5.3.1 Time to Learn

For each view, all users managed to accomplish the fundamental task of creating a single

mapping between two signals within minutes. There were, however, some differences in the

time and difficulty that was required when learning how to use each interface.

In the list view, users were comfortable with exploring the interface through clicking

and dragging. The list view also provided an obvious sequence of steps to follow; after

having managed to create a link, a new tab pops up immediately, begging to be clicked on.

Users intuitively clicked on the tab, saw a list of signals, and made a connection between

two signals. After the first successful mapping was created they were able to create others

5 Discussion 53

with ease. This could be because the users are already familiar with computers so the

knowledge from tables, tabs, and clicking and dragging is transferred. Furthermore, the

technique of connecting by dragging to create lines has a familiar metaphor; it resembles

patch cables in real-life audio equipment, and the method of connecting objects in the

popular visual programming languages Max/MSP3 and PD4.

With the grid view the response was somewhat different. It was less intuitive for some

users to work with lists spanning two dimensions and cells as intermediate UI objects.

To other users, this seemed as equally intuitive as the list view, perhaps because of their

familiarity with other audio hardware and software. For example, digital drum machines

arrange tracks as rows and subdivisions of the beat as columns, with cells corresponding

to note on or offs; MIDI editors behave similarly; and the monome5 arranges its buttons

in a grid. Furthermore, zoom sliders are common in audio editing programs (e.g., Apple’s

Garageband6). So there is potential for the transfer of knowledge from other applications in

music, though perhaps a smaller percentage of users will be familiar with these applications

then in the list view.

Additionally, the grid view was designed with features that were less automated than the

list view. By allowing the creation of multiple user-defined views through adding devices

and saving presets, more complexity is added in the user interface tasks that requires more

time to learn.

The hive view was the quickest to learn. Both plots display all the signals on screen in

a single image, and provides the simple ability to click two nodes and make a connection.

The table provided in the hive view offers the same functionality by displaying a complete

list of the signals with clickable elements. Although less intuitive, the process was simple to

understand and learned quickly. The interface tasks lacked any additional steps necessary

in the grid and hive view to create links and views, and therefore was the simplest to learn.

Conclusion

The time to learn was proportional to the complexity of the user interface task hierarchy,

affected by the user’s familiarity with other software applications with similar metaphors

3http://cycling74.com/products/max/
4http://puredata.info/
5http://monome.org/
6http://www.apple.com/ca/apps/garageband/

5 Discussion 54

or UI objects and actions.

Ranking: 1. Hive 2. List 3. Grid

5.3.2 Speed of Performance

The speed at which users could perform the mapping tasks varied in each view. Performance

was monitored after the users successfully grasped all functionality in the complete set of

UI actions. The dominant factors affecting speed of performance was the ability to locate

signal names and the organizational structure of the UI actions, and the evaluation was

therefore broken into two parts.

A. Ability to Identify Signals

The list view enabled the best performance time for locating and identifying signals. It

devotes most of its display for this task, and the UI objects are the namespaces themselves.

Placing device or signal names in a vertical alphabetized list enabled quick retrieval of a

particular device or signal with small to medium sized data sets, whereas the time required

to locate a signal increased significantly with longer data sets. By placing sources and

destinations associatively in two separate lists, they could be dealt with independently.

The grid view also distributes sources and destinations associatively into two separate

lists, but user performance was impeded because the vertical labels of the columns were

difficult to read. Furthermore, by using cells to represent pairs of elements, an additional

step is created requiring the user to locate the labels in the corresponding row and column

of the cell.

The hive view also provided associative lists of signals as a column on the left of the

display, but in this case both lists for sources and destinations share the same area, and the

designated area was small compared to the list view. These differences impeded the speed

at which signals could be located in the lists. Although the lists are hierarchical, locating

a particular signal becomes tedious as items are expanded. Users also had the option to

locate signals using the plot, but the evaluation of speed in this case is not so simple. At

first glance, the plot takes the longest to identify signals because it requires mousing over

individual elements in the plot or in the list. But since the adapted hive plot provided a view

of signals that was graphical and color-coded, once familiar with the assignment of devices

to axes and signal color-codes the process of locating signals is substantially improved;

5 Discussion 55

being unfamiliar with the assignment, however, means that locating signals in the plot

is impossible. Although the hive view was evaluated as the slowest in user performance,

it should be noted that for small data sets, although dependent on the user’s ability to

memorize color codes and locations of nodes, it can be the quickest way to locate signals.

Conclusion

The speed of performance is tightly associated to the speed at which signals can be identified

and selected. Any difficulties or additional steps that arise in the process of identification

slows down performance. The time required to locate a signal in a list-based view is propor-

tional to the length of the list, suggesting that intelligent filtering and sorting capabilities

are important. Memorization of signal locations in the visual representation can eliminate

the reliance on textual labels and speed up performance.

Ranking: 1. List 2. Grid 3. Hive

B. Performance of Tasks Based Organizational Structure

When the data set grows larger, the organizational structure of the UI objects and actions

start to have a greater effect on the overall performance to carry out the tasks.

The hive view can be seen as a hybrid view because if offers both a list-based view and a

graphical representation. The list is especially difficult to navigate when the size of the data

set is large; although the list is hierarchical, navigation is challenged when multiple items are

expanded. Regarding the plot, the interface actions prescribe a method of interaction that

is also quite challenging. They require the user to decipher complex visual representations

that can be created by large and complex data sets. They also require skillful control of the

mouse; Fitts law [4] predicts that the time required to move the mouse to a given target

proportional to the distance to the target and inversely proportional to its size, meaning

performance of interaction in the plot is challenged by small nodes spread across the entire

display.

When the data set is large, the list view’s organizational structure of creating links

improves the overall performance of the tasks because the interface becomes more man-

ageable through tabbed subviews. The grid view offers a similar organizational structure,

but it benefits from a particular advantage: its ability to experiment with signals spanning

any combination of source or destination devices. In the list view, a tab is automatically

5 Discussion 56

created for every linked source device and it will contain the signals corresponding to all

the source’s linked destination devices. Therefore, alternating a connection between two

particular source devices requires a constant switching between tabs. The grid view can

accommodate this interaction with its custom user-defined views that can be populated

with signals from any device. Although there is an initial overhead in defining the custom

views, performance is improved as the data set grows larger. Furthermore, when the data

set gets larger, it can be faster to create custom views accessible through a drop down list

then to search among a multitude of automatically generated tabs.

It was noticed that because scrolling and zooming using the mouse wheel was not

implemented in the grids, zooming and scrolling required the manual use of the scroll bars.

This impedance can be overcome through keyboard shortcuts for moving the selected cell

(i.e., to scroll) or zooming, but the use of these shortcuts varied among the users; some

were simply more comfortable with or preferred to use the mouse. This was not considered

for the evaluation because mouse-wheel scrolling could easily be added in the future.

Conclusion

The user interface task hierarchies define the flow of interaction when carrying out tasks

and strongly influence the speed of performance. The list organizes signals through links,

the grid through custom views, and the hive uses a single display for all signals; each view

offers its own set of advantages and disadvantages with varying speeds of performance.

Ranking: 1. Grid 2. List 3. Hive

5.3.3 Rate of errors by users

When performing the fundamental task of creating a mapping between two signals, the

fundamental type of error is the creation of a connection between the wrong signals (i.e.,

two signals not intended to be mapped to each other). Although the informal tests that

were done with users was not sufficient for any quantifiable comparisons to be made, some

assumptions can still be made. The ability to correct the error is also taken into consider-

ation.

The fundamental error can stem from two possibilities attributed to the design of the

user interface:

1. The misidentification of the intended signal. The user searches for the user

5 Discussion 57

interface object associated with the intended signal but identifies it incorrectly and

selects the UI object associated with another signal.

2. The accidental manipulation of an unintended signal. The user correctly

identifies the UI object associated with the intended signal, but accidentally performs

an action on another UI object.

In the first case, the error is related to the identification of signals, the first factor

described in Section 5.3.2 as being closely related to speed of performance. In the second

case, the error is related to the design of the UI objects and actions. In both cases, the

design of the UI objects and actions are involved in influencing the rate of errors because

it establishes how signals are identified and how UI objects are manipulated.

Because the hive view the offers both the table and the plot, it is difficult to predict

the rate of errors. The table in the hive view functions similarly to the lists in the view

except that its design is restricted to a smaller space. This can lead to more selection errors

as labels are smaller and packed closer together. The plot can lead to many selection errors

since the labels are not supplied and identifying a signal by a node requires matching a

node from the plot to an item in the list. In spite of its difficulty in identifying signals, the

hive view provides an area at the bottom of the screen that shows the currently selected

signals. This reduces the chance of creating an error in mapping by having an area for

identification that can be checked before the connection is made.

The list view was found to provide the quickest means to identify signals, and its

design caters to an error-free process for selecting signals. When the data set is small, the

rows in the each list expand vertically to fill the available space, making for easily selectable

UI objects. When the data set is large, rows are forced into their minimum height and

scrolling is enabled. List of sources and destinations can be scrolled independently to place

the intended signals into view. The automatic highlighting of elements on mouseover’

provides clear feedback to the user and reduces the chance of errors. Once the signals

have been correctly identified and selected, the keyboard shortcut creates the connection

without any chance of error. Dragging and dropping, however, can increase the rate of

errors as it requires precise control of the mouse.

The grid view offers a clear selection process through the use of the keyboard short-

cuts. The source and destination can be selected independently by pressing the horizontal

or vertical arrow keys respectively. The mouse can create more difficulty in the selection

5 Discussion 58

process because it requires precise control and forces the identification in both dimensions to

be managed simultaneously. The difficulty is compounded by the vertical oriented column

labels that are difficult to read. The automatic highlighting of the selected cell and corre-

sponding row, column and labels provide visual feedback and allow for the confirmation of

the selected signals before making the connection.

Conclusion

The rate of errors is strongly connected with the ability to identify signals and the manner

in which the user interface is manipulated with the keyboard or mouse. Visual feedback

during interaction aids in the identification process. Interaction requiring difficult mouse

movements can increase the rate of errors. Allowing a clear confirmation of the selected

signals before making the connection significantly reduces or eliminates the rate of errors

attributed to the UI. Since all views allow the selection to be confirmed before creating the

connection, and because further testing would be required to evaluate the success rate of

interaction with each interface, the rank ordering of this evaluation criteria was equalized.

Ranking: 1. List, grid, and hive

5.3.4 Retention over time

Monitoring of the different users spanned the timeframe of a single semester, as they were

observed during the end phase of the development of the new interfaces. The only evalu-

ations that can be made in terms of retention over time pertain to the short term and are

by no means quantifiable.

Within the described time frame, all the users managed to retain how the interfaces

worked without issues. This could be because the fundamental task of creating mappings

is relatively simple and straightforward so once the knowledge of how to carry out the task

in the user interface domain is learned, the process can easily be remembered.

This category of evaluation was deemed less important than the others. Those who

were interested in using the tool to create mappings with DMIs were motivated to learn

the interface. Not only are the Webmapper interfaces pretty quick to learn, but once

learned the tasks become pretty intuitive and hard to forget. Furthermore, if forgotten, the

process of remembering is very quick. It was therefore decided to exclude an evaluation of

each view using this criterion.

5 Discussion 59

5.3.5 Subjective satisfaction

Although completely subjective, users seemed to have an overall preference towards a spe-

cific view. In some cases, the preference was divided into using a particular view for a

particular task; in one case, a user preferred to use the list view to create the mappings

but switched to the grid view as a visualization.

Note that each user had their own unique data set pertaining to their own set of devices.

In each case, the data did not surpass a network arrangement of more than 6 devices or 20

signals per device. This limited observations and discussion to smaller data sets, whereas

user feedback would most likely be affected by larger data sets.

The overall preference was affected by familiarity with other software applications; one

user who was familiar with Max/MSP preferred the list view whereas another who was

familiar with digital drum machines preferred the grid view. Some commented how the

orderly arrangement of cells in a grid made them feel more at ease when compared to a

disorderly display of intersecting lines in the list and hive views. Another user was more

interested in the visual representation created by the adapted hive plot, and was willing

to work with it in spite of the intersecting lines and lack of labels in the plot. On the

other hand, difficulties created by the interface caused one user to abandon a particular

view completely; this happened in the grid view with a user became frustrated with the

vertical labels. Another enjoyed using the grid for its semblance to the game Battleship,

a grid-based puzzle guessing game played between two players, perhaps hinting towards a

“fun factor” that motivates a user to overcome difficulties created by the interface.

Conclusion

To configure mappings, users preferred to use a view that offered the best sense of an inter-

nal locus of control (i.e., golden rule number 7 from Section 3.3.2). Difficulties created by

the interface in performing the fundamental task severely affected this preference. Famil-

iarity with other similar interfaces had a strong influence, along with the fun-factor created

by the UI object and actions. The ability to visualize the network had some effect.

Because visualizing the network only supports the fundamental task of creating map-

pings, final evaluation was based on subjective satisfaction towards the fundamental task

of actually creating the mappings, and pertained to small and medium sized data sets only.

Further testing would be required, but it is believed that the grid view’s ability to orga-

5 Discussion 60

nize the mappings into multiple customizable subviews would provide for a better locus of

control when the data set is large.

Ranking: 1. List 2. Grid 3. Hive

5.3.6 Ability to Visualize

In the list view, the crux of visualization takes place in the middle column between the

lists of sources and destinations on either side. Connections are represented in the middle

column by curved lines joining elements from each side. The space devoted to this column

is less that a third of the available space in the display. This facilitates a simple means to

make correspondences between sources and destinations for small and non-complex data

sets. However, as the data set grows larger and becomes more complex, connection lines

begin to overlap and become difficult (if not impossible) to follow. An example of a complex

set of devices is shown in figure 5.1, where the complexity creates a blob of overlapping

lines and multiple rows of tabs.

In the grid view, the crux of the visualization takes place in the grid of cells, with

approximately half of the available space devoted to it. By prescribing this much space

to the visualization, the task of identifying signals becomes more difficult as the labels

compete with the grid for space in the construction. The grid view suffers distinctively

from long signal namespaces that will claim more area in the display; it also suffers from

requiring identification of labels along two dimensions, with vertical labels that are hard

to read. However, this becomes a tradeoff for an enhanced visualization; the grids have

an obvious advantage in their ability to represent larger and more complex data sets.

The grid eliminates the use of lines that can be difficult to follow and is thus able to

represent the maximum size and maximum complexity of data. In certain situations, it

can represent the maximum size and complexity in a single image7. Although namespace

labels become illegible a zoom level that accommodates large data sets8, this is a tradeoff

from the identification task to the visualization task, and interactive features can improve

the situation somewhat (e.g., a fisheye zoom on mouseover’ of labels, or pulling out the

corresponding labels on mouse over of a cell). An example large and complex set of devices

is shown in figure 5.2. The image demonstrates that the mouse over interactivity aids in

7in the signal grid, it depends on how many devices have been added, and the number of signals
pertaining to each added device

8approximately 50 elements in either dimension

5 Discussion 61

Fig. 5.1 Example of a large and complex data set in the list view. The image
shows many-to-many mappings in an arbitrary and generic set of devices.

identification even when the mappings are complex. Additionally, some patterns of linked

cells can be easily identified, such as a sequences of horizontal, vertical, or diagonal lines,

a block of cells, repeating patterns, or the absence of links in a set or rows or columns.

The hive view dedicates about two-thirds of its available space to the visualization.

Both view modes (i.e., the hive plot and the adapted hive plot) serve small to medium

data sets but the adapted hive is also suited for large data sets. The adapted hive can

accommodate data sets with maximum size and complexity, and contrary to the grid view,

it can support displaying all signals from all devices on the network in a single image.

Although the hive represents connections by lines that can be hard to follow, it has other

characteristics that make it more geared towards a thriving as visualization: the layout

profile of axes and nodes, the use of color codes, and the unique visual signatures created

by the plot. Although limited in its speed of performance when carrying out the main task,

this becomes a tradeoff for an interesting and powerful visualization. In the final evaluation,

5 Discussion 62

Fig. 5.2 Example of a large and complex data set in the grid view. The im-
age shows many-to-many mappings in an arbitrary and generic set of devices.

the adapted hive plot thrives with small to medium sized and simple data sets, has a larger

space devoted to the construction, and has interactive capabilities for highlighting subsets

of the visual signature; however, it suffers from the difficulty created by the connecting

lines, especially with large and complex data sets. An example large and complex mapping

is depicted in figure 5.3.

Conclusion

The ability to visualize was proportional to the increased use of the visual variables from

Section 3.1, the size of the space designated to the construction, and its ability to represent

larger and more complex mapping descriptions. The ability to visualize competes challenges

the ability to identify signals by labels.

Ranking: 1. Grid 2. Hive 3. List

5 Discussion 63

Fig. 5.3 Example of a large and complex data set in the hive view. The
image shows many-to-many mappings in an arbitrary and generic set of signals.
The interface highlights connections interactively based on the position of the
mouse.

5.4 Summary

This chapter presented the evaluation criteria and then applied the criteria to the evaluation

of the three different user interfaces inside Webmapper. Evaluation was based on informal

monitoring of and feedback from test users who used the system to configure small to

medium sized mappings, along with the author’s explorations into using the system with

larger sets of generic data. The evaluations were thoroughly described and Figure 5.4

shows a graphic representation of the rankings from each section. Note that the criteria for

subjective satisfaction was ranked for small to medium sized data sets only. The results

5 Discussion 64

indicate that alternate interfaces provide different methods of interaction and visualization,

each with strengths and weaknesses that will cater to different users in different situations.

Fig. 5.4 Ranking of the alternate interfaces according to each criterion. Note
that ranking for subjective satisfaction was for small to medium sized data sets
only.

65

Chapter 6

Conclusions and Future Work

This chapter summarizes the work presented in this thesis, offers conclusions, and discusses

future work and possible research.

6.1 Conclusions

This thesis began by exploring issues relevant to mapping in digital musical instruments.

The case for mapping strategies in DMIs began by first looking at the sound production

mechanisms in traditional acoustic instruments. Sound generated by acoustic instruments

is the result of the physical properties of the instrument itself, and typically the control

surface is directly involved. Instruments that were designed with components to enhance

playing techniques were then described because they start to create an intermediate layer

between the gestures that excite the instrument and the resulting sound. The church organ

was presented as an example of an instrument containing an external source of energy

and a mapping strategy to connect parts of the instrument’s interface with parameters of

sound. This example provided a basis towards the description of the three components of

a DMI: the sound generating component, the control surface, and the mapping between

them. The T-Stick was presented as an example digital musical instrument, with details

of its specification of sensors and construction.

Mapping in DMIs was shown to not be a trivial task and it can drastically alter the

character of the instrument including how it is played and sounds. The libmapper and

Webmapper software mapping tools developed at the IDMIL were presented as the source

of motivation for the thesis project, and an extension was created to Webmapper’s list-based

6 Conclusions and Future Work 66

GUI by developing two alternate interfaces. The new interfaces were intended to provide

an alternate method to configure and to visualize mappings, and their development was

methodologically guided by principles of data visualization and the object-action-interface

model of user interface design.

The first new interface was based on the construction of a grid to represent connections

between pairs of signals. This type of view derived most of its power by being able to

represent mappings without the use of connecting lines; lines connecting elements provide

a direct and intuitive way to visualize mappings, but as the data set grows larger and more

complex they become difficult, if not impossible to follow. The grid is capable of dealing

with large data sets of maximum complexity, and although it increased the number of steps

required to identify signals in the GUI, it provides a method of interaction similar to other

audio applications that some found intuitive and fun to use.

The second interface was created inspired by the Hive Plot, where nodes are placed

on radially-oriented linear axes. The construction yielded interesting results by creating a

visualization in a simulated three-dimensional space. Although the view was not optimal

for identifying signals or configuring connections with larger and more complex data sets,

it provided interesting visualization possibilities and opportunities for interaction with the

underlying data and its “visual signature”.

Evaluation of the interfaces was done through informal monitoring of and feedback from

test users that were familiar with the concept of mapping in DMIs. Specific categories of

criteria was used for the evaluation, and each of the three interfaces demonstrated different

strengths and weaknesses in each category. The results conclude that there is no single

“best” interface and that alternate interfaces provide different methods of interaction and

visualization that will cater to different users in different situations.

The technical implementation of the Webmapper extension was structured by con-

cepts borrowed from two architectural patterns, and designed to be easily understandable,

maintainable, and expandable. In conjunction with previous efforts to develop libmapper

and Webmapper, the final architecture lays the foundation for additional interfaces to be

added relatively quickly because programming efforts on any new interfaces can focus on

higher-level, view-centered concepts and need not be concerned with lower-level libmapper

implementation details.

6 Conclusions and Future Work 67

6.2 Future Work

6.2.1 Enhancements to the New Interfaces

Based on the feedback received from users, it is believed that improvements can be made

to both the grid and the hive views to circumvent some of their shortcomings that were

observed during user testing.

In the grid view, an improvement would be to increase the legibility of the vertical

labels by rotating them towards a horizontal orientation. To enhance the grid view’s

ability to provide custom views on subsets of the system, it can be modified to support

showing, hiding, and reordering of individual rows and columns in the signals grid. Other

enhancements can include implementing mouse wheel scrolling, dragging and dropping, a

full-screen mode for expert users, and improved keyboard control.

The following enhancement is an alternate direction that the adapted hive view can take.

By allowing the user to change the length and position of device axes or to define their

own color-coding scheme, the plot can be customizable, encouraging a more memorizable

layout and “visual signature”. This, along with introducing interactive tooltips with signal

names, can effectively reduce (or eliminate) the need for the table of signal namespaces.

6.2.2 Hive Plot Node Assignment

As explained in Section 4.4, node coordinates in a hive plot are derived from the absolute

or rank-ordered value of a node parameter relating to the network [13]. Although not

the route taken in the current Webmapper hive plot, future research can alter the rules

that govern the placement of nodes to axes by using graph metrics. This would facilitate

investigations into mapping strategies by relating them to structural properties of their

graph.

6.2.3 Introducing Orderable Components

Bertin describes the process of “diagonalization” [1] that involves organizing the visual

representation of a grid through permutations of rows and columns. The process will

enable correspondences to be observed from the resulting image that could range from null

correspondence to perfect correspondence, or towards non-variation of one of the dimensions

(see figure 6.1).

6 Conclusions and Future Work 68

Fig. 6.1 Patterns of null correspondence (A), perfect correspondence (B)
and non-variation of one of the dimensions (C) in a reorderable grid.

If orderable or quantitative properties can be assigned to signals (e.g., energy, position,

brightness, color, etc.) representations of the mappings can benefit from universal order-

ing. The grids can be especially interesting because they facilitate making correspondences

between two or more components, as shown in figure 6.2. By introducing orderable compo-

nents into the data set, future research into mapping strategies can utilize data visualization

principles made possible by the grids inside Webmapper’s grid view.

Fig. 6.2 Diagonalization of a reorderable grid with three orderable compo-
nents. The hypothetical components are represented and ordered by position
in each axis and by color value. (A) shows perfect correspondence and (B)
shows null correspondence.

6.2.4 Introducing a difference utility

New challenges have emerged as Libmapper has been used in an increasing number of pro-

duction environments. The main challenge addressed here is the need to compare different

mappings to each other. This need became apparent during the production of “Les Gestes”

[11], where engineers, performers, and composers were participating in production work-

shops and experimenting with a network of DMIs. Due to the complexity of the mappings

6 Conclusions and Future Work 69

and the real-time nature of the experimentation, it became hard to pinpoint differences

between two different mapping configurations.

Webmapper allows mappings to be visualized, but it can be enhanced with function-

ality for comparing different maps to each other. An adapted technique of the “diff” file

comparison utility (for an example implementation see [10]) is proposed for the comparison

of mapping data; the output of the “diff” can then be fed to Webmapper to exploit its

potential for visualization.

70

References

[1] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin
Press, Madison, WI, 1983.

[2] S. Burbeck. Applications programming in Smalltalk-80 (tm): How to use model-view-
controller (MVC. Smalltalk-80 v2. 5. ParcPlace, 1992.

[3] J. Coutaz. PAC, an object oriented model for implementing user interfaces. Proceedings
Interact, 87(2):431–436, 1987.

[4] P. M. Fitts. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology, 47(6):381, 1954.

[5] N.-H. Fletcher and T.-D. Rossing. The Physics of Musical Instruments. Springer-
Verlag, 2nd edition, 1998.

[6] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John
Wiley & Sons, Chichester, 4th edition, 2005.

[7] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchi-
cal data. IEEE Transactions on Visualization and Computer Graphics, 12(5):741–748,
September 2006.

[8] A. Hunt and M. M. Wanderley. Mapping performance parameters to synthesis engines.
Organised Sound, 7(2):97–108, 2002.

[9] A. Hunt, M. Wanderley, and M. Paradis. The importance of parameter mapping in
electronic instrument design. In Proceedings of the 2002 Conference on New Interfaces
for Musical Expression, pages 149–154, 2002.

[10] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Bell
Laboratories, 1976.

[11] Input Devices and Music Interaction Laboratory. Les gestes / gestures. http://

idmil.org/projects/gestes. Aug 2013.

References 71

[12] G. E. Krasner and S. T. Pope. A description of the model-view-controller user interface
paradigm in the Smalltalk-80 system. Journal of Object Oriented Programming, 1(3):
26–49, 1988.

[13] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra. Hive plots—rational approach
to visualizing networks. Briefings in Bioinformatics, 13(5):627–644, 2012.

[14] A. Leff and J. T. Rayfield. Web-application development using the
model/view/controller design pattern. In Proceedings of the Fifth IEEE Inter-
national Enterprise Distributed Object Computing Conference, pages 118–127,
2001.

[15] J. Malloch. A consort of gestural musical controllers: Design, construction, and per-
formance. Master’s thesis, McGill University, Montreal, Canada, August 2007.

[16] J. Malloch and M. M. Wanderley. The T-Stick: From musical interface to musical
instrument. In To appear in the Proceedings of the 2007 International Conference on
New Interfaces for Musical Expression (NIME07), New York City, USA, 2007.

[17] J. Malloch, S. Sinclair, and M. M. Wanderley. A network-based framework for collab-
orative development and performance of digital musical instruments. In R. Kronland-
Martinet, S. Ystad, and K. Jensen, editors, Computer Music Modeling and Retrieval
- Sense of Sounds, volume 4969 of LNCS, pages 401–425, Berlin / Heidelberg, 2008.
Springer-Verlag.

[18] E. R. Miranda and M. M. Wanderley. New Digital Instruments: Control and Interac-
tion Beyond the Keyboard. A-R Publications, Middleton, Wisconsin, 2006.

[19] K. C. Ng. Music via motion: Transdomain mapping of motion and sound for interactive
performances. Proceedings of the IEEE, 92(4):645–655, April 2004.

[20] J. B. Rovan, M. Wanderley, S. Dubnov, and P. Depalle. Instrumental gestural mapping
strategies as expressivity determinants in computer music performance. In Proceedings
of Kansei- The Technology of Emotion Workshop, Genova, 1997.

[21] V. Rudraraju. A tool for configuring mappings for musical systems using wireless
sensor networks. Master’s thesis, McGill University, Montreal, Canada, August 2011.

[22] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 3rd edition, 1998.

[23] D. A. Stewart. Catching Air and the Superman. PhD thesis, McGill University,
Montreal, Canada, February 2010.

References 72

[24] J. Stewart. Single Variable Calculus: Early Transcendentals. Brooks/Cole Publishing
Company, Pacific Grove, CA, 2nd edition, 1991.

[25] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
CT, 2nd edition, 2001.

[26] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann, Am-
sterdam, 2nd edition, 2004.

[27] M. Wright and A. Freed. OpenSoundControl: A new protocol for communicating with
sound synthesizers. In Proceedings of the International Computer Music Conference.
ICMA, 1997.

