
Practical Evaluation of Synthesis Performance on the
BeagleBone Black

Ivan Franco
Input Devices and Music Interaction Lab

CIRMMT, McGill University
Montreal, QC, Canada

ivan.franco@mail.mcgill.ca

Marcelo M. Wanderley
Input Devices and Music Interaction Lab

CIRMMT, McGill University
Montreal, QC, Canada

marcelo.wanderley@mcgill.ca

ABSTRACT
The proliferation and easy access to a new breed of ARM-
based single-board computers has promoted an increased
usage of these platforms in the creation of self-contained
Digital Music Instruments. These directly incorporate all
of the necessary processing power for tasks such as sensor
signal acquisition, control data processing and audio syn-
thesis. They can also run full Linux operating systems,
through which domain-specific languages for audio comput-
ing facilitate a low entry barrier for the community.

In computer music the adoption of these computing plat-
forms will naturally depend on their ability to withstand
the demanding computing tasks associated to high-quality
audio synthesis. In the context of computer music practice
there are few reports about this quantification for practical
purposes. This paper aims at presenting the results of per-
formance tests of SuperCollider running on the BeagleBone
Black, a popular mid-tier single-board computer, while per-
forming commonly used audio synthesis techniques.

Author Keywords
Embedded systems, Sound Synthesis, BeagleBone Black,
SuperCollider

ACM Classification
C.5.3 [Computer System Implementation] Microcomputers
— Microprocessors, D.2.8 [Software Engineering] Metrics—
Performance Measures, J.5 [Computer Applications] Arts
and Humanities

1. INTRODUCTION
Many Digital Music Instruments (DMI) rely on system ar-
chitectures composed by two main elements: the controller
and the computer. The controller is responsible for cap-
turing information about the instrumental gesture of the
performer and sending control data to the computer, which
in turn executes the required sound synthesis and mapping
processes [10].

But as DMI developers further advance the knowledge
of underlying subjects like sound synthesis, computer-aided
composition or human-computer interaction models, a fun-
damental goal remains: how can these new instruments pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.
Copyright remains with the author(s).

vide the same gratifying immediacy and musical expressive-
ness as their acoustic counterparts?

A new breed of miniaturized embeddable systems grants
the ability to rethink DMI architectures and consider the
advantages of integrating both elements, by incorporating
all the necessary components for the control and production
of sound into body of the instrument.

Some possible advantages of integrated designs have al-
ready been a topic of discussion among DMI developers.
Longevity is one of the strongest arguments, since the abil-
ity to have dedicated processors, that would not need to be
stressed by having to perform day-to-day computing tasks,
could help prevent performance degradation or software ob-
solescence [3]. Another relevant feature of self-contained
instruments is that they do not require a previous setup
between controller and computer, which often results in a
need for continuous checking of connections (physical and
virtual) and more importantly mapping algorithms. This
often tedious and laborious task, without which the instru-
ment cannot be played, might detract from the immediacy
found in other types of musical instruments. Self-contained
instruments also have the potential to offer more focused
and contextualized functionality, which could significantly
boost ease-of-use and still provide less-tech savvy users with
the access to idiosyncratic aspects of computer music. As
noted by Berdahl and Chafe, self-contained instruments are
“complete and independent of external computer systems,
so they can be operable for a longer period of time and
can be demonstrated at a moment’s notice” [2]. But the
most obvious drawback in the use of embedded comput-
ing in DMIs is that these small computers will naturally
have less processing power than regular computers. Thus
it would be relevant to try to quantify their performance in
order to better understand if they are appropriate for the
desired goals of sound generation and processing.

2. EMBEDDED COMPUTING
In the last twenty years an appreciable number of new com-
puting platforms have emerged with the goal of support-
ing innovation in the hobbyist and do-it-yourself commu-
nities, granting NIME developers and researchers access to
prototyping technologies that otherwise would be confined
to industrial production. The first wave of these products
was associated to the democratization of micro-controllers,
starting with Parallax’s BASIC Stamp and later the Ar-
duino, which has now been in the market for about ten
years. The overwhelming success of these technologies might
be mainly due to their ease-of-use and low-entry barriers.
Non-professional developers could now write code in simpli-
fied high-level languages, like Basic or Wiring, and program
micro-controllers by simply connecting them directly to per-
sonal computers, without the need for complex hardware
programmers or compiling toolchains.

We are now observing a rapid emergence of a second wave
of embedded computing platforms, related to the prolif-
eration of systems-on-chip (SoC) and their application in
single-board computers (SBC). The recent boost of perfor-
mance of ARM-based SoCs is derived from the growth of the
mobile computing industry and the need to reach relatively
high processing power in reduced footprints, while simulta-
neously targeting extremely low power consumptions. We
believe these mobile-oriented processors will eventually sub-
stitute the ones found in today’s desktop and laptop com-
puters targeted at the more casual user. In broad terms
we can say that the same computing power of the desktop
computer of 10 years ago now fits any pocket.

3. ARM SINGLE-BOARD COMPUTERS
Although most new mobile devices offer novel presenta-
tion layers and interaction paradigms, through their touch-
focused user interfaces and context-aware applications, be-
hind their external appearance most of them rely on tra-
ditional operating systems, generally some variant of Unix.
Many single-board computers based on these newer SoCs
are capable of performing all of the functionalities expected
from the traditional computer, providing connectivity to ad-
ditional peripherals like controllers, screens or mass storage,
often through standard protocols and connectors.

Although ARM processors have considerably different ar-
chitectures from X86 processors, current compilers are well
adapted and mature enough so that using computer code
that had originally been written for Linux and X86 proces-
sors becomes quite straightforward. The ability for these de-
vices to run well established domain-specific software tools
and libraries, which have been in development for a long
time, maturing to become de-facto standards in determined
communities, is a big advantage over past embedded com-
puting architectures that normally demanded dedicated im-
plementations, many using much lower-level code.

Many of these SBCs also provide direct access to the mi-
croprocessor, mapped to a General Purpose Input / Out-
put (GPIO) socket, through which many of the pins can be
exposed for additional tasks, like digital communication to
other integrated circuits or analog signal acquisition. Essen-
tially this type of morphology grants these computers with
the same type of expansion found in micro-controller devel-
opment boards like the Arduino, in which integration with
more more elaborate electronics setups or special purpose
daughter boards becomes relatively easy to accomplish.

This easy portability of well-established software, coupled
with general-purpose digital and analog I / O, a small foot-
print and low power consumption grants these ARM-based
SBCs with most of the necessary features to suggest de-
signs where they could become the main and only processor
for a Digital Music Instrument. Indeed these new pocket-
sized computers have already fueled interest from the NIME
community, since these characteristics pave the way for the
creation of new breeds of self-contained digital music instru-
ments.

4. PREVIOUS WORK
The SoundLab [6] is one of the first attempts at developing
a fully portable and auto-sufficient DSP unit. The system
was created by Steve Curtin in 1994, during a residence
at STEIM. SoundLab represented a natural evolution from
SensorLab, a previously existing portable signal acquisition
system, that could be clipped to a belt, thereby providing
more freedom of movement on stage.

The Gluiph [8], developed in 2003 by Kartadinata, was
one of the earliest implementations of a base system for

integrated DMIs using single-board computers. Kartad-
inata mentions that his motivation for creating a self-
contained instrument was to foment “mature instruments
with a stronger identity,” surpassing the fragmented nature
of most live electronic music setups.

The Gluiph system was based on a custom board de-
veloped by Mtronix, powered by a Philips TriMedia CPU.
Instead of using custom software, and in order to achieve
maximum flexibility, the instrument was programmed using
a port of Pure Data.

In Fungible Interfaces[7], Hollinger, Thibodeau and Wan-
derley describe the implementation of an embedded hard-
ware platform for standalone instruments, emphasizing the
advantages of easy management, portability and resilience
of instruments that are untethered from general-purpose
computers. Their system was based on a Programmable
System-on-Chip (PSoC) developed by Cypress, featuring an
additional ARM7 processor (LPC2468) for control.

More recently there has been a growing number of ex-
amples of self-contained instruments that use off-the-shelf
and easily accessible ARM-based SBCs. Such instruments
include the creations by CCRMA students using Satellite
CCRMA [3], a ready-to-use Linux distribution that can be
easily installed in SBCs like the Raspberry Pi and the Bea-
gleboard XM. Two instruments that are based on this sys-
tem are the Sound Flinger [4], an haptic spatializer in the
form of a box with four motorized sliders positioned at its
edges and the Deckle [5], an electroacoustic drawing board
with embedded piezo microphones, using the sound of the
scribbling on the board’s surface for cross-synthesis. Satel-
lite CCRMA has also been extensively used in the creation
of small dedicated effects stomp boxes, including granula-
tors, pitch-driven synths or more traditional guitar effects
like wah-wahs, fuzzes or octave dividers. CCRMA has pro-
moted summer workshops specially aimed at building these
customized stomp boxes.

Other examples include the El-Lamellophone [12], an-
other hyperinstrument that uses piezo-electric pickups
mounted on the underside of the instrument’s body for di-
rect audio acquisition and processing and Range [9], an
autonomous processing unit for guitar effects, with pitch
tracking and several potentiometers for parameter control.

Both these implementations are based on the BeagleBone
Black, another popular ARM-based SBC. The authors of
Range refer the high level of autonomy of their system
and the versatility that domain-specific languages like Pure
Data provide, with a “wide range of possibilities and for
both digital audio effects and their control.” [9]

5. SYNTHESIS PERFORMANCE EVALUA-
TION

Although the previous examples prove that it is somewhat
possible to use these types of computers in the construction
of DMIs, there is generally little information about their
performance.

Previous work on the evaluation of the BeagleBone Black
as a viable computing platform for digital music instruments
centered mainly on the topic of latency, with reports by
both MacConnell [9] and Topliss [11] proving the ability for
this SBC to deliver an acceptable range of audio latencies
between 2.3 and 12 ms.

But an important aspect that remains to be studied is
the capability for these single-board computers to support
the considerable amount of processing power that elaborate
sound synthesis might comprise. Typically the only con-
sistent benchmark used to categorize audio synthesis ca-
pabilities is the shear number of oscillators that a deter-

mined system can play simultaneously. Although this tech-
nique might offer one possible method of comparing system
performance, it is not very informative for the user, since
it does not help in the comprehension of how that mea-
sure might translate into other modern synthesis techniques
(apart from additive synthesis). Benchmarking could possi-
bly be more informative by similarly counting the number
of voices that can be reproduced simultaneously but includ-
ing other synthesis techniques, like granular synthesis or the
phase vocoder. Thus we set out to perform a series of tests
that provide a better indication of the expected performance
from a SBC like the Beaglebone Black.

5.1 Test Conditions
Performance tests of this nature are greatly affected by the
choices of operating system, synthesis engine or the resolu-
tion of the sound processing calculation. In the next section
we describe the conditions used in this performance test.

5.1.1 The BeagleBone Black
We chose the BeagleBone Black (BBB), due to its popular-
ity and wide availability. The BBB is a 3.4” by 2.1” ARM
SBC with the following specifications:

• 1 GHz ARM R© Cortex-A8 processor

• 512 MB DDR3 RAM

• 4GB eMMC on-board flash storage

• USB host

• Ethernet

• HDMI

• GPIO on 2x 46 pin headers

Figure 1: The BeagleBone Black (photo by Adafruit
Industries / CC BY)

5.1.2 Software and Audio Input / Output
Initially the BBB was shipped with a custom Linux distri-
bution named Angstrom, recently abandoned mainly due to
the faster progress of other alternative distributions. One
of these is Debian, that offers an ARM version with full
support for ARM’s hard floating point engine, which lead it
to eventually becoming the officially supported OS for the
BBB.

After the OS installation to the on-board EMMC we com-
piled SuperCollider 3.7, using gcc with instructions to use
hard floating point and NEON, ARM’s Single Data Multi-
ple Instruction (SIMD) engine. The corresponding gcc flags
would be:

-march=armv7-a -mtune=cortex-a8 -mfloat-abi=hard

-mfpu=neon

We opted for SuperCollider for the synthesis engine since
it is among the most popular languages for computer music
and is entirely text-based, so that it could be used with a
headless version of Debian.

Audio I / O was done by connecting an external USB
soundcard, with 16 bit depth and a sampling rate of 44.1
kHz. SuperCollider’s audio was channeled through JACK [1],
a Linux API for inter-application audio routing. The vector
size used was of 512 samples.

5.1.3 Sound Synthesis
Next we chose the following set of synthesis techniques, to
be tested under the previously described conditions:

• Wavetable Synthesis, with an arbitrary table of 512
samples, which can can be dynamically modified at
will.

• Granular Synthesis, with each grain duration of 10 ms
and triggered periodically at a rate of 100 Hz.

• Cross-synthesis 1, consisting on the convolution be-
tween a sawtooth oscillator and a fixed kernel with a
FFT frame size of 512 samples.

• Cross-synthesis 2, consisting on the convolution be-
tween a sawtooth oscillator and a dynamic kernel with
a FFT frame size of 512 samples.

• Phase Vocoder Pitch Shifter, through FFT bin shift-
ing and a frame size of 512 samples.

All the programmed synthesizers had a similar structure,
with an envelope per voice for amplitude control and stereo
channel expansion by duplicating the signal at the output.
In practice each voice corresponded to the instantiation of a
synth. A simplistic code example of a synth definition that
would follow the described structure would be equivalent to:

SynthDef(\wavetable, {| outbus = 0, freq = 440,

gate = 1, bufnum = 1 |

var source, env, out;

source = Osc.ar(bufnum,freq);

env = EnvGen.kr(Env.adsr(0.01, 0.5, 0.5, 0.1),

gate, doneAction: 2);

out = source * env;

Out.ar(outbus, [out, out]);

})

These definitions can then be used to spawn synths by
sending OSC commands to the SuperCollider server, which
in turn will instantiate and output an independent voice.

An increasing number of sustained voices were played, un-
til there was any noticeable CPU overload, resulting in au-
dible interruptions or artifacts. Additionally, we also mon-
itored the overload point by observing any error logs from
the JACK server. Another shell session was used to mea-
sure the percentage of CPU load through the Linux native
processing monitor top.

Table 1: Sound Synthesis Test Results
Synthesis method Number

of voices
Wavetable 184
Granular 26
Cross-synthesis 1 20
Cross-synthesis 2 12
Phase Vocoder (pitch shifter) 16

5.2 Test Results
Table 1 shows the results from the performance tests of
the various synthesis methods, with the corresponding num-
ber of possible simultaneous voices. In all of the cases the
corresponding CPU maximum utilization by the SuperCol-
lider server that resulted in audible artifacts was registered
at an average of 84%. As expected the total number of
voices diminishes with the complexity of the chosen synthe-
sis. Wavetable synthesis can be considered extremely cheap,
with about 10 times more possible voices when compared
to the remaining methods. All others can still accomplish
more than 10 voices, achieving a polyphony equivalent to
harmonic articulation possible in instruments like the key-
board. Since the voices (in this case individual synths) can
be freed after a note release, as long as the corresponding
release times are not excessive, it should be possible to avoid
processing overload. In any case, strategies for voice stealing
can always be implemented by releasing older notes when a
certain established threshold in number of active voices is
surpassed.

6. CONCLUSIONS
This paper presented an informal strategy for estimating the
processing power of the BeagleBone Black when performing
several different synthesis methods, which should help in a
practical evaluation of its application in the construction of
self-contained Digital Music Instruments.

The choices of synthesis methods and audio engine were
based on the assumption that they represent commonly
adopted practices, thus providing better terms of compari-
son to other computing systems. In the case of SuperCol-
lider, it is important to refer this software trades efficiency
for the convenience of an easily-programmable virtual ma-
chine. Better results could be expected if the implemen-
tation was done using a lower level programming language
like C, which could then be compiled using ARM-optimized
toolchains. Still we believe these tests to be more useful
in the context of a practical use by the computer music
community, which tends to favor the ease-of-use and high-
level functionality of domain-specific languages that provide
a consistent and mature code base. Another advantage of
using interpreted languages is that the effort of porting a
determined implementation to different hardware systems
is only conditioned by the ability to recompile the synthesis
engine.

The registered results demonstrate that the BeagleBone
Black is a single-board computer capable of supporting
sound synthesis.

Furthermore the BBB has a market cost of approximately
$US 55, a viable choice for a system that could be fully
dedicated to a single DMI. It is expected that this perfor-
mance / price ratio will increase in the next years, with
newer ARM-based boards already announced, like the next
generation Beagleboard-X15 that will have a dual Core A15
processor running at 1.5 GHz and 2GB of DDR3L memory.

Other alternatives in the market include the Odroid-U3,

with a powerful quad-core ARM A9 processor, while main-
taining an affordable price of $US 69.

Some of these boards also include co-processors, like the
Programmable Realtime Unit SubSystem (PRUSS) in the
case of the BeagleBone Black or the C66x DSPs on the
upcoming Beagleboard-X15. These co-processors could be
used to increase performance in input / output of audio
and control signals or serve as processing boosters in DSP
computing.

7. ACKNOWLEDGMENTS
This work is partially funded by an individual Discovery
Grant provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

8. REFERENCES
[1] JACK Audio Connection Kit.

[2] E. Berdahl and C. Chafe. Autonomous New Media
Artefacts (AutoNMA). In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 322–323, Oslo, Norway,
2011.

[3] E. Berdahl and W. Ju. Satellite CCRMA: A musical
interaction and sound synthesis platform. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 173–178,
Oslo, Norway, 2011.

[4] C. Carlson, E. Marschner, and H. McCurry. The
sound flinger: A haptic spatializer. In Proceedings of
International Conference on New Interfaces for
Musical Expression, pages 138–139, 2011.

[5] H. Choi, J. Granzow, and J. Sadler. The Deckle
Project : A Sketch of Three Sensors. In Proceedings of
International Conference on New Interfaces for
Musical Expression, pages 512–515, Michigan, United
States, 2012.

[6] S. Curtin. The SoundLab: a wearable computer music
instrument. In Proceedings of the International
Computer Music Conference, Aarhus, Denmark, 1994.

[7] A. Hollinger, J. Thibodeau, and M. M. Wanderley.
An embedded hardware platform for Fungible
Interfaces. In Proceedings of the International
Computer Music Conference, pages 26–29, 2010.

[8] S. Kartadinata. The Gluiph: A Nucleus for Integrated
Instruments. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 180–183, Montreal, Canada, 2003.

[9] D. MacConnell, S. Trail, G. Tzanetakis, P. Driessen,
and W. Page. Reconfigurable autonomous novel
guitar effects (range). In Proceedings of the
International Conference on Sound and Music
Computing, Stockholm, Sweden, 2013.

[10] E. R. Miranda and M. M. Wanderley. New Digital
Musical Instruments: Control and Interaction Beyond
the Keyboard. A-R Editions, Inc., 2006.

[11] J. W. Topliss, V. Zappi, and A. McPherson. Latency
Performance for Real-Time Audio on BeagleBone
Black. In International Linux Audio Conference,
Karlsruhe, Germany, 2014.

[12] S. Trail, D. MacConnell, L. Jenkins, J. Snyder,
G. Tzanetakis, and P. Driessen. El-Lamellophone - A
Low-cost, DIY, Open Framework for Acoustic
Lemellophone Based Hyperinstruments. In
Proceedings of International Conference on New
Interfaces for Musical Expression, pages 537–540,
London, United Kingdom, 2014.

