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Abstract. This work presents a method for the extraction of instru-
mental controls during guitar performances. The method is based on the
analysis of multimodal data consisting of a combination of motion cap-
ture, audio analysis and musical score. High speed video cameras based
on marker identification are used to track the position of finger bones
and articulations and audio is recorded with a transducer measuring vi-
bration on the guitar body. The extracted parameters are divided into
left hand controls, i.e. fingering (which string and fret is pressed with
a left hand finger) and right hand controls, i.e. the plucked string, the
plucking finger and the characteristics of the pluck (position, velocity
and angles with respect to the string). Controls are estimated based on
probability functions of low level features, namely, the plucking instants
(i-e. note onsets), the pitch and the distances of the fingers (both hands)
to strings and frets. Note onsets are detected via audio analysis, the
pitch is extracted from the score and distances are computed from 3D
Euclidean Geometry. Results show that by combination of multimodal
information, it is possible to estimate such a comprehensive set of con-
trol features, with special high performance for the fingering and plucked
string estimation. Regarding the plucking finger and the pluck character-
istics, their accuracy gets lower but improvements are foreseen including
a hand model and the use of high-speed cameras for calibration and
evaluation.

Keywords: Guitar, instrumental control, motion capture, audio analysis

1 Introduction

The acquisition of musical gestures and particularly of instrumental controls
from a musical performance is a field of increasing interest with applications
in acoustics (Schoonderwaldt et al., 2008), music pedagogy (Visentin et al.,
2008), automatic music generation (Erkut et al., 2000; Maestre et al., 2010;
Pérez-Carrillo et al., 2012), augmented performances (Bevilacqua et al., 2011;



Wanderley and Depalle, 2004) or performance transcription (Zhang and Wang,
2009) among others. On the classical guitar, a performer can produce very dis-
tinct sounds and adjust the timbre by the way the strings are plucked and
pressed (Schneider, 1985). A comprehensive study of guitar controls is described
by Scherrer (Scherrer, 2013). In that study, the principles of guitar playing in
terms of controls are classified into left-hand (fingering) and right-hand (pluck-
ing). Fingering determines the pitch, as well as a set of more complex gestures
such as vibrato, slurs, glissandi or damping. The main parameters during the
plucking process are (a) the plucked string (b) the excitation with nail or flesh,
(c) the plucking position, (d) the plucking velocity, (e) the displacement of the
string during the pressure stage and (f) the angles of the pluck during the prepa-
ration and release stages.

Controlled measurement of every parameter is very difficult especially in a
performance context. Reported methods in the literature generally focus on the
estimation of a single parameter or a reduced set of them and methods are
many times very intrusive. In this work we are able to extract a comprehensive
set of control parameters from real performances by means of a multimodal
combination of motion capture, sound analysis and information from a musical
score. The extracted instrumental controls are the plucking instants (i.e. note
onsets), the fingering (which bones of the left hand fingers are pressing which
strings and frets), the plucked string, the plucking finger, the plucking position
on the string and the plucking velocity and angles at the release stage.

Motion capture, based on high speed video cameras that detect the position
of reflective markers, is used for tracking the position of the fingers and guitar
strings. One problem inherent with optical motion capture is that of occlusion.
Most motion capture involves the entire human body, which implies large body
movements and the occurrence of occlusion is far less than that of small hand
movements. Furthermore, it is the right hand of the guitarist that is extremely
difficult to capture. In this work, motion capture is reinforced with audio analysis
and the indications in the musical score.

Audio is recorded by means of a transducer measuring vibration on the gui-
tar body and analyzed in order to detect the note onsets (Reboursiere et al.,
2012). There exist many different onset detection algorithms and they perform
particularly well with the guitar due to the impulsive characteristics of string
plucking (a comparison of different methods for guitar onset detection is reported
in Reboursiere et al. (2012)). Additionally, the fact that audio is measured as vi-
bration of the guitar plate, makes onset detection even more accurate compared
to a signal captured with a microphone, as the measured signal is not affected
by room acoustics or sound radiation. Conversely to onset detection, pitch esti-
mation algorithms such as de Cheveigné and Kawahara (2002) are not adapted
to the guitar as note sustains are absent and note releases are very large making
notes overlap in time. In order to have a robust estimation of the pitch, we use
the note pitch information from the musical score as a ground truth, after an
alignment to the audio signal.



The procedure for the parameter estimation proposed in this work is shown
in Figure 1. The algorithm starts with (1) the estimation of the plucking instants
and the pitch by onset analysis of the audio signal followed by (2) an alignment
to the score. At each plucking instant (3) the distances from the fingers to
the strings are computed and (4) the possible combination of fret and string is
estimated from the pitch. By means of a probability function based on distances,
the (5) most likely plucked string and (6) and the most likely plucking finger are
estimated. Finally, from the selected string and finger the rest of the parameters
(i.e. the plucking position, velocity and angles) are computed based on Euclidean
geometry.
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Fig. 1. Procedure for parameter estimation. It starts with (1) the estimation of the
plucking instants by onset analysis of the audio signal and (2) pitch extraction by
alignment of the score note onsets to the audio onsets. At each estimated plucking
instant, (3) distances from fingers to the strings are computed. Given the pitch and
the distances (4) a likelihood function is built in order to obtain (5) the most likely
plucked string and fret and (6) the plucking finger. From the selected string and finger
positions, the plucking position, velocity and angle are computed based on Euclidean
geometry.

2 Literature Review

The acquisition of control parameters from musical performances is generally
carried out either directly by measuring with sensors or indirectly by off-line
analysis of an audio signal (Pérez-Carrillo and Wanderley, 2015; Wanderley and
Depalle, 2004). In the case of the indirect acquisition, different methods allow
for the extraction of the plucking position and fingering based on frequency-
domain analysis techniques (Traube and Depalle, 2003; Traube and Smith, 2000)
and time-domain approaches (Penttinen and Vialiméki, 2004). Reboursiere et al.



(2012) are able to detect left and right hand techniques (i.e. discriminating be-
tween left and right hand attacks and detection of right-hand palm-damping and
harmonics) from audio analysis. Abesser and Lukashevich (2012) propose an al-
gorithm that detects plucking parameters and expression styles for bass guitar
playing. Scherrer and Depalle (2012) are able to estimate more complex features
such as the plucking angle of release (AOR) by sound analysis informed with
physical properties of the guitar.

The use of sensors allows to extract more parameters with higher accuracy
and with the potential of acquisition in real time. The main reported techniques
that provide a 3D representation of a live performance are based on mechanical,
inertial, electro-magnetic or optical systems. Mechanical systems imply wear-
ing a mechanical exoskeleton (Collins et al., 2010) that is very intrusive during
performance. Inertial systems, most of them based on gyroscopes that measure
rotational rates, have the disadvantage of being intrusive and of providing rela-
tive movement and not absolute position. Such systems have been used to track
the movements of violin players (Linden et al., 2009). Electro-magnetic field
(EMF) technology used for instance to measure violin bowing controls (Maestre
et al., 2007; Pérez-Carrillo, 2009) is very accurate but generally intrusive and
may have interferences with metallic objects and external magnetic fields. Fi-
nally, optical systems are widely used as they are generally low-intrusive and
allow for highly accurate measurements. Burns and Wanderley (2006) studied
how to capture the left-hand fingerings of a guitarist in real-time using low-cost
video cameras. Their prototype system, using fret and string detection to track
fingertips, was able to successfully identify chords and a series of notes. This
was accomplished without the use of markers on the hands. Two acknowledged
drawbacks of the system are that it can only capture finger movement on the
first five frets of the guitar due to the choice of camera, and there is no way to
address finger occlusion. Although preliminary, it was a first step to a possible
real-time video automatic transcriber. Norton (2008) uses motion capture based
on cameras detecting reflective markers, similar to the system employed for this
research, to measure classical guitar performances. Heijink and Meulenbroek
(2002) researched the complexity of left-hand classical guitar movements using
an active optical motion capture system with four infrared light emitting diodes
placed on the fingernails of the left hand, one on the left wrist, one each on the
right index and middle fingers and three on the body of the guitar. Chadefaux
et al. (2012) used high speed video cameras to manually extract features during
plucking of harp strings.

Other types of measuring techniques can also be found, including methods
based on capacitive sensing (Guaus and Arcos, 2010) to capture left-hand finger-
ing and indirect acquisition from audio (Penttinen and Valiméki, 2004; Scherrer
and Depalle, 2012; Traube and Depalle, 2003; Traube and Smith, 2000). The
selection of a measuring system is largely determined by the objectives of the
research. In this work the main objective is to measure hand controls from real
performances with high accuracy and no (or very low) intrusiveness, which de-



termined the choice for a high speed camera system that captures the position
of small and ultra-light reflective markers as in Norton (2008).

3 Multimodal Data Acquisition

A multimodal database of guitar performances was recorded in order to test and
evaluate the algorithms. The database is composed of ten musical fragments with
an average duration of around one minute, performed by two different guitarists.
The database contains the audio, 3D motion data, information from the musical
score (note onset, note offset, pitch and the ground truth for the parameters
plucked string, plucking finger, fret and left-hand fingering). Audio and Motion
streams were recorded in different computers synchronized by means of a world
clock generator that controls the sampling instants of the capturing devices and
sends a SMPTE signal of 25Hz that is saved as timestamps with the data. Audio
to motion alignment consists of simply aligning the SMPTE timestamps.

3.1 Audio recording

Audio is recorded with a contact microphone that captures the vibration of the
guitar body. The captured signal is better adapted for audio analysis than that
of a microphone as it is not affected by room acoustics or sound radiation. The
audio stream is segmented into notes by means of onset detection based on the
complex domain algorithm (Duxbury et al., 2003). Conversely to pitch detection,
onset detection in guitar playing is very accurate as notes are plucked, which
implies a high energy peak at note onsets (Reboursiere et al., 2012).

3.2 Musical score

The musical score provides the nominal pitch, onsets and offsets of the notes,
which are aligned with the ones detected in the audio. Figure 2 shows an example
using wavesurfer software 4 of an audio segmentation showing three label tracks
that indicate the score onsets and pitch (track .notes) along with the ground
truth for the string (track .string) and the fret (track .fret) to be played.

3.3 Motion Capture

Motion capture is used to track the position of finger bones and articulations as
well as the guitar strings. The capture is optical by means of Qualysis ® high
speed video cameras that detect the position of reflective markers. The main
problem with such optical MoCap systems is marker occlusion. Each marker
needs to be identified by at least three cameras placed at different angles and
planes in order to correctly determine its 3D coordinates. In order to achieve a

* http://sourceforge.net/projects/wavesurfer/
® http://www.qualisys.com/
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Fig. 2. Visualization with wavesurfer software of a fragment of a performed score
showing the waveform segmented into notes together with three label tracks with the
ground truth from the musical score information (the fret, the string and the note
pitch). The segmentation is obtained after the onset detection and alignment of the
score to the detected onsets.

correct identification of the markers, it is necessary a careful placement of the
cameras, the use of models for the hands and the guitar, and if necessary, the
manual cleaning of the data, i.e. assigning the appropriate labels to incorrectly
identified and non-identified markers.

3.4 Hand tracking.

The motion of the fingers is followed by attaching a marker at each finger artic-
ulation as shown in Figure 3. Left-hand fingering estimation is very accurate as
marker occlusion is low. Conversely, the right hand of the guitarist is extremely
difficult to capture as it implies small hand movements and it gets especially
complicated on the markers attached to the fingernails due to the particular
way of playing the guitar (when plucking, the nails face the guitar body). The
Qualisys software includes algorithms for the definition of skeleton models that
are trained with recordings of the hands moving smoothly and allow for the au-
tomatic identification and reconstruction of lost markers from skeleton objects.
Proceeding this way, we achieve a higher rate of correctly recognized marker
trajectories.



3.5 String Coordinates.

The position of the strings is determined by the definition of a guitar Rigid Body
(RB). A RB is a six degrees-of-freedom (6DOF) rigid structure defined by the
position of a set of markers and associated with a local system of coordinates
(SoC) with a corresponding 3D position and orientation with respect to the
global SoC. The position of the markers is constant relative to the local SoC and
their global coordinates can be obtained by a simple rotation and translation
from the local to the global SoC. The guitar RB is built by placing markers at
each string-end as well as reference markers attached to the guitar body. The
markers at the string-ends can not remain attached during a performance as it
would be very intrusive, so they are defined as virtual markers. Virtual markers
are only used for calibration to define the SoC structure. During the actual
tracking, virtual markers are reconstructed from the reference markers.

Special care has to be taken when attaching the reference markers to the
guitar body as the plates are reflective to light, causing interferences with the
markers. In order to avoid these unwanted reflections, the markers are placed
on the edge of the guitar body and outside the guitar plates by means of anten-
nas (prolongations attached to the body). Five reference markers were used and
they were placed as shown in Figure 3 (blue markers). The tracking of the po-
sition of the strings following this procedure achieves a nearly 100% of correctly
reconstructed frames.

Fig. 3. To the left, a 3D visualization of the motion capture. Blue dots are the guitar
auxiliary markers, which are used for the capture of the string positions, red dots
represent the virtual markers on the strings ends, and green markers are the joints in
the body of the performer. At the top-right, one of the capture frames with a camera.
At the bottom-right, the position of the markers in the hands.



4 Low level parameter Computation

The estimation of plucking and fingering features is based on the extraction of
low level parameters, namely, the plucking instant ¢q, the fundamental frequency
(or pitch) fo and the finger distances (both hands) to the strings.

4.1 Plucking instant ¢ty and fundamental frequency fo.

The plucking instants are determined from the audio by means of a note onset
detection algorithm (Duxbury et al., 2003) followed by an alignment and match
to the note start times in the musical score.

Detected onsets (0?) are aligned and matched with note starts in the score
(0%) in order to have a robust estimation that discards false detected onsets and
allows to restore non detected ones. Once the score is aligned with the audio, we
can extract the note pitch fy directly from the score.

The alignment is performed in two steps. First, a window indicating the ap-
proximate start and the end of the performance in the recording must be found
and then, we proceed to the alignment inside the window. The first step is nec-
essary because audio recordings start and finish with a silence of undetermined
duration and the window allows to discard false 0o due to noises outside the
actual performance.

The boundaries of the performance are found by computing a smoothed audio
energy envelope using a time-sliding window of length 100 frames (24ms at a
sample rate of 42100Hz) and by defining a minimum hearing threshold (hg)
as shown in Figure 4. The procedure results in an envelope with high values
of energy around the real performance. The threshold is used to determine the
start and end of the window. The beginning of the performance will be at the
first 04 that lays inside the window and the last note onset is at the last o4
inside the window. Once the boundaries of the performance are determined, the
total score duration is stretched to fit the actual performance duration.

The second step consists of matching 0 (from the stretched score) to o*.
For this we define an algorithm that for each o looks for its closest 03-4. If the

found 034 is closest to of than to o ;, both of and 034 are matched together

and the new time is updated in the stretched score (o}

K2
distances in the score are delayed or advanced 0;9—034)
s

%

is set equal to 03-4 and

. If no match is found for

o7 we consider that we have detected a missing onset:

for i=2:length(o8) {
j=findClosest (oS(i), oA)
if (i==finClosest (oA(j), [0S(i),0S(i+1)1))
match(i,j)

}

function match(i,j) {
diff=0S(i)-0A(j)
0S(i).time=0A(j) .time
for k=i:length(oS(i))
oS(k) .time=0S (k) .time+diff
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Fig. 4. Score to Audio alignment. Energy in the audio is represented as continuous line
in blue and the smoothed energy envelope is depicted with a thick dashed line. The
hearing threshold is the straight dashed line close to zero and the aligned onsets are
the vertical red lines. The boundaries of the recording are found inside the smoothed
energy envelope and over the hearing threshold.

4.2 Finger distance to the strings

Distance from the markers in the fingers to the strings is computed as the average
distance in a small window around the note onsets. A distance of zero would
indicate that a finger is in contact with the string, but in practice, there is an
offset in the distance as markers are placed on the back of the hand and this
offset has not been calibrated. However, the method does not need to know the
exact distances as it is based on the probability of being in contact with a string.

Left Hand. The left-hand presses the strings at specific frets, determining
this way the unique pitch that can be played at each string. A string can be
pressed not only with the finger tips but with any part of the finger and the
pressing position (and therefore the pitch) is discretized by the position of the
frets. For this reason, both fingers and strings are represented as segments. A
finger-segment is determined by two consecutive markers in the same hand and a
fret-segment is defined as the string segment between two consecutive frets. The
coordinates of the finger-segments are obtained directly from the measured left-
hand marker positions and the position of the string-segments are to be found
along the string lines at distances from the nut z and the bridge xp given by,



rp(j—1)
k
zp(j—1)=zs—an(j—1),

ry(j) = +aon(j—1),

(1)

where xg is the string length, k = 17.817 is a known constant that relates
distances among frets and j = 1..24 is the fret number.

At each plucking instant (determined by the note onsets) we compute the
distances from fret-segments to any of the finger-segments and we define the left
hand distances function d, (s, f,b), where s is the string, f the fret-segment and
b the finger-segment or bone. Distances are computed as the shortest Euclidean
distance between two line segments (Eberly, 2000). Additionally we define,

dL(S’f) = mbindL(s, fa b)7

dr(s) :mfindL(s,f). @

Right hand. In a similar way to the left hand, we define the right hand distances
function dg(s, fg), being fg the finger, as the distances from the finger-nails to
the strings, so distances are computed as the shortest distance between a point
(finger nail) and a line (string) (Eberly, 2000). Additionally we define,

dr(s) = min dr(s, fg). (3)

4.3 Likelihood functions

Control parameters are estimated based on likelihood functions obtained from
the previously described low level features. Let Lp(s, f|pitch) be the likelihood
of pressing a fret f and plucking a string s given the pitch. As the confidence of
the pitch is very high (it is the ground truth determined from the score) we can
use a binary function to discard impossible combinations of frets and strings.
Its value is set to one at the combinations where the pitch can be produced
and zero otherwise. This function restricts the possible frets to at most one per
string, so we can also define Lp(s|pitch) = Lp(s, f|pitch).

To determine the likelihood that a finger is touching a string, we define a
function 6 that maps the distances dy, and dg (€ R) to likelihood (€ R € [0..1]).
The range of distances of interest (where the finger could be considered to be
in contact with the string or very close) is from a few millimeters below the
string (negative distance) to around lem above. We therefore need an asymptotic
function that tends to 0 for large values of the distance and tends to 1 for small
(positive and negative) distances. For distances around 0.5 cm, for which it is not
clear if the finger is in contact with the string, the likelihood should be around
0.5. The function is defined as 0(d) = arctan(d x 10)/7 + 1/2, where d is the
distance, and therefore,



Ly, =6(dyp),

Lp =0(dg). )

In addition, we need to define the likelihood of playing an open string (i.e.
not stopping the string with the left hand fingers, f = 0). It is computed as
Lp(s,0) =1—3 ¢ Lr(s, f), that is, one minus the sum of likelihoods of being
pressing the other frets in the same string.

5 Control Parameter Estimation

From the low level features we estimate in a first step the plucked string, the fret,
the left-hand segment pressing that string at that fret and the plucking finger.
In a second step, the plucking position, the plucking velocity and the plucking
angles are computed using the coordinates of the string and plucking finger.

5.1 Plucked String (string)

It is the most likely string to be plucked at a note onset. The likelihood that
a string is being played (Lg) is determined as a function of the pitch and the
distances to the strings of the left and right hand fingers, d;, and dg.

string = max(Lg(s))

Ls(s)=Lp(s) x L(s) x Lr(s),

5.2 Plucking finger (finger)

Once we know the plucked string (string with maximum Lg), it is straightfor-
ward to obtain the right-hand finger that plucks the string. It is the closest finger
to the string, that is, the finger that maximizes the likelihood function Ly given
the string:

finger = rsnzaggﬁ(dza(s, f9)). (6)

5.3 Fingering (fret and bone)

Ir refers to the position of left-hand fingers on the strings. Once the string, and
the left hand finger distances have been estimated we can define the fret and
bone as

fret = gn;g@(dds, )
bone = max 6(di(s, f,b)).

5=8i,J=7;

(7)



5.4 Plucking Position (C)

The plucking position, velocity and angle are computed from the string and
finger based on Euclidean Geometry as shown in Figure 5. Be A and B the
plucking string ends, and P the position of the plucking finger, the plucking
position is the point of contact of the string and finger. Due to the position of
the markers on the back of the hand, this may not be zero, so we define the
point C as the point in the string that is closest to P. This point computed as
the projection of the point P on the string,

C = AB- AP * AB. (8)
Given the parametric definition of a line in 3D, we can define the point C' as
C=A+tAB,0<t<1,teR. (9)

From eqs. 8 and 9 we derive the value of t = (AB - AP)/|AB|? for the point C.
The plucking distance to the bridge (i.e. plucking position) is just the length of
the segment |AC|, which corresponds to the value of the dot product AB - AP.

p (finger marker, nail)

string  g(nut)

N>

A
X A (bridge)

Fig. 5. Computation of plucking position, velocity and angles based on Euclidean Ge-
ometry.



5.5 Plucking Velocity (v)

The velocity is computed as the derivative of the marker trajectory at the pluck-
ing instant.

5.6 Plucking Angles (a and )

Two angles are estimated as shown in Figure 5. The angle « is the angle between
the projection of the tangent of the finger trajectory at the plucking instant
on the plane xz and the axis z. The second angle [ is the angle between the
projection of the tangent on the plane xy and the axis y. In order to simplify
geometric computations, all points (string-end positions and finger trajectory
around the plucking instant) are expressed relative to the local axis of coordinates
(zyz), where the vector Z is the unitary vector in the direction from the beginning
of the sixth string to the beginning of the first string, vector 7 is the unitary
vector in the direction of the playing string towards the frets, and Z is obtained
as the cross product Z =7 x g.

Any point P in global coordinates can be expressed in local coordinates P’
by rotation (R) and traslation (T):

P =(P-T)+«R, (10)

where the traslation is given by the coordinates of the vector that connects the
origin of coordinates from the global to the local system and the rotation is
expressed as an Euler rotation matrix 6, which is computed from the rotation
angles of the local coordinate axis with respect to the global axis. By using local
coordinates, the computation of the projection of the finger trajectory F(t) on
the planes zy and zz (i.e. Fyy(t) and F,.(t)) becomes straight forward as they
merely correspond to the coordinates of the axis. The tangents to the projected
trajectories at the plucking instant have a slope equal to the derivative of the
projected trajectories at that point, and this slope is also the tangent of the
angles, so that:

F.,(t
o = arctan dgzjf( )715 =1y
11
[ = arctan Fa:(t) t=t .
- dt s b= 10-

6 Results

The performance of the presented method depends on a correct onset detection
and marker identification. We can assume a very high rate of onset detection
that is further improved by the alignment to the score (see section 4) and marker
identification rates are specified in Table 1, expressed as percentage of correctly
identified markers relative to all frames as well as to the plucking instants. Iden-
tification of string markers achieves a rate of nearly 100% but finger markers
results are very variable depending on the marker.

5 http://mathworld.wolfram.com /Euler Angles.html



Table 1. Percentage of correct marker identification taking all frames into account (all
frames) and only frames at plucking instants (at plucks). The three joints in the left
hand follow an order from closer to the palm towards the fingernail.

Marker % all frames| % at plucks
String-ends 99 100
Left-index (3 joints) 99, 99, 83(100, 100, 87
Left-mid (3 joints) 99, 99, 60| 100, 99, 58
Left-ring (3 joints) 100, 99, 77(100, 100, 71
Left-small (3 joints) 99, 99, 30{100, 100, 21
Right-thumb (nail) 99 100
Right-index (nail) 79 76
Right-mid (nail) 82 75
Right-ring (nail) 70 64
All 4 right hand markers 50 41

6.1 Left Hand

Left hand markers have a higher rate of correct identification as, in general, they
are always visible to the cameras. Additionally, fingering (i.e. left hand) is highly
reinforced with the pitch, which largely determines the string and the fret, so
even if a marker is lost, the closest finger is 100% correctly estimated.

6.2 Right Hand

Regarding the right hand, only one marker per finger is considered, which is
the one placed on the fingernail. It is especially these markers during the note
onsets that are difficult to track due to occlusions. An average of 75% of the
markers are correctly identified but only around 41% of the note onsets have all
four markers (the four nails) and only 64% of the plucks with the ring-finger are
detected.

Two improvements have been added to the tracking of the right hand. First,
markers are searched within a small window around the plucking instants, which
allows to increase the chances that the plucking instant frame has every marker.
For instance, in Table 2 we can see the difference of correctly estimated plucking
fingers using a window of 3 frames (46%) and a window of 21 frames (58%).
Second, marker trajectories are interpolated in order to fill missing gaps. Dif-
ferent types of interpolation were compared. If the marker trajectory gaps are
small the type of interpolation does not affect the estimation but if the gap is
big, the selection of the interpolating algorithm becomes very important. The
best performing interpolation is a piecewise cubic hermite spline achieving rates
for string and fret estimation of 100% and around 75% for the right and left
fingers. In Table 2 we can find a summary of the results with different windows
and interpolation algorithms.



Table 2. Percentage of correctly estimated plucking finger using different window sizes
w (which allows to look for missing markers in frames around a plucking instant) and
different marker interpolation algorithms: no interpolation (no interp.), cubic splines
(spline), cubic smoothing splines (csaps), nearest neighbor (nearest), linear and piece-
wise cubic hermite polynomial (pchip).

% plucking finger
no interp., w=3 46
no Interp., w=21 58
spline, w=3 64
csaps, w=3 64
nearest, w=3 73
linear, w=3 75
pchip, w=3 78

6.3 Position, Velocity and Angles

The error of the characteristics of the pluck (position, velocity and angles) is
estimated by using notes where the plucking fingernail markers are correctly
identified. For these notes, plucking parameters are computed and their values
compared to an estimation of the same pluck, but with missing marker position
information. The trajectory of the marker is removed at a window of 10 frames
around the note onset and a new trajectory is estimated through pchip inter-
polation. Such an evaluation results in a Correlation Coefficient of 0.83 for the
plucking position, 0.75 for the velocity and 0.73 and 0.72 for the plucking angles
« and 3 respectively.

7 Conclusion

In this study we showed a method for the extraction of a comprehensive set
of control parameters from guitar performances based on hand-motion capture
and supported by audio analysis and information on the score. The extraction
of control parameters will allow for future research on the interaction between
the guitar and the player, the relationship between gestures and sound and the
analysis of different playing techniques to mention a few fields.

Results show that by combination of multimodal information, it is possible
to estimate such a comprehensive set of control features, with special high per-
formance for the fingering and plucked string estimation. The two most relevant
contributions of the method are (1) the combination of multimodal data. Solely
based on motion capture it would be very complicated to detect the correct on-
sets or plucking instants. Additionally, the availability of the ground truth pitch
highly reinforces the detection of string, fingering and fret; (2) interpolation of
marker trajectories and the use of a plucking window makes marker identification
more robust and boosts the estimation rates.



Several improvements are foreseen for the future. (1) Develop an algorithm
for pitch extraction from audio adapted to the guitar to avoid the use of a
musical score; (2) build a 3D flexible object model of the hand and a hand
motion grammar in order to restrict the possible positions of the flexible object
and be able to reconstruct missing markers from the position and angles of the
identified joints; (3) Use of a finger-tip model in order to calibrate the position of
the real nail and flesh with respect to the marker; (4) The use of high speed video
cameras to calibrate and evaluate data from the motion capture and deepen the
analysis of the plucking process (start, contact and release) as done in Chadefaux
et al. (2012).
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