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Abstract

Advanced electronic instrumentation and sensor signal processing in Input Devices for

Musical Expression must meet several requirements: they should be accurate, reproducible,

monotonic, and robust. Despite these demanding design requirements, a large number of

input devices are currently being developed in a Do-It-Yourself manner using simple sensing

techniques. The aim of this thesis is to raise awareness of the limitations of this approach.

As a solution, we propose state-of-the-art engineering tools to improve the sensing design:

use of specialized sensor technologies, better electronic instrumentation, coherent calibration

and data regression methods, and advanced signal processing through the sensor fusion

filters. We have reviewed the Proceedings of the International Conference on New Musical

Interfaces for Musical Expression, the major academic event in this field, from 2009 to 2013.

Based on this review, we identify the generalized use of unsophisticated engineering solutions

and easily available sensors, which are simple to assemble and require uncomplicated signal

conditioning circuits. We then propose several methods of instrumentation and sensor signal

processing that can deal with the above issues. Using these solutions, we evaluate the sensing

design of one Digital Musical Instrument — The Rulers, an instrument containing several

beams that can be bent or plucked, where beam motion can be assessed by either infrared,

Hall effect, or strain gage sensors. We show that none of them are an optimal measurement

solution. We then take advantage of the best features of each sensor technology, by applying

sensor fusion techniques, optimally achieved by a linear Kalman filter. However, the Kalman

filter implementation on human input signals is not obvious because several parameters

of the system and its operation modes cannot be predefined, given the unpredictable

nature of these signals. We therefore propose a framework for Kalman filter application

based on gesture segmentation and classification, multiple sensors, multiple-model system

and measurements, several candidate process models, filter evaluation, and Monte Carlo

optimization. We confirm the validity of this framework by showing that it reduces the

error covariance of the estimate. These results will hopefully lead to robust, reproducible,

and responsive input devices more likely to provide skilled performers with instruments

that could rival acoustic musical instruments in terms of expressive potential.
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Résumé

Pour créer des instruments numériques qui permettent de s’exprimer musicalement, l’utilisa-

tion d’instrumentation électronique sophistiquée et de techniques avancées en traitement

du signal répond à des besoins spécifiques: la précision, la reproductibilité, la robustesse

et la monotonie des mesures. Souvent, au détriment de ces besoins, un grand nombre

d’instruments numériques sont constitués de capteurs de qualité limitée assemblés à des

systèmes de traitement du signal artisanaux. L’objet de cette thèse est de révéler les limites

de ce type de développement et de proposer des solutions pour pallier ces limites. Nous

proposons des outils qui visent à améliorer le procédé de traitement et d’acquisition des

données via l’utilisation de capteurs spécifiques, d’instrumentation électronique de meilleure

qualité, et de méthodes de calibration et de régression cohérentes. De plus, nous proposons

des méthodes de traitement de signal avancées à partir de l’implémentation de filtres de

Kalman. Nous avons travaillé à partir des Actes de la Conférence Internationale “New

Musical Interfaces for Musical Expression” publiés entre 2009 et 2013. Cette conférence

regroupe la communauté académique la plus représentative de la discipline. À travers ces

recherches antérieures, nous avons constaté l’utilisation répandue de solutions rudimentaire

couplées à l’utilisation de capteurs très abordables, faciles à assembler et qui nécessitent des

conditionneurs de signal simples. Nous présentons donc des instrumentations électroniques

et des systèmes de traitement de signal appropriés aux besoins spécifiques explicités en

introduction. Avec ces solutions, nous évaluons le procédé de traitement et d’acquisition des

données d’un instrument de musique numérique, “The Rulers”, composé de plusieurs lames

pouvant être ployée ou pincées. Le mouvement des lames est acquis soit par des capteurs

infrarouges, soit par des capteurs magnétiques à effet Hall, ou encore l’utilisation de jauges de

déformation. Nous montrons qu’aucun des capteurs ne présente une solution optimale pour

nos mesures. Partant de ce constat, nous avons développé une technique de combinaison de

données multi-capteurs qui exploite le meilleur de chaque technologie de capteurs grâce à

un filtre de Kalman. L’implémentation de ce type de filtre n’est cependant pas évidente,

l’absence d’un modelé d’action d’utilisateur rend un grand nombre de paramètres du système

et de son fonctionnement à première vue indéfinissables. C’est pourquoi nous proposons

une méthode d’utilisation des filtres de Kalman construite à partir de la décomposition

et de la classification du mouvement, de plusieurs capteurs, de configurations multiples

pour le système et les mesures, de l’évaluation des filtres et de l’optimisation Monte Carlo.

La réduction de la covariance des erreurs dans nos estimés démontre la validité de notre

méthode.
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Chapter 1

Introduction

Digital Musical Instruments (DMIs) are musical instruments typically composed of a control

surface where user interaction is measured by sensors whose values are mapped to sound

synthesis algorithms [1]. These instruments have gained interest among skilled musicians and

performers in the last decades, leading to artistic practices including musical performance,

interactive installations, and dance.

The creation of DMIs typically involves several areas, among them: arts, design, and

engineering. The balance between these areas is an essential task in DMI design so that the

resulting instruments can be aesthetically appealing, robust, and allow responsive, accurate,

and repeatable sensing.

Although it has been claimed that specifications for artistic tools are stricter than those

for military applications [2], this research raises a paradox. In most cases, DMIs are based on

a few basic sensor types and unsophisticated engineering solutions, therefore they do not take

advantage of more advanced sensing instrumentation and signal processing techniques that

could dramatically improve their response. We aim to raise awareness regarding limitations

of any engineering solution and assert the benefits of advanced electronic instrumentation

2015/04/15
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design in DMIs. For this, we propose the use of specialized sensors such as strain gages,

advanced conditioning circuits and signal processing tools, and sensor fusion. We believe

that careful electronic instrumentation design may lead to more responsive instruments.

The use of sensors and associated signal conditioning to measure physical quantities

involves the fields of metrology and electronic instrumentation. Metrology is the science of

measurement and its application, and has its own terminological dictionary which determines

the “basic principles governing quantities and units”: the International Vocabulary of Basic

and General Terms in Metrology (VIM) [3]. The VIM, along with the GUM (Guide to

the Expression of Uncertainty in Measurement), defines uncertainty and errors involved in

measurements [4]. Electronic instrumentation is the measurement chain of an electronic

measuring system, resulting in an analog or digital electrical output quantity. Electronic

instrumentation typically includes all signal conditioning techniques on the path of a

sensor signal towards an output electrical value. A sensor is considered the “element of

a measuring system that is directly affected by a phenomenon carrying a quantity to be

measured” [3]. Signal conditioning techniques include procedures and circuits devoted to

adjusting, amplifying, filtering, selecting, and transducing signals.

Instrumentation of any sensor signal implies errors and uncertainties. Peter K. Stein

states that a critical question concerning measurements is: “Could these data have been

acquired by that measurement system without distortion, contamination and without

affecting the process being observed” [5]. In order to answer this question, he developed the

Unified Approach to the Engineering of Measurement Systems for Test and Evaluation. This

Approach summarizes techniques to test and evaluate measuring systems [5, 6]. However,

advanced electronic instrumentation is not sufficient to deal with the limited capability

of measuring systems. Techniques such as calibration, regression, physical modeling,

classification, and sensor fusion are helpful tools to enhance measurements. A reminder
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about the importance of evaluating measured data is given by Stein: “Bad data look just as

believable as Good Data! We ask a Measurement System for the Facts, not for its Opinion!

[sic]”[5].

The development of sensing design for artistic applications is even more complicated.

Buxton states that “in the grand scheme of things, there are three levels of design: standard

spec, military spec and artist spec. Most significantly, I learned that the third, artist

spec, was the hardest (and most important). If you could nail it, then everything else was

easy [sic]” [2]. We believe that this applies to the design of musical tools, such as musical

instruments. Indeed, over several years, expert musicians develop very high motor control

skills to perform their acoustic instruments. For this, they rely on generally stable, robust,

and responsive acoustic musical instruments that result from centuries of lutherie knowledge.

Stable instruments are a necessary, but not sufficient requirement for musical expression.

As Dobrian and Koppelman state: “sophisticated musical expression requires not only a

good control interface but also virtuosic mastery of the instrument it controls” [7]. In

the last few decades, Digital Musical Instruments have gained popularity among a large

population. Several performers use DMIs in their practice, and some of them have developed

very high motor control skills to perform these instruments. DMI design offers few physical

constraints, and it is a highly creative endeavor involving a variety of knowledge fields such

as art, design, human factors, and engineering. The balance between these areas is a delicate

issue. Cook states that “Musical interface construction proceeds as more art than science,

and possibly this is the only way that it can be done” [8]. We would rather advocate for a

balanced approach between art and science because highly artistic instruments with poor

engineering solutions might actually hinder musical expression, as they might not satisfy

skilled performers’ needs.

Dobrian and Koppelman wrote their 2006 NIME paper in order to “draw attention to
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the question of whether musical expression in performance is being adequately addressed

in much current research on real-time computer music interfaces” [7]. In this thesis, we

have similar goals concerning sensing design. We are convinced that by applying advanced

engineering techniques, one can achieve the specific requirements expressed above and create

responsive instruments that join highly artistic design with state-of-the-art engineering

solutions.

As most DMIs are meant for real-time performance, stable, robust, accurate, reproducible,

and fast response sensing design is essential. Despite these demanding design requirements,

a large number of DMIs are currently being developed in a Do-It-Yourself (DIY) manner

using techniques that often result in unsophisticated engineering solutions prioritizing easily

available sensors which are simple to assemble and require uncomplicated signal conditioning

circuits [9, 10]. Furthermore, the main academic event related to DMIs, the International

Conference on New Interfaces for Musical Expression (NIME), presents a similar trend. A

review of the first eight ears of this conference showed that the majority of NIME DMIs are

also based on a few common sensor technologies [11, 12].

Nevertheless, the use of electronic and more recent digital technologies for musical

expression predates the NIME Conference. Since the end of 19th Century, electric, and

later, electronic musical instruments have been created, tested, and performed. Several

works show this diversity of devices. For instance, Chadabe’s book presenting the history

and evolution of electronic and digital music [13], Paradiso’s overview of electronic music

interfaces [14], Wanderley and Battier’s trends in gesture controllers in music [15], Piringer’s

exhaustive list of electronic instruments [16], Miranda and Wanderley’s review of digital

musical instruments [1], and Marshall’s review of sensors and actuators in digital musical

instruments [11]. Sensing technologies, such as touch-sensitive keys, photocells, video,

potentiometers, switches, buttons, infrared, piezoelectric, ultrasound, Hall effect, breath
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pressure, radio frequency receptors, contact microphones, and strain gages were already

being used in instruments design from 1958–1992 [13]. We have selected a few examples of

these early instruments to illustrate their sensing design as compared to current sensing

trends.

Works involving electronic or digital music and dance were the result of collaborations

between several domains, such as dance, music, engineering, designers etc. Among them

are works including the 1965 performance by John Cage, Merce Cunningham, Malcolm

Goldstein, Frederick Lieverman, James Tenney, David Tudor, Stan VanDerBeek, and Nam

June Paik, as well as the Dancer’s Belt by Gordon Mumma in 1971, Isadora software and

MidiDance by Mark Coniglio in the 1980s, the Very Nervous System by David Rokeby in

1989, and Paradiso’s et al. Dancing Shoes in late 1990s [13, 14, 17]. It is interesting to

note that several of these works were based on computer vision, a trend which has been

decreasing recently, possibly due to the introduction of the Microsoft Kinect c©, s.f. Chapter

2. Before the Kinect, other game controllers were used for musical expression, for instance

the Wii in mid 2000 and the Power Glove by Mattel Toys in the mid-1980s.

While recent works point to a widespread application of micromachined accelerometers

[11, 12, 18], non-miniaturized accelerometers had been already used in the 1970s, for example

in Gordon Mumma’s Dancer’s Belt in 1971 [13]. The strain gage, recommended as an

advanced sensing technology in this dissertation, was used by Max Mathews and Jay Kadis

for “translating bow motion into MIDI” in the Celletto instrument in 1988, played by Chris

Chafe [19]. Later in 2002, Diana Young used strain gages to build her HyperBow [20].

It is interesting to observe the evolution of digital musical instruments. Most of them

do not go beyond a prototype version, while only a few have been built in several versions

to improve their robustness and reliability. Two examples of instruments that continue to

evolve after their first versions are The Hands and The Continuum. The first version of The
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Hands was created by Michel Waisvisz and his team in 1984, and was used in performance

until 1989 [21]. The second version, built by Waisvisz and Bert Bongers, was used from 1989

to 2000 [22]. The improvements included better mechanical structure and sensor placement,

“better components and a more reliable wiring-system” [22]. Yet another version was used

until his death in 2008 [1]. The Continuum has undergone three versions based on very

different sensing strategies. The original version was based on light polarization and video,

the second one on resistive-based sensing, and the third version on Hall effect sensors [23, 1].

Furthermore, while some instruments such as The Hands use several sensing technologies,

others use only one, such as the well-known Lightning by Don Buchla and the Radio Baton

by Max Matthews. Both of these have undergone multiple versions [13, 24].

These instruments and other equally important ones motivated a community to design

new interfaces for musical expression. A core concern while designing them is their sensing.

This thesis is dedicated to improved sensing in DMIs through the use of advanced engineering

techniques to guarantee quality of measuring. We expect the concerns discussed throughout

the text to inspire DMI design.

1.1 Motivation

The quality of sensing design is essential for systems engineering. Once quality observations—

inputs—are available, mathematic components are used to control outputs. Measurement

errors might be tolerated if confidence in the system is still guaranteed. Therefore, the

definition of an acceptable error depends on the application and the role of sensing in

the system. Some systems perform more stable tasks requiring lower confidence in the

measurements (home temperature monitoring), whereas others are more strongly tied to the

accuracy of the measurements (medical or surgical instruments). This implies that sensing
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systems need to be evaluated [6], and that the evaluation product should be analyzed in

respect to the system/user requirements.

We believe that the role of sensing in DMIs is equally critical. Faults and errors in

sensing may lead to mapping errors, latency, or non-responsive outputs. Most of these issues

can be solved by appropriate treatment of non-linear and non-monotonic sensor responses.

Aside from this, it might be easy for musicians to perceive these errors and incoherence,

given that musicians have refined motor control and awareness of the sound response of

their motor actions. This leads the DMI designer to four tasks: 1) designing coherent sensor

systems; 2) quantitatively evaluating the sensing techniques; 3) defining tolerable levels

of error, latency, and non-responsive outputs; 4) audience experience. This dissertation

focuses on the first two tasks. The third could, for instance, be performed by musicians in

user studies. The fourth has been suggested by Bongers and Kunsten as the evaluation of

the audience experience and the interaction [25], and has also been discussed by Gurevich

et al. [26, 27]. The third and fourth tasks are out of the scope of this thesis.

Our contribution focuses on improving and evaluating sensing design in the context of

DMIs. Traditional metrological evaluation is a necessary, but not sufficient, tool used to

achieve sensing efficiency for DMIs. Advanced instrumentation design and sensor signal

processing are useful tools to improve sensing in DMIs.

At the same time, computational intelligence techniques such as machine learning,

estimation, and statistical tools may also contribute to sensing in DMIs. However, the

variability of human gestures and motion techniques across subjects might be incompatible

with the limited number of functions, clusters and patterns of computational intelligence

algorithms. Therefore, these algorithms alone might not be a sufficient solution to improve

sensing design. Similarly, sensor fusion algorithms such as the Kalman filter rely on knowing

the process that might not be predefinable for human input signals.
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The design of sensing systems to be used in the analysis of skilled motor performers—

musicians, dancers, and athletes—should be responsive and accurate across the large

variability of gestures and their biomechanical parameters. In order to achieve this, we

propose the cooperation of several techniques and tools, namely advanced instrumentation

design, coherent calibration and regression techniques, advanced sensor signal processing,

sensing evaluation, and optimal sensor fusion.

Finally, we believe that DMIs and their interaction boundaries define a unique problem

which requires dedicated solutions for sensing, processing, mapping, composing, and perform-

ing. For this reason, this thesis cannot propose a general solution for DMIs. However, it can

offer possibilities brought in by state-of-the-art engineering tools, which could be replicated

to other instruments. In order to accomplish this, we first raise awareness of the possible

limitations of simple solutions for sensor signal processing and instrumentation. Secondly,

we propose advanced signal conditioning and specialized sensors to improve sensing. Finally,

we propose a framework for applying sensor fusion on unpredictable signals. The framework

is tested, and its efficiency is proven using DMI signals as a testbed.

1.2 Structure of the Thesis

Instrumentation and signal processing techniques have been used in engineering for decades

and have led to reliable measurements essential for areas such as medicine, navigation,

and defense [28, 29]. In this thesis, we focus on applying these techniques to human input

signals derived from DMIs. Concerning instrumentation, we propose the use of specialized

sensors and sensor signal conditioning as an alternative to the trend of using uncomplicated

sensing techniques in DMIs. In regards to sensor fusion, we have developed a method to

apply a linear Kalman filter—which relies on an accurate model for the system process and



1 Introduction 9

measurements—on human input signals, which are inherently unpredictable.

We start by reviewing the sensing techniques on DMIs as manifested in NIME Proceedings

from 2009 to 2013. A total of 266 instruments were reported, and their sensing methods

registered. The objective is to verify possible quality gaps and propose improvements on

weak areas of sensing design. This review is presented in Chapter 2: Review of Sensors and

Instrumentation Methods in DMIs.

In Chapter 3, Evaluation of sensing design for DMIs, we perform an in-depth review

of techniques suggested in Chapter 2, using DMI The Rulers as a testbed. The sensing

design of this DMI was kept as it was used in performance. Purposely, no improvements

were performed in the infrared and Hall effect sensing design, in order to demonstrate

the advantages that can arise using better instrumentation design. An alternative sensing

solution using strain gages, suggested in Chapter 2, is reviewed and demonstrated. As a

conclusion, even if the quality of strain gages is superior in several aspects, the complexity in

their installation and conditioning circuits, their initial cost, and their mechanical robustness

can be prohibitive. Therefore, in DMI design, we conclude that it is hard to define a unique

optimal sensing solution, given that both ordinary sensors—such as infrared and Hall effect

sensors— and specialized sensors— such as strain gages— have drawbacks and interesting

features. This has led us to believe that taking advantage of the best features of each sensor

could result in a better performance.

In Chapter 4, Multiple-model linear Kalman filter framework for unpredictable signals,

we demonstrate all the improvements brought by enhancing the mechanical and sensing

designs proposed in Chapter 3. We then work towards the application of a linear Kalman

filter for The Rulers. The solution for the problem is not obvious, as driven motions — led

by human input — cannot be modeled by a known pattern, sequence, rule, or probability,

especially when it comes to a skilled motor performance. We believe that enclosing musical
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gestures into defined models is more limiting than classifying gestures according to the

knowledge of their physical model.

Chapter 5 presents the main findings of the thesis and the future direction this work is

going to take.

Chapters 2 to 4 are based in manuscripts published in conferences and journal articles.

Chapter 2 has been published in Sensors Journal (under Creative Commons license). Chapter

3 was based on a conference paper. However, its text differs significantly from the original

published paper (Sound Music Computing Conference 2011), as several topics were improved

and added to the original text. Chapter 4 is an augmented version of another journal article,

published in IEEE Sensors Journal (copyright terms are presented in Appendix B). The

arguments provided to the IEEE Sensor Journals reviewers, during the review process, were

included in the chapter, as we understand that they help clarify some technical choices. As

different areas are included in this thesis, each chapter presents its own literature review

section.

1.3 Reading Guidelines

As this thesis covers multidisciplinary topics, it may be interesting for the reader to focus

on his/her area of interest. The contributions of our thesis target multiple areas, including

music technology, engineering, and biomechanics. In order to facilitate the exploration of

these topics, we present guidelines for readers of various backgrounds.

1.3.1 For musicians and DMI designers

We have aimed to contribute to the music technology community by using knowledge from

electrical and mechanical engineer to improve DMI design. This is a hard task that includes
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several fronts, and we do not intend to cover them all. Instead, we will focus on sensing

design only. Throughout our work, we claim that DMI designers can benefit from advanced

engineering techniques such as coherent instrumentation design and sensor signal processing.

The techniques proposed by these works range from basic and intermediate (Chapters 2

and 3) to advanced (Chapter 4).

The review of these engineering concepts, focused on DMI applications, could lead to

improvements in electronic instrumentation design and measurement accuracy. A good

example of this prospect is the deepness of electronics and engineering techniques given in

the book New Digital Musical Instruments: Control and Interaction Beyond the Keyboard,

essential for music technologists working on sensing, gestures, and music [1]. Supplying a

special focus on the application of relatively simple electrical and mechanical engineering

concepts to the creation and improvement of DMIs will allow this knowledge to become

more applicable and relevant to this community, even if portions of it are already part of

standard electronics textbooks [29, 30].

Aside from this review, original studies were presented in Chapters 2 and 3, such as:

• data gathering and analysis of sensor use in NIME publications;

• statistical studies using original data: co-occurrence of sensor technologies, trends,

degrees (statistics on network connections), use of portable electronic devices, use of

MARG sensors, etc.;

• method for evaluating sensor technologies for a DMI, including quantitative and

qualitative analyses.

Chapters 2 and 3 focus on contributing to the music community, as they review concepts

that are trivial for engineers but may be new to the music technology community (which
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includes musicians, designers, psychologists, etc). As may be noticed, we have not explored

musical expressivity since it is out of the scope of this thesis.

We agree that it would be good to see a validation made by musicians. By running a

user experiment, the improvements brought by a better sensing design would likely appear.

However, DMIs are usually original designs, and validation experiments cover many areas:

human factors, mechanical design, sensing, mapping, composition, etc. That is to say, we

believe that is hard to draw conclusions on the redesign of sensing through a validation

study of a DMI. We do not believe we would have been able to isolate the issues having to

do with sensing, so we have chosen to maintain our focus on sensing design, digging deep

on statistics and estimation.

1.3.2 For engineers

The differences, challenges, and appealing features of working with human data include

intention, consciousness, and unpredictability, and these features are observed when measur-

ing the physical quantities of a human body or an object directly manipulated by it. Some

engineering techniques might work very well when dealing with machines, but might be frail

when dealing with human interaction or input. The DMI area makes this obvious at every

stage of design and evaluation. In this work, we will include basic engineering concepts for

the music community, as well as advanced engineering techniques particularly focused on

human input signals and their challenging measuring.

Chapter 2 makes use of several exploratory analysis tools related to occurrence, including

social network analysis. These tools help in drawing some conclusions about sensor use,

and this might highlight development gaps that engineers might want to focus on. That

is, this chapter could serve as an unintentional guide for what should be improved in DMI

sensing design, considering the limitations of current designs.
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Chapter 3 consists of simple but powerful electronic instrumentation techniques, which

could be skipped altogether by engineers. Chapter 4 presents advanced engineering tech-

niques that have been adapted to be effective with human input signals, and specifically

discusses requirements for the implementation of a multiple model Kalman filter for human

input signals. A multiple model Kalman filter implementation is not novel, but this work, in

contrast, proposes a framework for it in the specific case where the signals are unpredictable

since their source is human input. The implementation provided, using The Rulers as a

testbed, is a practical validation of this framework, which includes a filter evaluation scheme

for Kalman filter implementations. This evaluation includes various descriptors. One of

them is introduced for the first time in this work, while others reference the other works

cited throughout Chapter 4. The framework can also be used in several other circumstances

where the definition of a process model is not straightforward.

Similar problems have been solved by using other filtering solutions, including extended

Kalman filtering, Interacting Multiple Model (IMM) filters, and particle filters. In Section

4.2, we discuss the reasons why we have opted for the standard Kalman filter instead of

these alternatives. To summarize, the standard Kalman filter is an optimal estimation filter

– it respects the orthogonality principle, which states that the estimate and the estimation

error are orthogonal to each other. This implies that the estimation error is the real value

of the error instead of an estimation of the estimation error, as is the case of the extended

Kalman filter. It is important to note that our own perspective for the Kalman filter design

follows a signal processing approach instead of a control engineering approach. The first

focuses on improving the accuracy and understanding of the system and its signals, whereas

the second focuses on tracking and makes use of tuning strategies which might not be

related to the physical modelling of the system and its signals.
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1.3.3 For professionals on biomechanics, kinesiology, and other areas

As this thesis focuses on human input signals (especially Chapter 4), any professionals

and researchers dealing with measuring these signals could benefit from this work. The

framework presented in Chapter 4 is particularly designed for human input signals, and aside

from DMI signals, this also includes human motion and data from wearable sensors. The

framework prioritizes the physical modelling of the signals as much as possible, restricting

the bandwidth for noisy sensor data. Human motion usually presents different kinematic

physical models, including constant velocity, constant acceleration, jerk, bouncing, etc. A

reasonable filter design might include multiple models, exactly as presented in this work,

and the classification between models should not be obtained by restricting the motion with

sequences or rules. Instead, we suggest the use of recursive classification based on sensor

data or an extra data source. Guidelines for the application of this framework for various

problems are provided in Section 4.10.

In the field of biomechanics, this framework has been successfully applied for fusing data

from MARG sensors for ballistic human motions including baseball pitching. This project,

called sportsemble, is a collaboration between the author, MIT Media Lab (Prof. Joseph

Paradiso, Mickael Lapinski), Massachussets General Hospital (Dr. Eric Berkson, Donna

Dscarborough), the Red Sox, Thomas J. Gill, and C-Motion (Tom Kepple) [31].

1.4 Publications

• Medeiros, C.B. and Wanderley, M.M., A Comprehensive Review of Sensors and

Instrumentation Methods in Devices for Musical Expression, Sensors, 2014, 14, 13556-

13591;

• Medeiros, C.B. and Wanderley, M.M., Evaluation of Sensor Technologies for The
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Rulers: a Kalimba-like Digital Musical Instrument. In Proceedings of the Sound and

Music Computing Conference (SMC 2011), Padova, Italy, 2011;

• Medeiros, C.B. and Wanderley, M.M., Multiple-model linear Kalman filter framework

for unpredictable signals, IEEE Sensors Journal, 2014, 14, 979-991.

1.5 Terminology

In this dissertation, the use of some words need further explanation. The word instrumen-

tation is used as a synonym for electronic instrumentation, previously defined. The word

unpredictable is used in the colloquial sense, meaning undefinable instead of representing

the capability to measure in prediction-estimation systems. Sensor fusion is herein defined

as an advanced sensor signal processing technique employed to obtain information or data

accuracy otherwise impossible to achieve with the individual data sources.

1.6 Disclaimer

Throughout the thesis, we will describe processing cost as an important variable for choosing

signal processing techniques for DMIs. The reason for this is that processing data in DMIs

is done locally by microcontrollers and microprocessors. At the beginning of this work

in 2010, the Arduino boards Mega and UNO were the most common platforms used by

DMI designers. We had intended to propose a sensor fusion protocol that could run over a

firmware whose processing power was just above the average used by most DMI designs.

Today, in 2015, it is still difficult to find DMI designs with powerful processing platforms,

despite the fact that the availability of lightweight powerful processing devices has grown

incredibly, including single board computers, PSOCs, etc. The reader might consider these
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options in order to have faster and powerful signal processing techniques embedded in their

DMIs.
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Chapter 2

Review of Sensors and

Instrumentation Methods in DMIs

In this chapter, we focus our attention on the engineering design of DMIs, particularly the

choice of electronic instrumentation strategies. We present an overview of the electronic

instrumentation strategies used in 266 papers by the NIME community from 2009 to 2013.

We report the most commonly used sensors as well as their concomitant use with the same

application. These results confirm the previous observations by Marshall et al. [11], which

state that most of DMI sensing is based on simple ubiquitous sensing technologies. In

the past few years, we identify the increased use of portable consumer electronic devices

such as cell phones, tables and game controllers [32]. Following this trend, we verify the

usage of sensors embedded in these devices. In addition, we survey the motion capture

methods used by the community. We further identify another significant trend of measuring

force-related quantities, using either accelerometers or Force Sensing Resistors (FSRs).

Several of these force measurements do not follow application guidelines and sometimes their

data analysis do not relate to any physical meaning. Due to that, we conclude that there is

2015/04/15
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room for improvement in the instrumentation design of DMIs and here we introduce three

main directions for improvement: the use of specialized sensors, advanced instrumentation

techniques and signal processing tools such as sensor fusion.

We introduce strain gages as an option for force measurement. Although these sensors

present complex application and conditioning circuits, they provide high reproducibility,

linearity and monotonicity. Our suggestion for advanced electronic techniques focuses on

ordinary sensors and include circuits for gain and offset control, amplification, common-mode

rejection and stable switching for discrete state measurements. Furthermore, we show that

the use of sensor fusion techniques can lead to results whose errors are smaller than the error

of each individual data source. In order to offer the reader a perspective of alternative ways

to develop electronic instrumentation and sensor signal processing for DMIs, we comment on

the development of a few NIME papers, offering progressive solutions using one of the three

solutions: specialized sensors, advanced instrumentation techniques and signal processing

tools.

Previous Work

Several studies are dedicated to the review of physical interfaces for musical expression.

Some works borrow concepts of HCI (Human-Computer Interaction) to define a physical

interface features and evaluation [33, 34]. Bongers’ description of sensor types and uses

is based on an association of those with human muscle action [33]. His classes of muscle

action are reproduced in Figure 2.1. For each one of these classes, he cites several sensors.

It is interesting to note that the author was able to classify a huge variety of sensor types

using the variables pressure and displacement. These two variables are highly correlated to

the two biomechanical factors on human motion: kinetics and kinematics. Bongers’ paper

is part of an electronic publication of articles discussing trends in gestural control [15]. A
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human body applications [50, 51, 52, 53, 54, 55, 56]. Indeed, the most popular application

of fusion algorithms such as Kalman filters is devoted to navigation and tracking estimates

using inertial and magnetic sensors, including those for human body applications [57, 58].

A few studies are dedicated to sensor fusion using other sensor types and sensor fusion

with uncertain process models [59, 60]. A handful of publications describe instrumentation

and/or processing techniques in detail such as calibration for inertial and magnetic sensor

data [61, 62, 63].

Several NIME papers are dedicated to survey relevant sensing/processing techniques

in the community: motion capture tools [64, 65, 66], machine learning [67] and the use of

mobile devices [68]. Related studies are based on advanced engineering techniques and sensor

technologies, both published in NIME and elsewhere. For instance, the use of specialized

sensors—which require advanced conditioning circuit techniques—can be found in a few

papers [69, 70, 59, 71, 72, 73]. Also, sensor fusion approaches are cited in some studies,

although their implementation is not reported [74].

This chapter is organized as follows. In Section 2.1, we provide an overview of sensor use

as reported in the NIME proceedings from 2009 to 2013, presenting interesting trends and

co-occurrence analyses. Section 2.2 provides a brief review of motion analysis sensing used

by the community. In Section 2.3, we focus on force assessment using accelerometers, FSRs,

and strain gages. Section 2.4 reviews interesting examples of DMI sensing solutions, that

could take advantage of specialized sensors, conditioning circuits and sensor fusion. Also,

sensor fusion is further discussed by introducing basic concepts of complementary filtering

and linear Kalman filtering. Conclusions are presented in Section 2.5.
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2.1 Review of Sensor Use

First, we investigate the use of sensors in the DMI community from the last five years

as manifested in the NIME conference proceedings (NIME 2009–2013) yielding a critical

evaluation of sensor application and data interpretation. Table 2.1 presents the sensor use

summary, compared with the dataset of previous study [11]. Some remarks about these

categories are presented below in Table 2.1 and numbered according to the superscripted and

numbered marks. We aimed to classify sensor use in DMIs in terms of the type of sensors

and quantity to be measured. However, due to the varying clarity of NIME manuscripts,

it is not always possible to distinguish and classify the DMIs according to the quantities

being measured and the sensors used. Often, these two concepts are somewhat blurred. For

example, some authors say that “we have used a touch sensor”. In this case, touch is the

quantity to be quantified, whereas a touch sensor can be a capacitive or resistive sensor.

Despite the effort towards classifying sensors and quantities in DMIs, sometimes it was not

possible to determine the technology used nor the physical quantity to be measured. These

cases are categorized as non-definable.

Sensors that were similarly classified in both studies have their average incidence per

area presented in Table 2.2. A quick glance at Tables 2.1 and 2.2 shows some interesting

facts that require further exploration:

• Accelerometers and FSRs are the most used ones, similar to previous findings [11];

• The most popular sensors measure force indirectly, e.g., FSRs and accelerometers.

Table 2.3 shows the non-exclusive classification of occurrences per class. The non-

exclusive occurrence means that a NIME application can be classified in multiple classes

according to the resources (sensors/devices/equipments) it uses. The criteria for the classes

are described as follows:
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Table 2.1 Dataset of sensor use in NIME conference proceedings from 2009 to
2013, compared with respective dataset of a previous study [11]. Accelerometers,
gyroscopes, and magnetometers have two occurrence values: the total number,
and the embedded number of occurrences (in parentheses). The embedded
occurrences are those in which these sensors are part of a consumer electronic
device. Some of the sensors considered in this study were ignored in the
previous study. These are described with the letter NM (Not Mentioned)

Sensors
Occurrence Occurrence
(2009–2013) (2001–2008) [11]

accelerometer 75 (30) 56
FSRTM (Force Sensing ResistorsTM) 1 38 68

gyroscope 30 (9) NM
buttons and potentiometers 2 29 110

conventional standalone video camera 3 23 54
IR (infrared) 4 22 27
magnetometer 16 (4) NM
capacitive 15 NM
biosensing 5 13 NM

piezoelectric disc 12 NM
non-definable 6 12 NM
microphone 11 29
textiles 11 7 NM

photo/light 8 10 NM
bend 9 21

Hall effect 7 NM
ultrasound 4 NM

pressure/flow 4 9 NM
fiber optic 2 NM

1 FSR and Force Sensing Resistors are trademark of Interlink Electronics. In this text, we adopt the community’s
understanding of these terms: resistive sensors for measuring pressure. Therefore, we excluded the TM symbol
to refer to any alike sensor, disregarding the brand [72, 75]; 2 This work combined all potentiometers and
switches used as sensors within one category, whereas the previous work classified these sensors as button and
switches (51 occurrences), rotary potentiometers (31 occurrences) and linear potentiometers (28 occurrences) [11];
3 conventional standalone video camera category does not include video from Kinect c©; 4 infrared category does
not include the infrared sensing embedded in the Wii c©; 5 the biosensing category refers to all biosignal sensing:
EMG (ElectroMyoGraphy), EEG (ElectroEncephalography), etc.; 6 the non-definable category includes the
instances where neither the sensor used nor the quantity being measured were possible to determine; 7 textiles
were mostly used as resistive sensors; 8 pressure/flow category relates to any sensor measuring light as a potential
or pixels of an image, 9 pressure/flow category relates to airflow measurements.
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Analog sensors: sensors that output a continuous electrical signal [29];

Digital sensors: sensors that output a discrete electrical value: step or state [29].

They might be part of a consumer electronic device or not, we call these cases

“embedded use of sensors”;

Consumer electronics: portable devices primarily commercialized as devices for

everyday use, mostly for entertainment or communication. In this context, it includes

portable music players, cell phones, Wii c©, Kinect c© and tablets. Some NIME applica-

tions use the device’s own functions modified for a particular function, whereas others

use data from the device’s embedded sensors;

Motion capture: refers to Kinect c©, near-infrared or infrared camera-based systems

such as Qualisys c©, commercially available bodysuit sensor nodes such as the Xsens c©

and electromagnetic sensors nodes such as Polhemus c©. Two remarks concerning this

classification must be made. The first one refers to labeling the Kinect c© as both

consumer electronics and a motion capture tool. The second one refers to the distinction

made between body sensor systems, such as the commercially available Xsens c©, and

dedicated solutions using sensors—classified as digital sensors. Both solutions are

usually based on the same sensors: accelerometers, gyroscopes and magnetometers,

however the first is presented like a black-box system whereas the second is a compound

of sensors placed together and configured throughout. Accelerometers, gyroscopes and

magnetometers are called MARG—Magnetic, Angular Rate, and Gravity—sensors.

It is hard to define whether a sensor has analog or digital output, so for this reason, we

have classified each sensor according to their most usual output type (analog or digital).

For instance, accelerometers are considered digital sensors.

Additional survey analyses on sensor use in DMIs follow. These analyses show interesting
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Table 2.2 Average sensor use per year according to our survey (2009–2013)
[18], compared with previous study (2001–2008) [11].

Sensors
Average Use per year Average Use per year

(2009–2013) [18] (2001–2008) [11]

accelerometer (embedded or not) 15 7
FSR 7.6 8.5

buttons and potentiometers (all) 5.8 13.8
video/image 4.6 6.75
infrared 4.4 3.4

microphone 2.2 3.6
bend 1.8 2.6

Table 2.3 Non-exclusive occurrence by class.

Occurrence by Class

sensors
analog 172
digital 134

others
consumer electronics 71 1

motion capture 30

1 at least one type of MARG sensor is used in 43 occurrences.

trends and sensor co-occurrences of the NIME designs.

2.1.1 Interesting Trends

According to Figure 2.2, some interesting trends in NIME 2009–2013 are noticeable:

• Accelerometers (embedded or not) were the most popular sensor across the years;

• FSR use is stable over the years;

• Potentiometers and switches are substantially used;

• The latest years (2012–2013) show that video has not been used recently;

• IR, microphone and bend sensors do not present a clear trend.
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Fig. 2.2 Trends for some sensors within the interval 2009–2013

2.1.2 Use of Portable Consumer Electronics

The use of consumer electronics was not mentioned in the previous DMI survey listing:

“Most popular sensors from NIME instruments” [11]. Figure 2.3 shows the use of these

devices over the past five years. The percentage numbers reflect the percent of portable

device use as compared with the total number of measuring techniques reviewed per year.

Note that since the use dropped in 2010, the use of portable consumer electronic devices in

DMIs has monotonically increased. The increase falls farther than 2 standard deviations

away from the mean within the interval 2009–2012, therefore, is statistically significant.

Embedded Use of MARG Sensors

MARG sensors comprise accelerometer, gyroscope and magnetometer sensors. Table 2.4

expresses the embedded use of these sensors in portable consumer electronic devices, through
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Fig. 2.3 Consumer electronics use within the interval 2009–2013. The per-
centage numbers reflect the percent of portable devices use compared with the
total number of measuring techniques reviewed per year.

the study of their co-occurrence. The numbers show that most of the cell phone, music

players and tablet applications make use of their embedded accelerometer. The embedded

use of gyroscopes and magnetometers has fewer occurrences as their availability on portable

consumer electronics is more recent.

2.1.3 Clusters

In this section, the co-occurrence of two sensors is analyzed through their adjacency matrix.

This matrix quantifies the concomitant use of two sensors within the same application.

Mapping the co-occurrence matrix results in Figure 2.4. A Ward hierarchical cluster

algorithm was run for 3, 4 and 5 clusters [76]. The results for the choice of 3 clusters are
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Table 2.4 Co-occurrence matrix of MARG sensors in portable consumer
electronic devices.

MARG Sensors
Devices

Wii c© cell phones/tablets/music players

accelerometer 7 24
gyroscope 1 (MotionPlus c©) 8

magnetometer 0 4

highlighted in Figure 2.4, which also depicts the results for 4 clusters. This algorithm uses

the minimum variance within clusters as the criterion. Therefore, the clusters are formed for

sensors that have similar co-occurrence values among each other. Given an approach with 3

clusters, the first cluster includes inertial and magnetic sensing (MARG sensing). These

sensors along with well-designed sensor fusion techniques can provide accurate orientation

data. As such, they are often deployed for navigation and more recently for human motion

analysis. This will be discussed in Section 2.2.1. A second cluster is formed by infrared,

FSR, potentiometers/switches, Hall effect, ultrasound and bend sensors. A common feature

among all these sensors is that they can be easily assembled and they have a relatively low

cost. They are cited among the most commonly used sensors in musical applications [1, 11].

Also, they are ubiquitous in forums and tutorials on sensors and microcontrollers [77, 78, 79].

The remaining cluster groups the sensors that tend to be used alone or with a few other types

of sensing technologies; these are: microphone, light, video, biosensor, fabric, pressure/flow,

capacitive and piezoelectric disc. For the 4 clusters solution, the clusters are: MARG sensors;

infrared, FSR and potentiometer/switch, microphone, light and video; and the remaining.

Simple econometrics for social network analysis was deployed in order to better describe

the concomitant use of sensors in DMIs. In this analogy, sensors are seen as users connected

through a network of DMIs. In addition, the cited clusters can be seen as communities. The

graph in Figure 2.5 is designed using an algorithm for undirected graphs called Kamada
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Kawai. This algorithm defines the ideal distance between the elements in order to provide a

total balance of the graph and a small amount of edge crossings [80].

The image clearly shows the two strong clusters: one formed by the MARG sensors

and another by resistive-based sensors (potentiometer/switch, FSR). It is noticeable that

the accelerometer is placed in the center of the network. This comes from the fact that

this sensor presents the highest degree of the network. The degree of a node expresses the

number of connections that an object has [81]. The accelerometer is concomitantly used
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be presented in Section 2.2;

Wii c©: the measuring capabilities of this device used in DMIs are its infrared camera

and its accelerometer. Seven out of fourteen times this device was used, its embedded

accelerometer data was used;

Kinect c©: of the 18 times the Kinect c© was used, only once was another sensing

technique—accelerometer—used.

2.2 Motion Analysis Sensing

DMIs are controlled by human input, thus their signals are difficult to predict or to classify.

Most of human input to DMIs is essentially motion, which comprises kinematic and kinetic

features. Kinematics is the study of motion and its variables, whereas kinetics is the

study of internal and external forces and their momentum [35]. Regarding the sensor use,

accelerometers, gyroscopes and FSRs can provide kinetic data, whereas Kinect c©, infrared-

and electromagnetic-based tools can provide kinematic data.

In this section we discuss MARG sensors and motion capture tools for biomechanical

analysis of human motion. The appeal of MARG sensing had a large impact on many recent

NIME papers. This can be observed in the numerous works willing to use the body itself as a

DMI controller, instead of using an object for sensing human motion [1, 82, 83, 84]. Several

NIME papers report the use of more than one motion analysis tool in the same application,

some including kinetic and kinematic methods. This suggests that sensor fusion techniques

could have been used to take advantage of the best features of each sensing technique.
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2.2.1 MARG Sensors

First, a remark must be made about terminology. Often, DIY and NIME literature use

the term IMU—Inertial Measurement Unit—to refer to concomitant use of accelerometer,

gyroscope and magnetometer [66]. Accelerometer and gyroscopes are indeed inertial sensors,

but magnetometers are not. The scientifically accurate terms are MARG sensors or AHRS.

MARG—Magnetic, Angular Rate, and Gravity—sensors refer to the concomitant use of

the three cited sensors, whereas AHRS—Attitude and Heading Reference System—refers

to a system that provides an orientation data given the availability of MARG sensors

and sensor fusion algorithms. These sensors can either be part of a consumer electronic

device—called embedded—or part of a dedicated design—called independent. Figure 2.6

depicts the embedded and independent use of MARG sensors.
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Fig. 2.6 Embedded and independent use of MARG sensors

A brief overview of IMU and MARG sensors use in NIME follows:

• IMU: 24 out of 75 projects using accelerometers also use gyroscopes;

• MARG: 11 out of 75 projects using accelerometers also use both gyroscopes and

magnetometers.
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The simultaneous use of accelerometer, gyroscope and magnetometer allows the appli-

cation of sensor fusion filters to provide orientation estimate. Few works (3 out of 266)

implement complementary filtering, which has application and processing requirements that

are more suitable for embedded applications than Kalman filtering [74]. The implementa-

tion of Kalman filters combined with system physical modeling result in estimates with

considerable improvement in their error profile. Accelerometer data analysis will be further

analyzed in Section 2.3. Sensor fusion will be discussed in Section 2.4.2.

2.2.2 Motion Capture

The motion capture techniques used by NIME researchers are infrared-based cameras,

magnetic-based sensors, Kinect c© and commercially available sensor networks. Many re-

searchers have used the Kinect c©—primarily available as a video game accessory—due to

its price and simplicity, in comparison with the infrared- and magnetic- based methods

[85]. All of these systems present advantages and drawbacks and the choice depends on the

resources available, the problem to be solved and the level of accuracy desired [64, 65].

2.3 Force Assessment

In this section, we provide a literature review on force assessment, and discuss techniques to

improve results, highlighting the most common flaws in the use of FSRs and accelerometers.

2.3.1 Accelerometer

This sensor has become increasingly present in portable consumer electronics, due to

advances in micro-machinery technologies. This trend has also made them available at

relatively low cost for engineers and designers interested in measuring acceleration in their
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custom design. In fact, accelerometers can provide information not only about translational

acceleration, but also about force, vibration, shock and tilt [86].

The use of accelerometers for inclination measurement is not linear unless a narrow

range of inclination is considered. Another requirement for inclination measurement is that

the Root-Sum-Square (RSS) of the three axes must equal one times gravity [87].

Regarding accelerometer data, it is impossible to distinguish gravity and acceleration

due to motion. For this reason, when determining the sensor orientation, other sources of

data and calibration are necessary.

Rotational motions result in an apparent AC (Alternating Current) acceleration, even if

there is no translational acceleration. This apparent acceleration is a consequence of the

variable projection of gravity on the axes [87].

In recent times, accelerometers have been used together with gyroscopes and magne-

tometers, allowing for the full description of orientation, through the use of sensor fusion

techniques such as the Kalman filter.

Error Sources

Several sources of errors on accelerometers are described in the literature: nonlinear effects

in scale factor, cross-axis coupling, measurement bias, vibro-pendulous error (for pendulous

design), drift terms, misalignment errors, vibration rectification error, quantization, thermo-

mechanical white noise, ratiometric errors, and random noise [88, 89, 90, 91, 92].

An error model can consider different amounts of error sources [93, 90]. According to

several authors, the major deterministic error sources are the zero-offset bias and the first

order scale factor [94, 90]. In addition to that, it is necessary to stochastically model the

random noise. This modeling requires a minimum span of observation time, which depends

on the time constant of the process and on the accepted error level.
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Calibration

A calibration process must be able to account for deterministic errors such as bias and scale

factor errors. In order to eliminate stochastic sources of error, additional information is

required. Several calibration protocols can be found in the literature [61, 88, 94, 95]. Here,

we focus on describing one of them due to its high measurement range and the familiarity

of the author with the procedure [61].

The studied calibration protocol is based on properties of the centripetal acceleration.

There is a centripetal acceleration when an object is rotated at a given radius greater than

zero:

a = ω2 r (2.1)

where a is the acceleration, ω is the angular velocity and r is the radius. Therefore, an

accurate motor delivers stable angular rates that are correlated to calibration points for

acceleration [61]. The angular velocity is sustained for some seconds—sufficient time to

gather the minimum amount of samples to guarantee calibration coherence. The stability of

the rotation radius is given by placing the sensor node in customized 3D fabricated brackets

that are firmly attached to the shaft.

In this calibration set, the main challenge is to generate positive and negative centripetal

acceleration with positive angular velocity [61]. A positive acceleration is generated when the

accelerometer is rotated in such a position that the rotation axis is positively displaced on

the orthogonal plane from its center axis. Alternatively, a negative acceleration is generated

by a rotation in which the axis is negatively displaced in relation to the orthogonal plane

[61].
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Common Issues on Accelerometer Use

In this section, we focus on common issues in the NIME literature, concerning the accelerom-

eter’s application and data interpretation. A common application of accelerometer data is

to estimate beat through the analysis of gestures of conducting, bouncing, percussion and

dance [96, 97].

There are several accelerometer data processing solutions that can be found in DIY

tutorials and NIME papers, and most of them are meant to extract beat information. Some

solutions for a three-axis accelerometer are presented below. The order of presentation goes

from a physical interpretation of the measurement itself, to a more complex analysis of the

measurement features.

(1) Sum of the value of the axes;

(2) Use of the highest component of the acceleration;

(3) Norm of the acceleration;

(4) Norm less gravity;

(5) Peak detection;

(6) Acceleration integration (speed or position);

(7) FFT (Fast-Fourier Transform);

(8) Machine learning techniques.

The first solution does not present any physical meaning. The second one does not take

into account the orientation of the sensor. Changes in orientation will bleed gravity and

motion acceleration throughout the axes. The designer should reject any conclusions when

the highest component is not sufficiently greater than gravity.

Concerning processing cost, the least expensive solutions that have connection with the

physical world are the options 3 and 4. The norm of the acceleration is the length of the
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acceleration vector, and is calculated as the root square of the squared sum of all axes. The

norm subtracted by the absolute value of the gravity acceleration provides the magnitude

of the acceleration due to motion.

Peak detection might be a coherent metric to identify impact, but it is limited for

any further interpretation. The designer may remember that physical interpretation of

zero-crossings and peaks on position data, velocity data, and acceleration data are different.

Only for a simple stationary periodical signal, the acceleration peaks relate frequency-wise

to those in the position domain. Solution 6 presents the integration in order to obtain

position or velocity data. It is important to note that integration leads to errors due to

uncertain integration constants.

FFT—possibly along with windowing techniques—and acceleration integration have the

most expensive processing cost. The FFT is not a possibility for all types of signals though.

Finally, pattern recognition, feature selection and a variety of other machine learning tools,

usually aiming at gesture classification, could be used [98, 67].

2.3.2 FSR

Most FSRs are a polymer thick film device that vary their resistance according to the

pressure applied to the active surface. The FSR manufacturer InterlinkTM claims FSRs are

not load cells or strain gages, although they have similar properties [99]. Also, InterlinkTM

claims that FSRs are not suitable for precision measurements: force accuracy ranges from

5% to 25% [99]. According to the analysis of commercially available FSRs, these sensors are

not linear and they present considerable drift and hysteresis [75]. FSR response is usually

an inverse power-law, i.e., there is a turn-on threshold, which is a substantial resistance

drop at the beginning of the force measurement range. In addition, saturation occurs at the

end of the force measurement range. Finally, some authors mention latency and robustness
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problems in the use of FSR in DMIs [100]. In addition to calibration using curve fitting

and a reference measuring system, it is recommended to use conditioning circuits that are

able to protect the sensor and the electronics circuits and reduce the measurement error.

FSR Application

As an example, for a particular FSR, the suggested tips for application are listed below [99]:

• Apply the sensor to a firm, flat and smooth mounting surface;

• Use thin, uniform adhesives;

• Protect the sensor from sharp objects;

• Avoid excessive shear forces;

• Limit the applied current to 1 mA/cm2 of applied force, as FSRs have a limited power

dissipation.

Signal Conditioning

The simplest and most commonly deployed conditioning circuit is the voltage divider. The

voltage divider is limited due to a couple of reasons. First, in this circuit, the current applied

to the sensor depends on the resistances involved: sensor resistance and series resistor. A

careless choice of series resistor values can be dangerous in terms of exceeding the maximum

power requirement for the sensor, which can be permanently damaged. Another issue is

that the voltage output is dependent on the load that it is connected to. This means that

load impedance variations affect the measurement directly, unless the load impedance is

much higher than the voltage divider resistances. Finally, voltage dividers are vulnerable to

noise and are not capable of providing amplification.

This section deals with signal conditioning for FSRs and other resistive sensors. The



2 Review of Sensors and Instrumentation Methods in DMIs 38

detailed explanation on voltage divider, buffer, instrumentation amplifier, and comparator

with hysteresis could be skipped by Electrical Engineering readers.

The simplest way to adjust the output sensitivity of a voltage divider is shown in

Figure 2.7a. This voltage divider does not allow output offset adjustment. In order to allow

for this adjustment, the fixed resistor has to be substituted by a potentiometer (Figure 2.7b).

This solution using only two terminals of the potentiometer is troublesome because the

current through the FSR depends on not only its own resistance (RFSR) but also the

adjustment of the potentiometer resistance (R1). As the adjustment of R1 ranges from its

minimum value (0 Ω) to its nominal resistance Rmax
1 , the following problems can arise when

the potentiometer resistance tends to zero:

• The output can be connected directly to the ground, therefore not measuring the

sensor output;

• The maximum current allowance for the sensor can be exceeded, permanently damaging

the sensor;

• The power supply might not be capable of providing the demanded power, reducing

its voltage and altering the output voltage.

An improvement is the solution presented in Figure 2.7c. In this case, a fixed resistor

is added to the series circuit in order to guarantee the maximum power requirement. The

protection considerations determine the value for R2. Let Vs be the power supply voltage,

Imax
A the maximum current per area of applied force given by the manufacturer (in A/cm2),

Area the area of the sensor’s active surface (in cm2), Rmin
FSR the minimum FSR resistance

(maximum pressure) and R1 as the nominal potentiometer resistance. Considering a 10%
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• Choose R2 much smaller than R1, and enough for protecting the sensor (Equation

(2.2));

• Center the output voltage to the most frequent pressure (mode). For that, simulate

this pressure and adjust R1 in ways to obtain half of the supply voltage in the output.

If R1 = α R1 + (1 − α) R1, this is obtained when (2α− 1) R1 = Rmode
FSR −R2.

The optimal choices for R1 (nominal and adjustment) and R2, according to the pressure

measurement range, can lead to a design whose output measurement range lies within

the maximum sensitivity of the sensor, saturating the output during FSR’s initial or final

measurement range [101]. This improves the curve fitting and takes advantage of the

maximum sensor sensitivity.

An improved version of the voltage divider is to have its output applied to a voltage buffer

amplifier. This circuit exploits the fact that op-amps have very high input impedance and

very low output impedance. The impedance correction protects the sensor from excessive

loads coming from the circuit connected to the op-amp output and isolates the output from

the high impedance of the voltage divider. In this configuration, the load resistance does not

influence the voltage divider output. The op-amp connected as a buffer works as a follower,

that is, the op-amp output voltage follows the op-amp input voltage. The schematic for this

circuit is included in Figure 2.8, which consists of the connection and use of the following

components: R1 as FSR, R2, R3 and B.

An improved conditioning circuit provides not only output offset adjustment, but also

amplification factor (gain) adjustment. The independent adjustment of these two variables

can yield a better voltage output range to the given pressure measurement range. For this,

an uncomplicated set of op-amps can be deployed, as depicted in Figure 2.8.
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Our focus is on metallic ones, whose sensitivity reflects the ratio between relative resistance

variation and strain. The operating principle of strain gages is based on a clean and thin

bond between sensor and surface. This guarantees that the sensor will suffer the same strain

as the Device Under Test (DUT).

Metallic strain gages rely on the principle of electrical conductors, whose resistance

changes with mechanical stress. The resistance change is due to two factors: the change in

the resistivity and the deformation of the conductive material. According to Pallás-Areny

and Webster [29], for a circular isotropic conductor in the elastic mode, the resistance

variation is expressed by the following equation:

dR

R0

= [1 + 2 ν + C (1− 2 ν)]
dl

l
= GF

dl

l
= GF ǫ (2.5)

where R0 is the resistance without any stress, ν is the Poisson ratio, C is the Bridgman

constant, GF is the sensitivity and ǫ is the strain. Both ν and C are intrinsic to the material:

ν is the transverse to axial ratio whereas C is the ratio between resistivity variation and

volume variation. Strain and consequently resistance variation are very small, which makes

strain hard to be measured. It is important to note that the absolute value of the resistance

does not carry information about the strain. Instead, the resistance variation is the variable

to be analyzed.

Balance conditioning circuits like the Wheatstone bridge can be deployed to measure

small resistance variation [103]. The bridge is intended for common-mode rejection, in this

case, rejecting the common nominal resistance of two resistances and/or strain gages. The

bridge loses its balance when the sensor resistance varies due to a strain. For low SNR

bridge output voltage, specialized conditioning solutions are required, which are reviewed

further in Section 3.3.2.
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Temperature Effect

Temperature is the main interference quantity when using strain gages, that is, temperature

and its variations have effects on DUT and sensors. Given a perfect bond between the

sensors and a DUT, not only is the mechanical strain transferred from DUT to strain gage,

but the thermal strain is also transferred.

The main effect of temperature variation on the DUT is the change of its dimensions

(visible or not). This occurs because of the thermal expansion coefficient of the DUT’s

material. The thermal longitudinal expansion has an effect on the strain measurement. It is

impossible to distinguish the cause of strain: mechanical or thermal. One solution for that

is in the sensor manufacturing. Some sensors are designed in such a way that they have

the same thermal expansion coefficient of the material that they are intended to be applied

to. This way, both the DUT and the sensors change their dimensions at the same rate,

partially compensating for thermal stress in the sensor. Strain gages endowed with thermal

treatment are called strain gages with matched temperature coefficient [41]. In order to

take advantage of this method, the DUT’s material and the sensor should have similar

thermal coefficients.

Another source of thermal error while measuring strain occurs in the sensor itself. The

sensor grid also changes its dimension in accordance with temperature changes. This effect

can be compensated for using the balance principle of a Wheatstone bridge and an additional

sensor. The second sensor, identical to the first one, is not submitted to mechanical strain

and should be installed in the same material as the DUT and in such a way be exposed

to the same temperature. This second sensor, submitted to thermal strain only, is then

properly placed in the Wheatstone bridge in order to subtract the thermal effect in the

overall voltage output [104].
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Although these are the main effects of temperature on strain measurement, temperature

of lead wires and power dissipation in the sensor can also be sources of artifacts.

Selecting Strain Gages

The selection of a strain gage for a certain application is one of the most important tasks

in the whole procedure. The designer should take into account the material of the DUT,

the type of stress to which the DUT will be submitted (axial, shear, residual, etc.), the

expected strain magnitude, the stress state (uniaxial, biaxial or triaxial) and the possible

sources of artifacts.

2.4 Sensing Recommendations for DMIs

In this section, we aim to offer suggestions for DMI designers. As mentioned earlier, the

use of specialized sensors and conditioning circuits, as well as the use of sensor fusion, can

improve the accuracy of DMI sensing. Previous work has shown that the use of specialized

sensors can be a significant determinant of classifying musical gestures, allowing for different

mapping according to the gesture being performed [59]. In that particular case, the strain

gages in the DMI (The Rulers) were capable of determining the instants when the user was

interfering in the inertia of the instrument. That is, using an analogy of a plucked string, the

strain gages have a different response—transfer function—during intervals where the user is

acting upon the string by displacing it, and during intervals where the string is vibrating

according to its own physical properties [59]. This quality of the strain gages cannot be

found in any of the other ordinary sensors previously used for the same instrument: infrared

and Hall effector sensors [105].
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2.4.1 Use of Specialized Sensor Technologies

In order to suggest improvements, we have selected some DMI examples and will review

their reported measuring techniques.

Measuring Trumpet Valve Position

The challenge of measuring the valve position on a trumpet was approached with the use

of potentiometers and buttons [106], and later by digital infrared proximity sensors [107].

The clarity of the latter paper allowed for the identification of the sensor as a VCNL4000

[108]. According to this sensor’s datasheet, the infrared sensor is not linear and does not

have a monotonic response. Nonlinear sensors require high order fitting curves that can be

computationally expensive for ubiquitous microcontrollers. In addition, nonlinear responses

present variation in sensitivity along the measurement range that must be accounted for

while calibrating the system. The worst possible choice would be to fit the infrared response

to a linear curve, yielding to errors along most of the measurement range [105]. A non-

monotonic response occurs when a sensor presents the same output in response to multiple

different inputs (proximity, in this case). A partial solution for this ambiguity would be

to evaluate the previous measurement in order to obtain the instantaneous derivative of

the signal. The sign of the derivative would partially solve the singularity issue. However,

the sensitivity closer to the point of zero-derivative tends to zero, which is not at all

desirable. Finally, the solution for nonlinear, non-monotonic sensor responses starts with

good placement, calibration and coherent curve fitting (polynomial order higher or equal to

2) [105]. Another common issue using infrared sensors is saturation. The remedies described

above can account for that as well.

Some developers mentioned that the sensor has a high sensitivity and that its placement
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is a critical concern [107]. Then they built a series of tests to find an optimal placement that

would provide the highest linearity, highest dynamic (measurement) range and robustness.

These efforts are a good example of engineering development and evaluation.

Some suggestions could further help designers in selecting the best placement. One

of them would be to evaluate monotonicity, linearity, saturation, sensitivity and dynamic

measurement range along the valve operation range. Another recommendation would be

to perform a calibration where the measurements provided by the sensors are compared

with a reference. Calibration implies comparison with a truth value [3] and should not

be misinterpreted as a measurement range adjustment. Therefore, the concept of “self-

calibration” is flawed. In terms of linearization, if higher polynomial orders cannot be applied

due to processing capability, a lookup table or conditional multiple linear measurement

range can be alternatives [101].

Yet another possibility for this case would be the use of linear specialized sensors.

Thibodeau and Wanderley have compared slide potentiometers, Hall effect sensors, non-

infrared LED to LVDT—Linear Variable Differential Transformer—sensors, for the specific

issue of measuring position of trumpet valves [69]. The comparison of sensor responses was

done through calibration along the valve operation range. LVDT sensors are linear and

monotonic; therefore, all issues presented by the use of infrared sensors are eliminated [69].

Measuring Key Pressing on a Piano or Gamelan Instrument

A lot of NIME projects could make use of strain gages, especially those that aim to measure

stress on metallic/plastic parts of piano or gamelan instruments [109, 110, 100, 111, 112]. The

most used sensors in these references are infrared and FSR sensors. One study implemented

actuation and sensing of an electromagnetically sustained piano [110, 113]. This interesting

work makes use of piezoelectric discs and infrared sensors. The infrared sensors measure
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the deflection of the cantilever beam. Other studies have used strain gages for this purpose

[105, 59]. Another example that uses infrared sensors improves the output response through

the use of coherent conditioning circuits [109]. Note that while using piezoelectric discs,

protective buffers must be used for protection, as these disks can deliver voltages that might

not be supported by other circuits.

As cited before, infrared sensors are nonlinear and non-monotonic. In addition to that,

for a cantilever application, there are two other issues that can compromise the measurement

quality. The first one is the deflection angle of the cantilever beam. Infrared sensors

usually work by providing an infrared beam and reading the respective infrared reflection.

The reflection reading depends on the flatness of the reflective surface, guaranteeing the

symmetry of incident and reflective light beams. If the flatness cannot be guaranteed due

to the angular cantilever deflection, errors might occur as this angle increases. The second

issue comes from the use of shiny cantilever beams. Some coating surfaces can interfere

with the infrared reflection.

The examples based on FSR might suffer from artifacts related to flatness of the surface,

mechanical robustness, latency, nonlinear response and deficient conditioning circuitry

[112, 100]. For these examples, we recommend the use of strain gages and sensor fusion

techniques. The strain gages’ main advantages for this particular application are linearity,

high SNR (provided by coherent conditioning circuits), and no electromagnetic interference.

Finally, strain gages could potentially distinguish between touch and after-touch intervals,

serving as a reference for the adaptive gain desired by the instrument designers. Furthermore,

sensor fusion techniques could be deployed to improve sensing and control. Based on our

previous work, instrument designers could take advantage of the known physical model

of the cantilever beam and also eliminate high frequency harmonic vibration responses by

limiting the physical model of the cantilever to a low order system [59].
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Measurements on Violin and Cello: Distance, Force, Position, Fingering

Some interesting studies in NIME are dedicated to measuring bow hair deflection for tracking

and force assessment [114, 115]. One of them presents an interesting triangulation method

to track the bow, using infrared sensors [114]. The other work is based on tracking using

Polhemus c© motion capture [115]. The force information is a result of calibration using a

load cell with applied strain gages [116]. The drawback of this approach is the magnetic

artifacts on the tracking data. Yet another work on string instruments uses FSRs to measure

finger position and pressure [112]. The main artifact of the chosen design is the application

of the sensor in a curved surface [112, 117], as the contraction and extension created by a

curved surface can be interpreted as pressure by the sensor. Another issue is the conditioning

circuit. The author’s design is a voltage divider followed by a zero-gain amplifier (buffer).

This voltage divider configuration can lead to a short circuit in the power supply when a

critical, however possible, situation occurs: high values of pressure on the sensor while the

potentiometer set to a low resistance. According to Section 2.3.2, we recommend the circuit

in Figure 2.7d as a voltage divider for FSR applications.

In contrast to artifacts in infrared sensors, FSRs and magnetic tracking systems, a

solution using fiber optics proved to be successful for measuring fingering, bow speed,

and bow pressure in an fMRI-compatible cello [118, 119]. The authors of the cited study

had shown that the use of specialized sensor and sensor conditioning circuits can provide

satisfactory reproducibility and accuracy, besides offering further possibilities to the DMI

design. However, these features are obtained with the cost of creating dedicated hardware

and software solutions [120]. A more simple but effective solution is the use of capacitive

sensing for bow pressure and position [121]. Yet another alternative for measuring pressure

on the fingerboard is the use of paper-based force sensors or printed capacitive sensing
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[72, 71, 122].

2.4.2 Sensor Fusion

From the review presented in Section 2.1, forty percent of the NIME publications in recent

years use more than one sensing technology. This considerable percentage allows for sensor

fusion application. In this section, we briefly describe the sensor fusion domain and introduce

two algorithms: complementary filtering and Kalman filter. Firstly, it is interesting to note

the difference between multisensor integration and sensor fusion. The former means the

synergistic use of multiple sensor data directly processed by the control application, that

is, a direct mapping topology for multivariable systems. The latter uses multiple sensor

data to generate another layer of sensor data that will then be mapped to a control process

[123]. A common concept among several authors is that the product of a sensor fusion

implementation is an information set that is better than the information gleaned from

individual sources [123, 124, 125, 46, 126]. Some add that it provides an error improvement

proportional to N1/2, where N is the number of independent observations [46]. The human

being’s capacity to fuse information in order to convey meaning is often used as a reference

for the information fusion community. Technology systems try to imitate this faculty as

well as its connection to decision making. According to Raol [124] and Elmenreich [123],

common limitations in most measurement systems justify the use of sensor fusion techniques,

such as:

Sensor deprivation: breakdown of a sensor, causing information loss at a range,

device or quantity;

Limited spatial coverage: range limitation of sensors, such as measurement scale

and placement position;
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Limited temporal coverage: the required time to perform a measurement and a

transmission operation, thereby defining the sampling frequency;

Metrology limitations: metrology characteristics of sensors, such as resolution and

errors;

Susceptibility to the environment: susceptibility of the system to interference

that may degrade performance.

Techniques for sensor fusion make use of observations made by sensors to estimate a

process state vector. Fusion techniques are usually used for smoothing, filtering and/or

predicting. According to Raol, some potential advantages of sensor fusion systems are [124]:

Redundancy: the property of providing information even in case of partial fault or

data loss from one or multiple sensors;

Enhanced spatial or geometrical coverage: overall better coverage obtained by

using complementary sensors;

Enhanced confidence: measurements of one sensor confirm data from another

sensor, hence overall statistical indicators may experience improvement;

Ambiguity reduction: controversial measurement scenarios can be solved by ana-

lyzing multi-sensor data;

Enhanced robustness: different sensors can present diverse robustness against a

significant interference quantity. Using redundant fusion where at least one sensor

is robust against that interference quantity improves the overall robustness of the

system.

However, Waltz and Llinas [127] point to some limitation of sensor fusion, such as:

Requirement of good measurement sources: there is no general improvement

based on bad input data. Additionally, sensor fusion techniques applied over bad input
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data might reduce the overall performance by introducing time delays or unwarranted

confidence [128];

High processing and communication power: the implementation of sensor fusion

procedures in embedded and real-time applications can be unviable or limited;

Tools’ selection: the selection of inappropriate filter topologies, process and mea-

surement models for a certain problem might degrade the original error covariance;

Requirement of process model knowledge: some sensor fusion algorithms, such

as the Linear Kalman Filter (LKF), strongly rely on the knowledge of the system

process model description. An inaccurate physical modeling of the system and its

measurements can lead to instability and inaccuracy [48].

The section below presents a brief review on the complementary and Kalman filter, two

of the most commonly used techniques [28, 127].

The Complementary Filter

The complementary filter is a filter topology that can be applied alone or as a preprocessing

technique for Extended Kalman Filters (EKF), for instance [58]. It is reasonable to explain

its implementation by using frequency domain formulations. As an example, one can assume

a system based on two measurement devices whose outputs are y1(t) and y2(t) and are

represented by:

y1(t) = c(t) + n1(t) (2.6)

y2(t) = c(t) + n2(t) (2.7)

where n1 and n2 are measurement noises and c is the unknown signal to be determined.

The noises n1(t) and n2(t) are considered stationary random process with known power
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spectral densities. The signal c(t) is unknown and can be deterministic or non-stationary

[58]. The aim of a filter is to optimally produce an estimate ĉ(t) of the unknown signal c(t),

assigning weights for the noisy measurements such as described in the following equations,

as reported by Farell [58]:

ĉ(t) = g1(t) y1(t) + g2(t) y2(t) (2.8)

Ĉ(s) = (G1(s) +G2(s)) C(s) +G1(s)N1(s) +G2(s)N2(s) (2.9)

Equations ((2.8) and (2.9)) are respectively the time and frequency representations for

the complementary filter. g1 and g2 are the transfer function of the filters whose input are

respectively y1 and y2.

In order to avoid distortion, the following constraint must hold for all c(t):

G1(s) +G2(s) = 1 (2.10)

The complementary filter is considered to be a “safe” solution when no assumption

is made about the signal structure, as it is particularly suggested for cases where the

filter might need to cope with statistically unusual situations without resulting in large

errors [45]. Complementary filters are usually applied for systems containing sensors with

complementary spectral characteristics, as it is the classical example of inertial sensors. G1

and G2 can be chosen by running a Monte Carlo optimizer along with the knowledge of

the true value for the estimate. Also, if the noises n1 and n2 have known complementary

spectral characteristics, a low- or high-pass filter can be designed taking these spectra into

account.
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Kalman Filter

Essentially, the Kalman filter combines different measurement outputs in a systematic and

optimal manner, given the prior knowledge about the system and measuring functions. The

filter’s goal is to provide an estimate of desired quantities, whose errors are improved in

comparison with the original data sources. By carrying this out, Kalman filters can minimize

the estimated error covariance and compensate for limitations of the sensing system such as

lag and drift.

Some authors argue that the average results of the Kalman filter are better than the

average results of any other filters used for sensor fusion [28, 129]. The filter has been widely

used for tracking purposes [48], motion prediction and orientation estimate (mostly with

MARG sensors) [28, 28, 130], navigation and process control [131]. Additionally, Kalman

filters have a good real-time and online application potential [124]. They are said to be

optimal as they use the maximum number of statistical descriptors to evaluate a system-

measurement problem. Comparatively, other filter algorithms provide approximated results

for the estimate covariance, since they do not require complete and accurate knowledge

about the system, measurements and their statistical descriptors.

The description of system, measurements and their statistical descriptors is not always

possible or fully definable. For these cases, other filter topologies such as particle filters can

be deployed [132, 133].

The standard version of the Kalman filter provides the exact error covariance of the

estimate, instead of an estimate of its value, with the cost of restricted requirements: zero-

mean Gaussian noise, linear stochastic models for system and measurements, and correct

description of measurement/model functions and errors. Based on the levels of confidence in

measurements and system, the Kalman filter delivers the estimates of the system variables
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and the covariance of those estimates. In a successful LKF implementation, the covariance

of the estimate is smaller than any of the elements of the measurement covariance matrix

main diagonal.

However, the application of these techniques to gesture analysis is not straightforward

as there is no clear physical model describing the gestures used to control DMIs. Some

research circumvents this problem by setting an enclosed gesture vocabulary for which the

physical models can be accurately defined [50, 51]. This approach is not reasonable for

musical gestures as it would excessively limit playing techniques.

Therefore, regarding skilled motor performance, it is impossible to define rules, patterns,

probability or sequences for the human input that could well describe the process model

of the system. In order to overcome that, previous work has developed a framework to

apply sensor fusion to DMIs and other unpredictable signal devices [59]. The solution was

based on a multiple-model LKF in combination with gesture/motion segmentation. The

motion segmentation discriminates gestures according to the knowledge of their process

model. This allows a more predictive estimation during periods of free motion, while relying

on a less predictive approach for unknown user-driven signals [59]. Results reveal that the

proposed method improves the error covariance of the estimate for driven and non-driven

motions in comparison with single-sensor filter design and in comparison with single-model

filter design. The method will be discussed throughly in Chapter 4.

The structure for this framework is presented as follows [59]:

• Offline tasks are performed in a heuristic manner:

Motion segmentation: identification of distinct gestures with distinguishable

physical model or measuring models;

Regression: different slopes and intersections regression for each of the identified
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gestures;

Evaluation: evaluation of optimal physical modeling for processes and measure-

ment functions, for each identified gesture.

• Online tasks performed for each valid sample:

Data acquisition: synchronization and alignment of multiple sensor data

must be guaranteed;

Classifier: classification of the gesture being performed and activation of the

corresponding filter;

Measurement function: computation of measurement output using the corre-

sponding regression for the gesture being performed;

Kalman filter loop: use of physical modeling, system and measurement error

covariance matrices correspondent to the gesture being performed.

Sensor Fusion for MARG Sensing

Interesting examples of sensor fusion for human application using MARG sensing range

from complementary filters to Kalman filter [134, 63, 50]. Complementary filtering fuses

accelerometer and magnetometer data through the use of low- and high-pass filters, whereas

the Kalman filter can potentially correct for noise in the yaw angle [58]. A framework for

the application of Kalman filters for orientation purposes using MARG sensors is introduced

as follows:

• Ensure alignment of all MARG sensors in case they are not packed together;

• Calibrate inertial sensors;

• Calibrate magnetometers and compensate for soft- and hard-iron artifacts [62, 135];
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• Obtain systematic and random errors of all sensors. This information is necessary for

defining the measurement covariance matrix in the Kalman filter;

• Know your process: design the physical model of your process. For free motions, that is,

motions with dynamics which are steady and depend only on the structural mechanical

features, the physical models can be well described. For human input processes or

driven motions, it is hard to define the process without imposing constrains on the

performer. The previous study’s goal was to improve sensing design without restricting

improvisation to an enclosed set of gestures or rules, resulting in an accurate sensing

design that does not interfere in the exploration process of finding news ways to play.

Under the proposed framework, these news ways are considered as unpredictable

signals instead of a violation of arbitrary probabilities or rules. The mentioned work

shows that it is possible to improve the accuracy of sensing using sensor fusion without

restricting gestures to a set of probabilities, rules, or sequences [59];

• Apply the Kalman set of equations.

2.5 Conclusions

We have presented an overview of sensor use manifested in the NIME Conference proceedings

from 2009 to 2013. The survey included total sensor use, use trends, use of motion capture

tools and portable consumer electronic devices, concomitant use of sensors within the same

application and embedded use of MARG sensors in portable consumer electronic devices.

Then, we presented a brief overview on human motion analysis, discussing its kinematic

and kinetic measuring methods. We showed that the most used sensors in DMIs provide

force-related variables: accelerometer and FSR.

We then presented an overview of accelerometer and FSR use concerning techniques
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of conditioning circuit and signal processing. We pointed to some limitations of recurrent

designer choices, offering alternatives for a more advanced instrumentation design. We also

proposed the use of strain gages as an alternative for force acquisition, a progressive and

versatile choice with linear and reproducible response.

Then, we commented on interesting examples of sensing applications in NIME publica-

tions, once again proposing improvements for the instrumentation design and sensor signal

processing through the use of specialized sensors, advanced electronic conditioning circuits

and advanced sensor signal processing. Regarding the advanced sensor signal processing,

we focused on sensor fusion. We remarked that for human input signals, as is the case for

DMIs, most of the sensor fusion techniques are not straightforward, because human input

signals are not trivially modeled. Therefore, despite the improvements brought by sensor

fusion techniques, this method alone is not sufficient to obtain accurate signals.

Overall, we concluded that there is an urgent need to improve instrumentation techniques

for DMIs and other human input devices, in order to design reliable instruments that are

also robust, reproducible, responsive and accurate. We believe that efforts to improve

sensing design—through the use of state-of-the-art engineering techniques—of DMIs can

bring improvements concerning explorability and feature controllability [34]. Finally, as

shown by the review of sensor use, there is an expansion in the use of MARG sensors for

motion analysis. The current challenge is to fuse kinetics and kinematics for better analysis

of human motion. Our future work is devoted to algorithms for biomechanical analyses that

fuse positional data with sensor data—especially MARG sensors.
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Chapter 3

Evaluation of Sensing Design for

DMIs

Designing sensing for human-computer interfaces, particularly DMIs, is not a trivial task. A

sensing design must satisfy not only common engineering requirements for reliable measuring,

but also the requirements imposed by an exploratory context. In this chapter, we evaluate

sensing designs for a DMI called The Rulers. The Rulers is a Kalimba-like instrument,

whose mechanical design presents seven cantilever beams that can be bent or plucked

individually or simultaneously. A previous design made use of infrared and Hall effect

sensors. We introduce the use of strain gages as a sensing alternative. Strain gages are

widely applied for solid mechanical analysis and present interesting features when applied to

human-computer interfaces. We evaluate these three sensing technologies according to their

metrology specifications—measurement function, linearity, resolution, sensitivity, resolution

and hysteresis, according to environmental qualitative descriptors—mechanical robustness,

installation and circuitry difficulty, and according to secondary sensitivities: force, stage

light and temperature. Results indicate several advantages of the strain gages over the

2015/04/15
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infrared and Hall effect sensors, however their application requirements might be an obstacle

for novice designers.

3.1 Introduction

As discussed in Chapter 2, we claim that stability, robustness, accuracy, reproducibility, and

fast response are essential features for DMIs. Consequently, these requirements apply to the

DMIs’ sensing design. In most cases, these requirements differ from those in a laboratory

environment, as interference quantities and operational conditions might differ. Often, DMIs

require some adaptation after performers’ practice sessions.

In order to evaluate sensing systems for DMIs, we used The Rulers as a testbed. Figure

3.1 shows The Rulers being played. This instrument, developed in 2004 by David Birnbaum

[136, 137], has undergone two versions and has been played in numerous performances.

However neither of these versions have produced a stable instrument, that is, neither were

considered satisfactory to the point that further improvements would be dismissed.

Fig. 3.1 Archival photo (IDMIL Laboratory Library) of The Rulers being
played by Fernando Rocha. Photo by David Birnbaum. Reproduced with
permission.

The first version used infrared sensors to measure the distance between sensor and

cantilever beam. The second version used Hall effect sensors to measure the distance
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between sensor and a magnet firmly attached to the bottom of the beam. Using these sensor

technologies, several issues of musical performance were identified such as sensitivity to stage

light and timing issues due to hysteresis. These sensors are relatively easy to use and highly

available, which makes them popular among researchers and makers [18]. As we intend to

evaluate The Rulers’ sensing as it was used in stage performance, no improvement on the

sensor signal conditioning circuits or sensor placement was performed. The improvements

are recommended in the end of this chapter, and executed in Chapter 4.

As a sensing alternative, we introduce the use of strain gages. As opposed to IR and

Hall effect sensors, strain gages have not been widely employed in DMIs, possibly due to

their relative complexity when compared to more popular sensors for measuring force and

pressure, such as FSRs [19, 20, 1, 18]. SGs are widely used in solid mechanical analysis. The

simplest application of these sensors is the measurement of strain in a clamped cantilever

beam. We are interested in comparing the performance of specialized sensors—such as

strain gages— and ordinary sensors—such as infrared and Hall effect sensors— using The

Rulers as a testbed. For this purpose, we perform an in-depth review of SG application for

bending strain.

The sensors are submitted to the same evaluation, as well as calibrated using the

same reference measuring system and process. The evaluation method includes metrology

descriptors and environmental qualitative factors.

3.1.1 The Rulers

The instrument was designed to induce the gestures of plucking or bending the free edge

of seven beams [137]. The aluminum beams have different lengths, therefore, each beam

oscillates at a different frequency when plucked. This provides visual and passive haptic

feedback to the performer. However, free and driven motions are not meant for acoustic
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the conclusions.

3.2 Sensor Technologies for The Rulers

This section presents the considerations for sensor specifications, placement and signal

conditioning for SG, IR and Hall effect sensors.

3.2.1 Infrared Sensor

The QRD1113 FairchildTM consists of an infrared emitting diode and a photosensitive

transistor [139]. The process of measuring a distance between sensor and object, surface,

or body using this sensor happens as follows. The diode constantly emits infrared light,

which is reflected given the presence of an obstacle in the sensor active range. The sensor-

obstacle distance determines the reflected infrared light, which consequently determines the

polarization of the transistor’s p–n junction(s). The polarization defines the transistor’s

collector current (IF ). The IR polarization circuit for this specific sensor is presented in

Figure 3.3. The infrared sensor is placed underneath the beam, close to the clamp, as shown

in Figure 3.11. Placement and polarization resistors for diode and transistor determine the

sensor’s operation range, which defines its sensitivity. Even a careful choice of resistors and

placement can lead to non-monotonic ranges.

The deflection at the free edge is assessed by measuring the distance between sensor and

beam. However, the flawed clamp does not guarantee a linear relation between measured

distance and quantity of interest. The relation between the two quantities needs to be

considered in the measurement function, which can also be obtained by calibration.

This sensor requires polarizing resistors as external components, as shown in Figure

3.3. A good practice is to use two resistors (RD1 and RD2) in series with the diode. One
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In its unipolar configuration, using only one magnet as magnetic field generator, the

relation between magnetic field and distance is quadratic [142]. Furthermore, as expected

from a magnetic sensing technology, Hall effect sensors present hysteresis. Besides non-

linearity and hysteresis, another drawback of using the Hall sensor for The Rulers is related

to the instrument’s mechanical features, which allow rotation of the beams around their

vertical axes, resulting in misalignment between sensor and magnet. Also, non-linearity

due to the relation between quantity of interest and measured quantity can be expected.

A possible source of interference for this sensor is any external magnetic field, created by

other magnetic sources.

3.2.3 IR and Hall Effect Sensor Solutions

As presented above, IR and Hall effect sensors measure the distance between the sensor

and the beam. The measurements are taken near the clamp in order to leave free space for

the musical gestures. Therefore, as the measured quantities are smaller than the deflection

at the free edge, adjustment of placement and polarization resistors should be performed,

establishing a better measurement range and improving the SNR.

In addition, two layers of non-linearity are reported in this study. The first one is the

non-linear relation between measured quantity and quantity of interest. The second one is

the non-linear voltage sensor response in respect to distance.

The drawback of non-linearity can be dealt with by coherent calibration and regression,

and signal processing techniques [143]. Also, linearization methods can be applied both

in hardware and in software [144, 145, 146], and computational methods can be used for

offline applications. However, for embedded real-time application—as is the case of most

DMIs—the requirements of low computational cost and processing time limit the number of

possible solutions. For instance, considering the popular Arduino platform, the possible
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techniques for embedded processing of non-linear data are costly in time, and might produce

only a few discrete measurement levels [101].

Ambiguity ranges are a consequence of non-monotonic functions, which usually present

a certain measurement interval where the sensitivity is close to zero, compromising the

responsiveness of the system. This is another issue of using infrared and Hall effect sensors.

If a monotonic response is not achieved by careful selection of placement and polarizing

resistors, possible solutions include advanced instrumentation design and sensor signal

processing [101].

3.3 Strain Gage Technology

From physics, it is known that a force applied to a certain area result in stress given by

τ = F/A, where τ is the stress, F is the applied force and A is the area [104]. Strain is the

relative deflection of rigid body particles, which can be described in its engineering normal

form as: ǫ = ∆L/L, where ǫ is the engineering normal strain and L is the original length of

the Device Under Test.

Materials can react to the stress elastically or plastically, depending on their own

characteristics and on the load. In the elastic regime, the relation between stress and strain

is linear, and there is no residual deflection when the force is released [147]. Materials in

their plastic regime do not have a linear relation between stress and strain, and residual

deformation might remain when the load is released [147]. Under elastic condition, the

linear relation between stress and strain is given by the Young Modulus or Elastic Modulus

(E): E = τ/ǫ. This chapter discusses strain and strain gage technology, relying on the

hypothesis that the materials are operating in their elastic mode.

Besides mechanical stress, the other stress type common in rigid body materials is the
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thermal stress [41]. Thermal stress results in strain, and respects the thermal expansion

coefficient (α). A body with initial length of L changes its dimensions due to temperature

changes, in respect to the following equation: ∆L = Lα∆T , where T is the temperature.

Strain gages measure these strains indistinguishably: strain due to mechanical stress

and strain due to temperature. For bending strain, given the mechanical structure of the

beam, the mechanical strain is inversely proportional to the distance between measuring

point and clamped edge. The equations that govern the beam’s deflection at the free edge

and strain at a given measurement point are [148]:

δ(a) =
2F a2

E BH3
(3L− a) (3.1)

|ǫ|(x) =
6F (L− x)

E BH2
(3.2)

where δ(a) is the deflection at the free edge, given a force F, applied at a longitudinal

distance a from the clamped edge, E is the Modulus of Elasticity intrinsic to the material,

x is the longitudinal distance between the measurement point and the clamped edge, L is

the beam longitudinal length, B is the beam width and H is the beam thickness.

The most common strain gage types are piezoresistive and piezoelectric [41]. Among

the piezoresistive strain gages, a variety of designs, purpose, temperature compensations

and measurement ranges can be found commercially. Piezoresistive SGs can be classified as

metallic or semiconductors. The popular metallic strain gage grid design defines which type

of strain the sensors are be sensitive to. For instance, the strain gage in Figure 3.7, is mostly

sensitive to strain in its longitudinal axis. Therefore, this sensor experiences changes in its

nominal resistance in respect to strain in the longitudinal axis. Figure 3.6 shows metallic

and semiconductor strain gages applied to a specimen for tensile testing.
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ratios [29]:

dR

R
=

dρ

ρ
+

dl

l
− dA

A
(3.4)

The longitudinal variation, within the elastic limit obeys Hooke’s Law (τ = E ǫ) [147]:

τ =
F

A
= E ǫ = E

dl

l
(3.5)

where τ is the mechanical stress, E the Young’s Modulus and ǫ the strain. Also, according

to Poisson, the transversal dimension b varies in respect to a longitudinal load:

ν = −db/b

dl/l
(3.6)

In practice, the grid design of a longitudinal SG reduces its transversal sensitivity. This

is obtained by thin grid lines and by thick end loops. That is, maximizing the end loop

areas minimizes their equivalent resistance. These fabrication choices are illustrated in

Figure 3.7, which displays a common metallic SG design.

From the previous equation, the area variation for a rectangular cross section is:

dA

A
= 2

db

b
= −2 ν

dl

l
(3.7)

Also, the applied force causes variation of the vibration intensity of the metal lattice,

which reduces electron mobility [29]. Bridgmann’s constant (C) relates the amount of

variation of resistivity to the amount of variation of the volume.

dρ

ρ
= C

dV

V
= C

[

dl

l
+ 2

db

b

]

= C

[

(1− 2ν)
dl

l

]

(3.8)
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Finally, for an isotropic rectangular conductor, within the elastic limit, the amount of

resistance variation due to mechanical strain is:

dR

R
=

dl

l
[1 + 2ν + C (1− 2ν)] = GF

dl

l
= GF ǫ (3.9)

As reviewed in Section 2.3.3, temperature affects the strain measurements in several

ways. Usually, the main effects observed are [29, 41]:

• metallic DUT and sensor suffer dimensional changes governed by the thermal expansion

coefficient;

• temperature variations alter the Gage Factor of the unstrained grid wire.

Some procedures can be taken to compensate for that:

• selection of material-alike compensated SGs, that is, sensors that have thermal

expansion coefficient similar to the DUT;

• include dummy SGs in the balancing circuit. Dummy sensors are exposed to the same

temperature but not submitted to mechanical strain (Figure 3.6);

• test DUT under temperature-controlled environment, which is not practical in most

applications;

• limit the excitation voltage in order to reduce the power dissipated by area. This

consists a hard design question as it involves SNR, sensor dimensions and sensor

nominal value. An unloaded drift study can define temperature variations due to

power dissipation effects [149];

• use bridge topologies where the temperature effect is canceled out. This will be further

discussed in the next section.



3 Evaluation of Sensing Design for DMIs 73

3.3.2 Conditioning Circuit

A signal conditioning circuit for strain gages should include the following conditioning

techniques and circuits: balancing conditioning circuit according to the stress profile,

temperature compensation, zeroing circuit, lead wire compensation, amplification, and

filtering (if necessary).

Following that, a calibration using a reference measuring system should be used. A

conservative protocol for strain gage measurement and data analysis is given by the Unified

Approach to the Engineering of Measurement System for Test and Evaluation [5]. This

method synthesizes calibration, control, test and evaluation of measuring systems. One of

its main contributions is the discussion of interference quantities and tests to detect their

influences.

As reviewed previously, strain gages vary their resistance with respect to strain. However,

this resistance variation can be as small as less than 1% of their nominal value [6]. In order

to be able to measure this small variation on resistance, balancing conditioning circuits

need to be used. The most common balancing circuit is the Wheatstone bridge. The bridge

can be analyzed as two voltage dividers: one formed by sensors SG1 and SG2, and other

formed by sensors SG3 and SG4 (Figure 3.8). The balance occurs when all four elements of

the circuit have the same resistance. As far as one resistor changes its resistance, a non-zero

voltage can be read in the bridge output VO. However if two adjacent resistors present equal

resistance variation, the bridge keeps its balance. This allows for temperature compensation

through dummy sensors. Considering the sensor distribution in Figure 3.8, pairs of sensors

facing each other (SG1/SG3 and SG2/SG4) have their variation summed, whereas adjacent

resistors pairs (SG1/SG2 and SG3/SG4) have their variation subtracted.

The bridge is followed by circuits for offset-nulling compensating for lead wire resistances,
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by wires of equal length and specifications. Even so, the resistance of the power source

wires can be reduced by half using the 6-wire configuration. In this method, two wires are

used to connect each of the supply voltage terminals. This enhancement is particularly

interesting for remote measurements. The use of twisted pair cabling—shown in Figure

3.9—reduces the electromagnetic susceptibility of remote connections. For amplification

reasons, an in-amp is used with reference voltage of VS/2 in order to operate rail-to-rail

in a single supplied circuit. The in-amp gain has to be adjusted in order to provide SNR

enhancement, without compromising the measurement range.

An alternative conditioning circuit to the Wheatstone bridge is the circuit called Anderson

Loop. The loop current remains constant with the sensor resistance variation, therefore, it

eliminates possible non-linearities in unbalanced bridge topologies [150].

Wheatstone Bridge Topologies

The types of Wheatstone bridge are defined by the number of active elements, that is, sensors.

This way, a quarter-bridge has one sensor and three fixed resistors, whereas a half-bridge has

two sensors and two fixed resistors. Finally, in a full bridge configuration, all the elements

are active. As The Rulers define a bending strain problem, a uniaxial measurement of

strain was chosen. For this, double longitudinal SGs, also called XX, were applied to the

bottom and the top of the beam. In order to maximize overall sensitivity, a full bridge was

implemented. The temperature compensation is obtained by using self-compensated SGs

and by coherent full bridge connection. This topology is depicted in Figure 3.8. Sensors

SG1 and SG3 are applied to the top of the beam, whereas sensors SG2 and SG4 are applied

to the bottom of the beam, as shown in Figure 3.10.

The summary of the effects of each sensor when the beam is bent downwards are:
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for temperature, and that they are submitted to equal absolute mechanical and thermal

strains—the total output voltage is:

VA = VS
R−∆RM +∆RT

2R + 2∆RT

(3.13)

VB = VS
R +∆RM +∆RT

2R + 2∆RT

(3.14)

The output is the difference between VA and VB:

Vo = VA − VB = VS
R−∆RM +∆RT − (R +∆RM +∆RT )

2R + 2∆RT

(3.15)

= VS
−2∆RM

2R + 2∆RT

= VS
∆RM

R +∆RT

(3.16)

however R ≫ ∆RT and ∆R/R = GF ǫ, therefore

Vo = VS
∆RM

R +∆RT

= VS
∆RM

R
= VS GF ǫmec (3.17)

The final bridge output is four times more sensitive to strain than the quarter-bridge

topology using only one active gage.

3.3.3 Sensor Application to the Specimen

Applying the strain gages to the specimen requires special attention, due to the delicate

structure of the strain gage. Also, the installation process requires a dirt-free environment

and tools, because any impurity might degrade the strain gage grid and pads, or affect the

strain transfer from specimen to sensor.
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Once the specimen and sensor are clean and dry, the application point is selected. The

selection of the measurement point is a compromise between maximizing SNR and maximum

strain damage prevention. After selecting the point, signs are drawn to indicate the correct

position to apply. A misalignment between the axial axes of bottom and top applications is

acceptable if it does not exceed 4◦ [41].

The bond between SG and beams can be made by cold-cured cyanoacrylate adhesive

[151]. The sensors must receive a protection given by dedicated coating material. Finally,

the bridge and lead wires from the bridge to the remaining conditioning circuits must be

installed with care. Unbalanced wiring can lead to apparent strain measurements. Last, a

resistance measurement test can verify the correct installation of the sensors.

3.4 Calibration Setup

3.4.1 Sensors

The conditioning circuits for the IR, Hall effect, and strain gage sensors are respectively

displayed in Figures 3.3, 3.5, and 3.9.

3.4.2 Acquisition System

The analog acquisition card is a National Instruments NI PCI-4472 c©, with the following

specifications: 8 channels, 24 bits/sample, and up to 100 kHz. Five channels were used:

• power supply voltage;

• power supply at the sensors end;

• strain gage conditioning circuit output;

• Hall effect sensor output; and

• IR circuit output.



3 Evaluation of Sensing Design for DMIs 79

A .vi code (Labview c©) was implemented for processing data from the acquisition board.

The software incorporates the following blocks/functionalities:

• acquisition board settings;

• data manipulation settings (user);

• signal processing features such as filtering and zero-nulling by software;

• data visualization; and

• data logging.

Further processing such as filtering, regression and statistical analysis were performed

with exported data from Labview c© to Matlab c©.

3.4.3 Measurement

The reference used for calibrating the sensors was the vertical distance between beam at

rest position and discrete stoppers—using LEGO
TM

bricks as stoppers. LEGO
TM

bricks are

a flexible, low cost, and dimension accurate option for designers that do not have a reference

measuring system at their convenience—LEGO company reports a “machine tolerance” as

small as 0.01 mm [152]. The measurement points were delimited by stoppers at a known

distance from the rest position of the beam. The procedure diagram is shown in Figure

3.11.

A remark should be made about SG calibration. Given elastic behaviour of the beam,

the applied force magnitude is linear with respect to the distance from the beam at rest

position. Therefore, calibrating the SG using position reference or force reference results

in equivalent transfer functions. If the material plastifies at any moment or if other forces

besides bending exist, this equivalence might be compromised.
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VHL = −2.840 10−5 δ2 − 2.131 10−3 δ + 0.2001;

• Infrared — quadratic — r2 = 0.9918

VIR = −4.937 10−4 δ2 + 1.505 10−2 δ + 4.538.

where Vsensor is the output of each of the sensors, δ is the deflection at the free edge given

by the reference, and r2 is the coefficient of determination, which indicates the quality of a

fitting model.

It is notable that the Hall effect sensor has a low r2 value, as compared to the other

sensors. This is explained by the significant hysteresis presented by this sensor. This effect

will be discussed later in this section. The regression curves for each sensor are presented in

Figure 3.12.
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Fig. 3.12 Regression curves for each sensor

Clustering output voltage ranges, it is possible to better visualize the output response

of each sensor (Figure 3.13). By analyzing this figure, it is clear that both IR and Hall
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effect sensors are not monotonic, what leads to ambiguity ranges—highlighted in Figure

3.13. The ambiguity ranges are [0, 30] mm for the IR sensor, and [-60, -15] mm, for the

Hall effect sensor. As stated in Section 2.4.1, non-monotonic ranges are not desirable even

if the analysis of the instantaneous derivative can solve the ambiguity. This is due to the

fact that non-monotonic ranges generally present regions with extremely low sensitivity.

Fig. 3.13 Sensor responses for Hall effect sensor (left horizontal axis range)
and SG and IR sensors (right horizontal axis range). Ambiguity ranges occurred
due to non-monotonicity.

As shown in Figure 3.13, both IR and Hall effect sensors have non-linear quadratic

responses. As mentioned earlier, for the most popular microcontrollers, there is little

capability of processing non-linear polynomial or exponential measurement functions by

firmware [101]. A possible solution is to process the measured data in more computationally

powerful platforms that interface with the firmware. This workaround needs to be done,

otherwise erroneous data mapping can degrade the overall performance of the DMI.

Given the measurement functions, it is possible to calculate the sensitivity for each

sensor technology. Figure 3.14 presents the sensors’ sensitivity, i.e., the amount of variation
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observed in the output when a unitary variation of deflection occurs. As expected, IR and

the Hall effect sensors have variable sensitivity across the measurement range.

Fig. 3.14 Strain Gage, IR and Hall effect sensor sensitivities across the
measurement range

Comparatively, the IR sensor presents good sensitivity within the range [-50, 0] mm,

whereas the Hall effect sensor presents the poorest sensitivity across almost the entire

measurement range.

The resolution indicates the “smallest change in a quantity being measured that causes

a perceptible change in the corresponding indication” [3]. For instance, to date, most of

the embedded analog-to-digital converters (ADC) in Arduino boards are 10 bits/sample

[153]. Based on this ADC resolution and on the instantaneous sensitivity, the instantaneous

resolution of each sensor measurement across the range is obtained. Figure 3.15 shows the

sensor measurements resolution for a 10-bit ADC. For clarity purposes, the bottom graph

in the Figure 3.15 is a scaled version of the upper one, where only resolutions lower than 5

mm are shown.

It was mentioned earlier that the Hall effect sensor response presents hysteresis. This is

a common effect in magnetic devices. Aside from that, bending trajectories are not similar
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Fig. 3.15 Strain Gage, IR and Hall measurements resolution across the range.
The bottom graph is a zoomed version of the top one, highlighting resolutions
lower than 5 mm.

in ascending and descending motions, due to its imperfect clamp. For this experiment, the

overall average hysteresis for each sensor is:

• Strain Gage: δhyst = 1.01 mm ;

• Hall Effect Sensor: δhyst = 16.86 mm ;

• Infrared: δhyst = 4.64 mm ;

Figure 3.16 shows calibration curves for the Hall effect sensor, distinguishing ascending and

descending bending.

3.5.2 Qualitative Sensor Evaluation

In the context of a DMI, some qualitative descriptors must be analyzed. Some of them are

presented in Table 3.1 and described as:

linearity: although linearity can be defined quantitatively, it is also listed as qualitative
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Fig. 3.16 Hall effect sensor hysteresis: a regression curve for each deflection
direction.

descriptor because non-linear sensors require additional signal processing in order to

be suitable for microcontroller operations;

force sensitivity: as opposed to IR and Hall effect sensors, SGs are directly sensitive

to the applied force, which may be desirable. For instance, the forces acting in the

cantilever beam during free oscillation and during driven motion are different. This

can be used to determine the presence of external control;

stage light sensitivity: stage light has an infrared spectrum, which therefore interferes in

the IR sensor response. Also, some stage lighting may be much warmer than ambient

temperature. This thermal property might interfere in the SG response;

temperature sensitivity: Temperature, as an ubiquitous environmental quantity, might

interfere in any measurement. Therefore, temperature interference should be observed

in order to obtain reliable measurements [5]. Quality strain gages’ datasheets include
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Gage Factor response to temperature. The effect of temperature in IR and Hall effect

sensors also affects their response according to their datasheets [139, 141]. However,

it is hard to define and quantify the variation by examining the datasheet graphs. As

a practical rule, a temperature sensitivity study should be run in order to define the

effect of temperature on each of the sensors;

circuity complexity: represents how difficult it is to set up data acquisition for the three

sensor types. In general, several IR and Hall effect sensors are commercialized with

internal signal conditioning circuits. This was the case for the Hall effect sensor used

in this work. IR and Hall effect sensors require simple conditioning signals, whereas

strain gages require a more complex conditioning circuit and basic assessment of stress

analysis;

installation complexity: strain gages require expertise in their manipulation and in

their application onto the specimen, whereas IR and Hall effect sensor application

is extremely simple. Despite this uncomplicated setup, it is hard to adjust sensor

placement for obtaining a monotonic behaviour, that is, free of saturation.

mechanical robustness: mechanical robustness indicates the property of maintaining the

functionality of the sensors through time and use. As strain gages are applied to

moving parts, as well as their lead wires, this can imply fatigue or connection issues.

The IR sensor does not have any moving parts, therefore it is mechanically robust.

Finally, the Hall effect sensor was considered to exhibit a medium level of mechanical

robustness, because the magnet is installed on moving parts, which can compromise

the alignment between the Hall sensor and magnet.
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Table 3.1 Qualitative descriptors for The Rulers
descriptors SG Hall IR

linearity linear non-linear non-linear
force sensitivity yes no no
stage light sensitivity negligible no yes
temperature sensitivity yes yes yes
circuitry complexity high low low
installation complexity high low low
mechanical robustness medium medium high

3.6 Discussion

After discussing the characteristics of the three sensors types and their evaluating descriptors,

other overall parameters can be useful for sensor selection: responsiveness, robustness, price,

availability, usability/complexity, and compatibility to real-time performance scenarios.

Concerning responsiveness, the main indicators are the sensitivity and linearity. The

IR sensor presents the best sensitivity over 75% of the measurement range, however this

value is range-variant and decays drastically for small deflections. This implies that small

vibrations and the damped plucking oscillation are hardly sensed by this sensor. The strain

gage has a constant sensitivity across the entire measurement range, as its output is linear.

The Hall sensor has the smallest sensitivity across most of the measurement range. In terms

of mapping sensor signals to control music, the non-linearity of IR and Hall effect sensors

might be a drawback, as it requires algorithms to deal with high order regression functions

and ambiguity.

The robustness of The Rulers in performance scenarios was the main motivation for

evaluating the previous versions of this instrument—based on IR and Hall effect sensors—

and to propose another version based on strain gages. Evaluation of the infrared version

of the instrument under performance reported issues with stage light. The Hall version of
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the instrument received several complaints about signal loss through misalignment, and

delay through hysteresis. There were no performances with the strain gage version of the

instrument yet.

IR and Hall effect sensors tend to be highly available at low cost. Furthermore, they

are straightforward to set up, requiring simple tools and conditioning circuit components.

For these reasons, they are popular in DIY design. In contrast, strain gages require a high

initial investment as the tools and the products to install these sensors are expensive. Once

this initial cost is invested, the sensor itself is not expensive. Also, the availability of strain

gages may be more limited.

In terms of usability and complexity, strain gages are the most difficult to use, requiring

special skills and materials in their application, whereas IR and Hall effect sensors are

relatively easy to connect and apply. The complexity of handling IR and Hall effect sensors

comes with dealing with their data, finding optimal placement, and optimizing polarizing

resistances.

3.7 Future Directions

Future developments are essential to improve sensing in The Rulers. Some of them are:

• rebuild the mechanical structure of the instrument, guaranteeing a perfect clamp;

• improve sensor placement and sensor conditioning circuits for IR and Hall effect

sensors, aiming for a monotonic measurement range;

• calibrate the sensors using a reference system with a continuous dynamic measurement

range;

• incorporate other sensitivities to the mapping, such as force.
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3.8 Conclusions

The evaluation above presented the features, advantages, and drawbacks of each sensor

technology. It is important to remember that IR and Hall effect sensors’ circuitry and

placement could have been improved. However, intentionally, this task was not executed, in

order to compare versions as used in performance with a new version based on strain gages.

Several improvements regarding the conditioning circuit and sensor placement could be

done to improve the metrological properties of IR and Hall effect sensors. These changes were

not done at this point in order to show, in the next chapter, the enhancements that can arise

from using more careful engineering design including customized mechanical sensor fixture

and conditioning circuit. The evaluations presented in this chapter used the instrumentation

design already prepared for IR and Hall effect sensors, highlighting some limitations of a

less careful approach. Therefore, in this context, the performance of IR and Hall effect

sensing, compared to SG, might seem biased. Finally, it is expected that some drawbacks

of IR and Hall effect sensors—such as non-linearity, non-monotonicity and hysteresis (Hall

effect sensor only)—might persist in enhanced versions of their instrumentation design.

Strain gages proved to be a good alternative for The Rulers, due to their linear response.

However, the complexity of their application and conditioning circuits might deter their use.

While the hysteresis of the Hall effect sensors could make their use prohibitive, this

drawback could be used for identifying movement directions, which consequently could be

used to solve ambiguity in the infrared sensor response. As for the analysis of Figure 3.13,

excluding the ambiguity measurement ranges of IR and Hall effect sensors, they present

complementary measurement ranges. This complementarity could be further explored with

sensor fusion techniques.

Finally, taking into account all evaluations discussed throughout the chapter, it is hard
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to identify a unique optimal sensor technology for the application. Even if strain gages

appear to be an optimal sensing solution, their sensitivity to force might be further explored.

Also, using strain gages as the sole sensing method might be risky, as their installation is

delicate and fragile. Considering the performance context where the performer might not be

aware of this drawback, we believe that at least another backup sensing method should be

used in case of SG circuit failure. A working hypothesis suggests that, for a certain sensor

placement, IR and Hall effect sensors might have complementary behaviours when it comes

to sensitivity. Having said that, the natural direction towards combining positive features

of several data sources is the use of sensor/data fusion.
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Chapter 4

Multiple-model Linear Kalman Filter

Framework for Unpredictable Signals

This chapter presents sensor fusion techniques for systems where the process model is a

function of the human input and, therefore, unpredictable. The system consists of free

and user-driven motion regimes. The free regime can be modeled as a damped sinusoidal

waveform, while the driven regime and the transitions between regimes do not respect any

sort of probability, pattern or sequence. The quantity of interest is the deflection of a

clamped beam, measured using three sensor technologies: strain gages, infrared and Hall

effect sensors. Experiments using infrared-based motion capture as a reference measuring

system show that: 1) none of the sensors present optimal performance for both motion

regimes; 2) measurement errors of each sensor differ significantly according to the motion

regime. Our solution is based on a multiple-model linear Kalman filter in combination with

motion segmentation. The motion segmentation discriminates gestures according to the

knowledge of their process model. This allows a more predictive estimation during periods

of free motion, while relying on a less predictive approach for unknown user-driven signals.

2015/04/15
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Additionally, we propose a framework for evaluation and selection of process models for

unpredictable signals. The implementation was compared to single-sensor and single-model

filter designs.

4.1 Introduction

The popularity of input devices for computer control has raised attention to gestures and

sensors [1]. Typically, consumer electronics manufacturers introduce their own vocabulary

of gestures to control their devices. These gestures are tracked by a number of sensors

embedded in the devices. A predefined set of gestures, forming a vocabulary, facilitates the

mapping between gestures and control, on account of expected patterns of sensor data. In

these cases, sensor data should be accurate enough to allow for the gesture to be classified

correctly within the predefined vocabulary. However, some devices do not have a predefined

vocabulary of gestures, allowing freedom for the user to define his own gesture vocabulary,

as is the case of Digital Musical Instruments.

Musicians are known to have refined motor control – they perform highly-developed body

gestures while playing instruments – and proficient auditory perception. These qualities

make them aware of the output of each gesture, allowing them to identify any incoherence

in the mapping between gesture and sound produced. Also, on many occasions, musicians

perform similar gestures with different qualities, extending their technique to something

unique. In order to satisfy skilled users, the instrumentation design – sensor and signal

conditioning – must meet several requirements. First, in order to empower musicians to

control the instrument in an expressive way, a DMI must not restrict the user interaction

to an enclosed vocabulary. Additionally, the instrumentation design should be accurate,

reproducible, monotonic, with fast response in real-time and preferably embedded in the
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device.

As shown in Chapter 2, most of the DMIs are based on one sensor technology. For

these, operation is vulnerable to the limitations of the sensor technology used. Additionally,

nowadays many DMIs are developed in a DIY manner, prioritizing ordinary sensors, that is,

easily available sensors that require simple assembly and signal conditioning circuits. We

believe that more robust designs can attain stability and full potential of sensing, as well as

encourage greater dissemination and commercialization of DMIs.

In this work, we discuss instrumentation for a DMI based on three sensor technologies:

strain gages, infrared and Hall effect (HL) sensors. Results demonstrate that each sensor

has advantages and drawbacks. As seen in Chapter 3, it is not possible to determine an

optimal single sensor solution that is advantageous in all common operations. It follows

that the most favorable solution would be a combination of features of several sensors. This

suggests the use of sensor fusion in order to design robust sensing for a DMI.

We then propose a linear Kalman filter in order to accomplish the fusion task. This

filter is proven to be effective when the process and measurement models of the system are

known [154]. For instance, there are numerous examples of Kalman filter application in

navigation where the state variables are position, velocity and acceleration [52, 155, 124]. In

the present case, user interaction with the DMI is unpredictable, and therefore the process

model of the system is not entirely known. Model uncertainties deteriorate the optimality

of the estimation or can even cause divergence [156]. The unpredictable nature of the DMI

signals makes the implementation of a linear Kalman filter intricate due to the partial

knowledge of the system model. The next section reviews other possible filter topologies

used in similar problems.
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4.2 Bayesian filter solution for unpredictable signals

The selection of a filter technique within the Bayesian realm is not only a technical

decision but also a design choice. Some might say that a linear-Gaussian assumption is

usually sufficient. Others may argue that nonlinear techniques can better account for

nonlinearity and dynamic alternating behaviours. Some are interested in enumerating the

exact error in their estimation, whereas others might disregard the approximation on the

error determination. Some might prefer a less rigorous determination of process model and

model error covariance, whereas others can assure the accuracy of the filter parameters.

Possible Bayesian methods include the following:

• linear Kalman filter: an optimal solution for linear-Gaussian signals and models;

• Adaptive Kalman filter: usually meant for tracking and not used for error covari-

ance reduction;

• Extended and Unscented Kalman filters: suboptimal solution for Gaussian

linearized signals and models. Suitable for weakly nonlinear and unimodal cases;

• Interacting Multiple-Model: distinct system behaviours are described by different

models, usually selected according to their likelihood or sequence;

• Particle filter: a Monte Carlo sampling simulation using raw data points (particles).

The particles’ weights represent their quality as an estimated value.

The idea behind the adaptive Kalman filter is to modify the error covariance of the

measurements, system or estimate according to some cues [157, 158, 159, 160]. This filter

reduces the level of trust in uncertain process models. Consequently, in order to guarantee
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coherent tracking, the level of trust in noisy sensor data is increased. This filter is usually

meant for tracking and not for reducing noise in sensor data [160].

An Extended Kalman filter is a KF implementation using linearized models and mea-

surements. The EKF is a common solution for problems where accurate knowledge of

the process model is not available [161]. The disadvantage of the EKF in relation to its

linear counterpart is the higher computation cost, which makes it non-viable for embedded

real-time applications. Some works implement the EKF by setting the unknown parameters

as state variables to be estimated, and therefore, estimating both states and process param-

eters [47, 162, 163]. For these cases, several factors contribute to the limitation of the EKF

filter, most of them closely related to the linearization process [164, 165, 166, 167]. However,

most of the DMIs offer low processing power, which prohibits all linearization-based and

machine learning based solutions.

Other solutions implement multiple-model filter design in order to better describe

distinct system behaviours. One previous work deals with sensor fusion for DMIs using

Interacting Multiple Model Kalman filters where the likelihood of each of the models is

tuned by weights producing a single output [168, 169]. Interesting implementations arise

from the combination of multiple-model filters and computational intelligence tools. Some

examples of these techniques are pattern recognition, machine learning, sequential rules,

transition probabilities and statistical models or tools [170, 171, 172, 173, 174, 175, 176].

The combination of a multiple-model filter and these computational intelligence techniques

is not suitable for our problem, as the transitions respect no probability, pattern or sequence.

For the particular case of The Rulers, no statistical rule for multiple-model transitions is

applicable as it is not possible to define duration, grip type or magnitude of gestures that

will be performed by the musician.

Yet another alternative is the use of particle filters. Previous work used particle filters
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for baton tracking [177]. In this study, rehearsal data is incorporated as a probabilistic

model and the system relies on the fact that “conductors follow a set of rules (...)” [177].

That is, it includes a training stage where “adapted templates specific to the conductor and

the piece of music are created” [177]. However, DMI performances are usually exploratory,

implying little or no pre-established gesture repertoires.

Since its introduction in 1993, particle filtering has been used for estimation problems

solved recursively and numerically [178]. One advantage of particle filtering over the popular

Extended Kalman filter is that it does not rely on local linearizations [178]. The filter

also offers a less stringent requirement for accurately describing process models, at the

expense of computational cost [178]. The computational cost depends upon the number

of particles. Therefore, the filter designer can specify a suitable number of particles in

order to make his/her application suitable for real-time application. However, there exists

a trade-off between optimal and reduced number of particles. Particle filtering methods

are a set of powerful simulation-based techniques for estimation of nonlinear non-Gaussian

problems [178]. The most common application is tracking, that is, the determination of

the distribution of the state model at the current time, given available observations at

the current time [178]. Several frameworks for particle filtering implementation have been

presented, most of them a combination of two operations: sampling and resampling.

Sampling is the introduction of a set of particles to represent the posterior density,

where a weight is set for each particle [179]. The weight is the evaluation of the particle

quality with respect to the observations, followed by weight normalization [180]. Standard

and Sequential Important Sampling suffer from a severe drawback: the variance of the

estimates increases exponentially with the number of samples [178]. In order to partially

solve this issue, resampling is introduced, which consists in removing the particles with low

weight and multiplying particles with high weight [178]. An important factor that often
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determines whether a particle filter algorithm works in practice is the presence of degeneracy.

Degeneracy is the effect of having all but one – or a few – particles with negligible weight

[180]. However, a good distribution of particle weights does not necessarily lead to good

filter performance [178]. Several frameworks were presented to deal with degeneracy, such as

resample-move [178], block sampling [181], and Rao-Blackwellised [178]. Another issue that

can arise is the loss of diversity, that is, as the particles with high weights are statistically

selected many times through resampling, the resultant sample will contain many repeated

points [180].

Particle filter implementation requires the definition of the following parameters: the

criteria for sampling, the importance distribution [182], and the number of successive

resampling steps. Some evaluation descriptors are the effective sample size and the skewness

of the distribution as measures of degeneracy [180]. To the best of our knowledge, there is

no formal method for evaluating the performance of particle filters.

Probably the most common application of particle filters is tracking with single-sensor

design. In order to perform fusion of multiple sensors, the global likelihood is the product

of the individual likelihoods of the sensors [183]. These likelihoods are the probability of an

estimate y at time t, given an observation at time t. This likelihood might not reflect the

error properties of the sensors, given by calibration.

An “optimal” particle filter was presented by Doucet et al., though its application is rare

in practice [184, 185]. This optimal particle filter is recommended for linear measurement

models and additive Gaussian noises [184]. Opposed to the optimality of a linear Kalman

filter, the practicle particle filter is an approximation technique. Therefore, its suboptimality

leads to the fact that the standard deviation of the estimate is an estimate of the standard

deviation, that is, it is not the measure of the standard deviation of the estimator [178].
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4.2.1 Choice of a Bayesian method for estimation

As discussed in Chapter 3, we consider it essential to calibrate and evaluate sensing

solutions. Therefore, systematic and random errors from each sensing technology in a given

application are described by calibration using a reference measuring system. Given this

premise, measurement functions and errors are well described. The accurate definition of

these parameters is part of the requirements of a successful Kalman filter implementation.

However, a Kalman filter implementation also requires accurate knowledge of the process

model and the error in its determination. A particle filter becomes an alternative, as it

presents a less stringent requirement to determine these parameters.

For both Kalman and particle filters, the definition of the model is complex, due to the

unpredictability in human input signal. Selection of candidate models can benefit from

filter evaluation. In an evaluation scheme, the resulting error covariance of the estimate

for different candidate models could be compared to define the most suitable model for a

system or gesture. This indicates the first advantage of a linear Kalman filter over the other

suboptimal filter topologies: the linear Kalman filter is able to output a resulting error

covariance of the estimate that reflects the real error, instead of providing an approximate

error covariance of the estimate. Consequently, the error covariance given by the linear

Kalman filter algorithm can be used to test how accurate the modeling of the system or

gestures is.

The main interest in the linear Kalman filter is its optimality as our main goal is to

improve the error covariance of the measured signals rather than predicting them. Optimality

is obtained at the cost of rigorous knowledge of processes and signals. Therefore, throughout

the thesis, we describe a sensor characterization method that provides robust knowledge of

measurement models and errors, and we propose an evaluation method for determining the
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most suitable model for unpredictable signals. Another advantage is the low computational

cost and power requirements, as compared with the suboptimal filter solutions. Due to all

these reasons, we have chosen the linear Kalman filter.

4.2.2 Implementation versus Framework

As discussed above, the determination of process models for a linear Kalman filter imple-

mentation is essential for its efficiency and convergence, and it is not straightforward for

human input signals. As this thesis focuses on human input signals of DMIs, a remark must

be made about considering these signals unpredictable. By experience, we know that few

DMIs reach a stable design yielding extensive hours of practice and enclosed vocabulary of

gestures. Instead, most of them engage through exploratory interaction, that is, composers

and players experience the instrument and create new ways of playing it. The goal of

this thesis is to improve sensing design in DMIs without restricting the player-instrument

interaction by using pre-established gesture repertoires, restriction, or rules. Furthermore,

sensing design must be suitable for DMI exploration, improvisation, and creation of original

ways to play on-the-fly. Consequently, we aim to propose a solution for other problems

whose signals and their possible models are hard to describe.

This indicates the need to define an evaluation method to select process models for the

distinguishable behaviours. The use of multiple models requires the selection of a model

for each sample. Due to the reasons discussed previously, we do not want to set rules or

patterns for transitions between models, as occurs in interacting multiple-model Kalman

filters [171]. Therefore, a method to determine the transitions between models should be

created. Also, distinguishable gestures might yield different behaviours of sensor responses,

and this should be evaluated and quantified. All these requirements and tasks cannot fit a

linear Kalman filter implementation. Gesture segmentation, gesture classification, selection
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of candidate models, filter evaluation, and sensor evaluation should be accounted for in a

framework for linear Kalman filter implementation, which will be presented in this chapter.

An important remark is that we are focusing on improving the error covariance of the

estimate, rather than on tracking. For this reason, using multiple sensors can provide not

only error covariance reduction but redundancy in case of failure. For this, we examine

three sensor technologies, two of them popular solutions in DMI design – IR and Hall effect

sensors – and the other a specialized sensor technology – strain gages – rarely used in DMIs

[1, 20]. In Chapter 3, we presented several advantages of the strain gages in relation to

their counterparts. One of the disadvantages of strain gages, however, is the low mechanical

robustness, which might not be suitable for the exploratory and expressive interaction duty

of a DMI. The concomitant use of strain gages with two other sensing solutions not only

potentially improves error covariance but also provides redundancy in case of fault. An

experience of 12 years working with strain gages allows me to say that the most common

fault is the delicate wiring and soldering. However, this drawback brings its own solution.

These faults cause open circuits, resulting in easily identifiable voltage outputs. Therefore,

the faults once detected could be solved by a multi-sensor system and a fusion filter.

4.3 Device and Instrumentation Description

In this chapter, we use David Birnbaum’s The Rulers as a testbed for evaluating and

validating a method for sensor fusion when the signals are unpredictable. The instrument—

shown in Figure 4.1—evokes deflection gestures [136]. In this thesis, deflection refers to the

distance between the vertical position at rest and the deflected vertical position at the free

edge of the beam (see Figure 4.3).

The main categories of gestures used to play The Rulers are “bending” and “plucking”.
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Fig. 4.1 Archival photo (IDMIL Laboratory Library) of The Rulers: a Digital
Musical Instrument, a set of seven cantilever beams designed to evoke deflection
gestures. Photo and design by David Birnbaum.

Bending is described as a driven motion where the user grips the free edge of the beam,

bending it up or down or stopping a motion (see Figure 4.2). When the grip is released

and the beam is not at the equilibrium position, the beam deflects around its equilibrium

position with respect to a damping ratio. This free oscillation is called “plucking” (see

Figure 4.4). We must note that in order to have plucking motions, an initial driven deflection

in relation to the equilibrium position must be carried out, which means that any plucking

motion is initiated by a bending motion. In other words, bending happens whenever the

user is controlling the beam deflection, and plucking happens whenever the user is not

interacting with the beam.
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where E is the Modulus of Elasticity, intrinsic to the material, and I is the area moment of

inertia, defined by the beam geometry. Note that the force F and the distance a are not

definable once they are determined by user input.

Fig. 4.4 Performer executing plucking: free beam oscillation originated by
an initial driven deflection. Photo by Guillaume Pelletier. Reproduced with
permission.

Plucking gestures can be approximated as an underdamped oscillation, and therefore,

satisfy the second-order differential damped wave equation. The oscillation depends on the

angular frequency, the damping ratio and on the deflection magnitude at the beam release.

4.3.1 Limitations of previous instrumentation strategies

The previous chapter evaluated and compared three sensor technologies to measure the

deflection for The Rulers. Improvements of the mechanical design and sensor placement of

the instrument were performed according to the mentioned recommendations. Concerning

the mechanical design, a single beam, perfectly clamped, was built as a platform for testing

sensors and as a prototype version for the DMI (Figure 4.6). Also, other components for

infrared and Hall effect sensing were used, in order to suit the operation ranges of the new

mechanical structure.

Infrared and Hall effect sensors are popular solutions for measuring proximity. Strain

gages are the state-of-the-art solution to measure strain, deriving quantities such as stress,
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pressure, deflection and flow. Operating and measurement ranges for the application were

considered to specify the most suitable IR, Hall effect and strain gages sensors for the given

application. This characterizes an improvement in relation to the previous chapter, where

IR and Hall effect sensors from previous versions of the DMI were used.

The TCRT5000 infrared sensor has a phototransistor detector with peak operating

distance at 2.5 mm and a daylight blocking filter. Its collector current varies with the

distance to a reflecting surface [186]. The Hall effect sensor AD22151 has temperature

compensation, adjustable gain and was set to bipolar operation. Magnets were attached

to the beam, so that the Hall effect sensor could sense the proximity of the beam. Even

if the manufacturer claims the sensor as a “Linear Output Magnetic Field Sensor”, it is

crucial to note that being linear to magnetic fields does not imply linearity to magnetic field

variability that results from the beam deflection [187, 142]. The strain gages are connected

in a full Wheatstone bridge: two submitted to compression and two submitted to tension,

installed on the bottom and top of the beam. Considering that there is temperature gradient

between top and bottom of the beam, temperature compensation is performed by the full

bridge configuration.

It is important to note that none of the sensors are directly sensitive to distance, but

rather to infrared light, magnetic field (Hall effect) and strain. Therefore, they indirectly

measure the quantity of interest: deflection. As a consequence, these sensors might be

vulnerable to environmental factors [4, 3], such as external magnetic fields, temperature,

other stress sources, and stage lighting with considerable infrared spectrum.

We are interested in the deflection at the free edge, where the user input is most

perceptible. Figure 4.5 presents the deflection at the free edge versus the sensor output for

bending motions. Subsequently, some practical considerations for the sensors are presented,

followed by a summary of their characteristics.
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Infrared and Hall sensors measure the beam-sensor distance next to the clamped edge.

The ratio rfes between the deflection measured by the sensor and the deflection at the free

edge was investigated. Tests using a Qualisys c© 16-camera passive near-infrared motion

capture system for measuring deflection reported that the ratio rfes is constant along the

full deflection range. In addition, for infrared and Hall effect sensors, the distance between

sensors and beam varies with respect to an angle. This can be an issue especially dealing

with infrared sensors whose operation is based on surface reflection. The solution for this

potential artifact was to make sure that the surface area of the beam and magnet are larger

than the focus area of the sensors.

Furthermore, infrared and Hall effect sensors might present measurement ranges that are

not monotonic. Non-monotonic ranges require intense processing to map input to output

and this is prohibitive in embedded real-time systems. In order to avoid these non-monotonic

regions, a careful placement of these sensors is required. For instance, for a given sensor

placement, the infrared transfer function in Figure 4.5 illustrates the sensor operating in a

non-monotonic range (Region 1 ). An effort to place the Hall effect sensor in a manner that

guarantees monotonicity led it to saturation as shown in Region 2 in Figure 4.5. Another

example of how problematic it is to tweak the placement of Hall effect and infrared sensors

is shown in Region 3 (Figure 4.5). This region is monotonic and is not under saturation,

however the knee-shape region requires high order polynomial data regression functions

to model its behaviour, therefore, increasing complexity and processing time. In short,

extremely careful placement for infrared and Hall effect sensors should take place in order

to avoid issues such as non-monotonicity, saturation and high order polynomial regression.

As shown in Figure 4.5, infrared and Hall effect responses are not linear in relation

to the input quantity, deflection. Therefore, their sensitivity is not constant along the

measurement range. In contrast, strain gages present a linear relationship between output,
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voltage, and input deflection.

Strain gages measure the strain related to the stress at the measurement point. This

stress derives from a force applied by the user or from the clamp reaction force. Therefore,

strain gages present distinct responses between driven and free motions. The difference

varies according to the properties of the clamp. For instance, adding a cushion layer in

the clamp reduces the reaction forces, increasing the damping factor. The distinguishable

response is a concern that needs to be further analyzed. Finally, this multi-modal response

may be labeled as an advantage or as a drawback of using strain gages, depending on the

application and signal processing applied. Fitting options will be discussed in the following

section. Other important properties of IR, Hall effect, and strain gage sensors are presented

in Table 3.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−80

−60

−40

−20

0

20

40

60

80

100
Sensor response for full measurement range (bending motions only)

 

 

HALL response for bending
SG response for bending
IR response for bending

sensor voltage output (V)

d
e

"
e

ct
io

n
 g

iv
e

n
 b

y
 t

h
e

 m
o

ti
o

n
 c

a
p

tu
re

 (
m

m
)

strain gages (SG)

infrared (IR)

Hall e#ect (HL)

1

2

3

4

Fig. 4.5 Sensor response for bending motions (over multiple runs). Sensor
placement is extremely important to avoid saturation, non-monotonic ranges
and high order polynomial regression. Region 1 indicates non-monotonic
range; Region 2 indicates saturation; Region 3 requires high order polynomial
regression; Region 4 points to hysteresis in the Hall sensor response.

In the previous chapter, we have shown that none of the sensors were optimal under all

motions. For this new experiment, better sensors and conditioning circuits were used in
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order to make a fair comparison between sensor technologies. This way, the improvements

brought by better conditioning circuits and enhanced sensor placement are highlighted.

Additionally, for this new experiment, we use a dynamic reference measuring system. The

sensor responses of this experiment are reported in the following section.

4.4 Sensor Signal Processing

In order to design an improved instrumentation strategy, we evaluated each sensor according

to the gesture performed: bending or plucking. The evaluation is based on deflection given

by the sensors and on the deflection given by a reference measuring system. Sensor data

and the reference system are synchronized to each other. The deflection reference measuring

system is a 16-camera passive infrared motion capture system operating at 448 Hz. The

system has a resolution of 0.01 mm with a standard deviation given by calibration of 0.31

mm. The tracking system acquired the 3D position of reflective markers placed along the

beam, with an analog acquisition system registering the sensor outputs at 6720 Hz, 16

bits/sample. The sensors are installed next to the clamp: on, below and above the beam,

as shown in Figure 4.6, indirectly measuring the deflection at the free edge of the beam.

As discussed in the previous section, sensor placement is an issue for infrared and Hall

sensors. In order to solve that, we designed an apparatus to optimize the placement of

infrared and Hall effect sensors, limiting their measurement range to a monotonic range,

free of saturation. The apparatus was built using parts manufactured by a 3D printer and

LEGO c© bricks as partially shown in Figure 4.6. The measurement range for the strain

gages was scaled to be similar to the other sensors. The curves in Figure 4.7 reflect the

results achieved using the apparatus for sensor placement. Appendix A discusses our view

of the use of LEGO c© on sensing design.
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The use of the apparatus limits the measurement range to a monotonic range,
free of saturation.

There are two approaches for linear regression. The first approach uses Different Slopes

and Intercepts (DSI) regression for each motion. Therefore, for each motion and its respective

dataset X1 and X2, there will be response variables Y1 and Y2, respectively. The linear

regression equations for this approach have the form:

Y1 = X1 β1 + α1 + ǫ1 (4.2)

Y2 = X2 β2 + α2 + ǫ2 (4.3)

where Y1 and Y2 are the response variables for bending and plucking respectively, X1 and

X2 are the datasets for bending and plucking respectively, β1 and β2 are the slopes, α1 and

α2 are the intercepts and ǫ1 and ǫ2 are the error terms.

The second approach finds a Common Slope and Intercept (CSI) for all motions, using
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the dataset X3. The equation for this approach is presented in the form:

Y3 = X3 β3 + α3 + ǫ3 (4.4)

where Y3 is the response variable for all motions, X3 is the dataset containing bending and

plucking samples, β3 is the common slope, α3 is the common intercept and ǫ3 is the error

term.

The regression techniques result in measurement functions Yi ≈ f(Xi). Once slopes,

intercepts and errors are determined by Least Square Estimation, the measurement functions

provide the deflection in millimeters (Yi), given the sensor output in Volts (Xi).

The measurement errors are defined by the measured quantity value (Yi) minus the

reference quantity value. The reference is a motion capture system providing deflection

measurements. The measurement errors consist of random and systematic errors. They

are described by their error probability density function type, skewness and modality.

The probability density function was assumed and fit to a Gaussian in order to use the

measurement errors on a linear Kalman filter implementation later. The measurement errors

for the following combinations of datasets and regression were analyzed (Figure 4.8):

• bending samples X1, DSI regression (β1, α1, ǫ1) =⇒ measurement error b;

• plucking samples X2, DSI regression (β2, α2, ǫ2) =⇒ measurement error p;

• bending samples X1, CSI regression (β3, α3, ǫ3) =⇒ measurement error B ;

• plucking samples X2, CSI regression (β3, α3, ǫ3) =⇒ measurement error P.

The Gaussian measurement errors are presented in Figure 4.9. As expected, DSI regres-

sion outputs smaller measurement errors than the CSI regression. The improvement factors

for the random errors range from 1.3 to 4, when using the DSI regression. Error reduction

leads us to justify the use of DSI regression, and consequently, multiple measurement
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Fig. 4.8 Sensor evaluation method. b, B, p, P are the suffix letters to be
assigned to the sensor name. Letter b/B represents bending samples; letter
p/P represents plucking samples. Lower case letters represent Different Slopes
and Intercepts regression results, whereas upper case letters represent Common
Slopes and Intercepts regression results.

functions and error for each gesture, per sensor. The improvement factor on the error

standard deviation is bigger for the strain gages: approximately 1.6 times greater than the

difference reported for Hall effect and infrared sensors.

Additional conclusions regarding the measurement errors are summarized as follows:

• for plucking motions, the infrared sensor has the lowest random error, followed by the

strain gages and then by the Hall sensor;

• for bending motions, the strain gage has the lowest random and systematic errors.

The second lowest random error is from the Hall effect sensor followed by the infrared

sensor;

• systematic errors of Hall effect and infrared sensors are correlated to the distribution

of samples in the positive and negative deflection (confounding variables). As the

dispersal of positive and negative deflection samples is impossible to estimate, these

systematic errors are impossible to correct.

Furthermore, it is noticeable that all sensors differ according to the motion being

performed, with respect to their error. This scenario can benefit from sensor fusion, where
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sensors: SG / IR / HL;

regressions: CSI(B/P)    and DSI(b/p);
motions: bending (B and b) and plucking (P and p)

E
rr

o
rs

: s
y

st
e

m
a

ti
c 

a
n

d
 r

a
n

d
o

m
 (

m
m

)

Comparison between error distributions for plucking and bending motions

Gaussian error distributions

CSI DSI

std = 0.11 mm std = 0.25 mm

* std stands for 

standard deviation

HLB HLP HLb HLp

Fig. 4.9 Error distributions for CSI (left) and DSI (right) measurement
functions, for plucking samples (P,p) and for bending samples (B,b). b and
p denote errors for bending and plucking samples respectively, using DSI
measurement functions. B and P denote errors for bending and plucking
samples respectively, using CSI measurement functions. The term std stands
for standard deviation, CSI stands for Common Slopes and Intercepts and
DSI stands for Different Slopes and Intercepts. DSI measurement functions
result in lower systematic and random errors.

the weights for each sensor technology are given according to their error covariance. Under a

DSI regression, strain gages presented the lowest error covariance for bending motions, while

infrared sensors slightly outperform strain gages, presenting the lowest error covariance for

plucking motions.

4.5 Problem Statement

As previously discussed, the present case is suitable for a sensor fusion design. The embedded

real-time employment of a DMI requires low processing cost for a sensor fusion design.

Therefore, reasonable solution is the implementation of a linear Kalman filter. However, in

Kalman filter designs, the knowledge of measurement and process parameters is essential.

Poor description of these parameters might lead to inaccurate estimates or even divergence

problems [188]. The user-driven bending motions are not predictable, and therefore, rule out
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the use of physical modeling. Aside from that, these motions do not respect any probability,

pattern or sequence. For these cases, the range of solutions for estimating states is reduced,

particularly in real-time applications where processing time is an issue.

A solution for the problem should account for the definition of a process model for

unknown signals and for the evaluation of the selected process, given the dangers of

inaccuracy and divergence.

4.6 Proposed Solution

Not only the sensors but the system presents distinguishable physical behaviour under

driven (bending) and free (plucking) motions. The driven motions are unpredictable whereas

the free motion is a dampened sinusoidal waveform. We propose a framework that takes

advantage of the discernible physical behaviour of the sensors and the system. Therefore,

for any problem where the signals are partially unpredictable, we suggest the following:

1. motion segmentation: identification of all known and unknown motions. Known

motions are the ones eligible for physical modeling;

2. motion classification: clustering of known and unknown motion process models

according to the segmentation;

3. regression: determination of different slopes and intercepts for each distinct motion;

4. multiple-model process model:

• physical modeling for known motions;

• descriptor analyses for selecting process model for unpredictable signals;

5. evaluation.
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To sum up, we propose the combination of motion segmentation and classification, DSI

regression and multiple-model filter design. Ultimately, we predict the system behaviour

using an appropriate process model during periods of free motion, while counting on a less

predictive approach during the unknown user-driven regime. Additionally, we propose a

method to determine and evaluate the process model for unpredictable signals based on

descriptors. The evaluation of the process using various datasets is essential to guarantee

the robustness of the filter implementation, given the process model uncertainty.

4.7 Filter Design

This section focuses on the design of a linear Kalman filter. A filter evaluation method is

introduced based on qualitative and quantitative descriptors. Lastly, the descriptors values

are used to determine the most advantageous process model for each motion.

4.7.1 Kalman Filter Design Basics

Kalman filters are based on the implementation of predictor-corrector estimators. The filter

estimates the state xk ∈ ℜ
n given a controlled process governed by the linear stochastic

difference equation [47],

xk = Φk xk−1 +G uk + χk, (4.5)

where xk is an n sized vector representing the state and its state variables; uk is an l

sized vector representing the inputs to the system. The n × n matrix Φk represents the

state-propagation matrix, when no driving function or process noise is considered. The n ×

l matrix G represents the optional control input uk ∈ ℜ
l. The system state propagation is

subjected to noise χk.
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The system is observed by a set of measurement variables forming a measurement vector

zk ∈ ℜm

zk = Hk xk + νk. (4.6)

where the m × n matrix Hk is the measurement matrix; xk is the states vector and zk

is the measurement vector. The observation of the true quantity value of the state (xk)

includes noise νk.

The noises χk and νk represent the process and measurement noise vectors respectively.

The noises are assumed to be independent from each other, white, Gaussian and bias-free,

given by Equations 4.7 and 4.8,

p(χk) ∼ N(0,Qk), (4.7)

p(νk) ∼ N(0,Rk) (4.8)

where Qk and Rk are respectively the process error covariance and the measurement error

covariance matrices. Equation 4.7 is read as the probability density function of χk is a

zero-mean Gaussian distribution whose error covariance equals Qk. Equation 4.8 is read

analogously. It is important to recall that the determination of Qk and Rk and other

measurement and process parameters should agree with the actual physical behaviour of the

system and the signals. If this statement cannot be guaranteed, divergence may occur [156].

We determine the measurement error covariance matrixRk according to the measurement

errors described in Section 4.4.

The lack of detailed knowledge about the statistical properties of the process model
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prohibits a straight-forward determination of the process error covariance matrix Qk. First,

considering a process model with two state variables defining a 2 × 2 state-propagation

matrix Φk. Next, one should define which state variables are subject to noise. We define a

matrix Qe
k that specifies the presence of noise on each of the state variables (Equation 4.9),

Qe
k = Φk







m1,1 0

0 m2,2






(4.9)

where m1,1 and m2,2 are either 1 or 0, defining if each of the state variables is noisy. As an

example, for the given Φk, considering that only the higher order state variable is noisy,

m1,1 would be 0 and m2,2 would be 1.

The process error covariance matrix Qk is given by Equation 4.10,

Qk = Cmc
k

∫ ts

0

Φk(t) Q
e
k Φ

T
k (t) dt (4.10)

where Cmc
k is the tuning constant given by a Monte Carlo optimizer, ts is the sampling

time. The Kalman filter algorithm operates under a trade-off between process model trust

and measurement trust. Given that the measurement trust is fixed and defined by the

measurement errors, the process error covariance matrix expresses the trade-off between a

more effective filter and a wider bandwidth filter that is able to outline disagreements of

the model with the system behaviour.

4.7.2 Kalman Filter Algorithm

A standard Kalman filter algorithm comprises prediction and correction or update. The

predicted variables are called a priori and are denoted by a minus sign (−) superscript to

the variable. The corrected or updated variables are called a posteriori. Predicted and
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corrected/updated estimated variables are represented by the symbol (ˆ) superscript to the

variable. The subscript indexes k and k-1 define the current and previous steps respectively.

x̂−
k = Φk x̂

−
k−1 + G uk−1 (4.11)

Pk
− = Φk Pk−1 Φ

T
k + Qk−1 (4.12)

Kk = P−
k HT

k (Hk P
−
k HT

k + Rk)
−1 (4.13)

Pk = (I−Kk Hk) P−
k (I−Kk Hk)

T

+ Kk Rk K
T
k (4.14)

Pk = (I−Kk Hk) P−
k (4.15)

x̂k = x̂−
k + Kk (zk −Hk x̂

−
k ) (4.16)

The implemented algorithm loop is presented from Equation 4.11 to Equation 4.16 [155].

x̂−
k ∈ ℜ

n is the a priori state estimate at step k, and it is the expected value of xk, given

the previous measurement zk−1: x̂
−
k = E[xk | zk−1] or still x̂

−
k → xk|k−1. x̂k ∈ ℜ

n is the a

posteriori state estimate at step k, and x̂k−1 ∈ ℜ
n is the a posteriori state estimate at step

k − 1.

P−
k is the a priori error covariance matrix on the state at step k, Pk the a posteriori

error covariance matrix at step k shown in two alternative formulations discussed further in

the text, and Pk−1 the a posteriori error covariance matrix at step k− 1. Kk is the Kalman

gain matrix and I denotes an identity matrix of order n. Finally, zk is the measurement

vector/matrix at step k.

The Kalman gain evolves according to the confidence in the process, the confidence in

the measurements, and the initial error covariance (P0) [189]. In steady state, the Kalman
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gain matrix becomes constant and depends only on the confidence in the process and

measurements, if the system and the noises are stationary [189].

The error covariance matrix (Pk) describes the variance of the estimate. There are several

ways to calculate the error covariance matrix update, including Equation 4.14 and Equation

4.15 [155]. Equation 4.15 requires the least computation power and it is recommended

when the number of measurement sources is significant less than the number of states

[155]. Equation 4.14, referred to as Joseph form, has symmetric operations only and is

recommended for numerical stability [155]. There is a tradeoff between lower computational

cost and higher numerical stability. The designer should choose one of the formulations

according to her/his requirements.

4.7.3 Filter Evaluation

A filter design depends on accurate knowledge about the measurement sources and the

process model. The measurement sources were studied thoroughly in Section 4.4. The

process model remains to be determined as it is partially unknown. The selection of a

process model implies the setting of the process model state-propagation matrix (Φk) and

the process error covariance matrix (Qk) (Equation 4.10). Our method to select a process

model consists of testing process model candidates and verifying the corresponding filter

design efficiency. The efficiency is described by a set of qualitative and quantitative variables,

here called descriptors. Ultimately, a highly efficient filter simulation, measured according

to the specifications of the descriptors, is indicative of a good selection for the process model.

The descriptors for the filter evaluation are defined as follows:
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Null Process Error Covariance Matrix (Qk)

A reasonable qualitative test to declare a process model suitable for a dataset is to analyze

the estimate error while setting the process noise to zero. A process model that does not

represent the physical behaviour to any extent produces a significant error if submitted to

this test. This test is proposed by Zarchan and Musoff [48].

Steady-state (a posteriori) Error Covariance for Deflection Estimation

In order to obtain this descriptor, the error covariance matrix (Equation 4.14) in steady

state regime is selected. Then, the first element of main diagonal of this matrix is isolated.

It corresponds to the error covariance for estimating the deflection: the variable of interest.

Its steady-state value is represented by (P)ss1,1 and determines the stability of the filter. A

stable filter should reduce its error covariance matrix elements with time, converging to a

minimum value in regime [48]. From the error covariance element (P)ss1,1, one can derive the

error standard deviation of the deflection estimate. We call it algorithm standard deviation

(eA). This descriptor is well-cited by several authors as a standard or unique method to

test filter efficiency and stability [190, 191, 129, 192]. This descriptor is sometimes called

covariance performance analysis.

Confidence Bounds

This descriptor discusses how well the error covariance matrix describes the actual error

between the estimate and true value given by the reference. The filter algorithm describes

its accuracy through the estimate error covariance matrix Pk. However, the filter processing

can report satisfactory Pk even if the estimate is diverging from the true value [48]. To

account for this, we define two error standard deviations. The first one is the algorithm
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standard deviation (eA) derived from the error covariance matrix of the estimate. The

second one comes from the error between the estimate and the true value given by the

reference measuring system. We call it experimental standard deviation (eE). Then, for

each sample, we verify if the experimental standard deviation is within the bounds of the

algorithm standard deviation. Finally, we compute the percentage of samples where eE ≤ eA.

If this percentage is 68% or higher, the error covariance matrix accurately describes the

estimate errors [48]. This descriptor is analogous to several other tests available in the

literature. For instance, some authors compare the algorithm standard deviation for correct

and incorrect implementation of process and models [190, 129, 192]. Other authors perform

a visual comparison between the algorithm and the experimental standard deviations. This

test is often referred to as a consistency check [154, 188]. Finally, some authors use the

threshold of 68%, as is the case in this work [48].

Bandwidth

We have created a novel descriptor, bandwidth, which sets the maximum trust in the sensor

data, given by the sum of the main diagonal elements of the Kalman gain matrix. If the

process model is selected properly, the filter can rely on it, reducing the bandwidth for

noisy sensor data. High levels of sensor trust, indicated by high Kalman gains, reflect weak

confidence in the process model. In this case, the process model is not a good guess as to the

physical behaviour of the system. In order to consider a process model a good candidate for

describing the system, we define bandwidth as the sum of the trust of all sensors—the sum

of the Kalman gains for each sensors—whose value should not exceed a certain threshold.

The bandwidth threshold is defined as follows. The Monte Carlo optimizer stores the

bandwidth value for each of its multiple runs. For each motion, the bandwidth values are fit

into a Gaussian probability density function. The threshold is defined to be the mean plus
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one standard deviation of this distribution. For our application, the threshold for bending

and plucking motions were approximate to 0.70. It can occur that the mean and standard

deviation of the bandwidth value for the different motions are not similar. In this case, the

filter designer should define a dedicated threshold for each motion, defined by the value of

the mean plus one standard deviation.

Kalman Filter Evaluation Background

In this work, most of the references for Kalman filter evaluation used date from the 70s,

especially by Gelb and Maybeck [190, 129, 192]. They suggest the implementation of

sensitivity analysis, mostly for evaluating applications where the state dimensions were

reduced in order to overcome computational constraints. The sensitivity analysis they

present could not be applied to the current problem because of the unpredictable signals.

The reason for that resides in the fact that their sensitivity analysis takes into account the

correct description of the system dynamics, which are only partially known in our case. In

addition to that, they use covariance performance analysis (analogous to our steady-state

error covariance descriptor) and Monte Carlo runs for defining parameters values. Also,

they compare the algorithm error covariance matrix with the true error covariance matrix

obtained using the true model (no dimensionality reduction). This comparison is similar to

our confidence bounds descriptor, which compares the algorithm standard deviation and

the experimental standard deviation (defined by the difference between the estimate and

the true value given by a reference measuring system).

Later in 2007, Jwo and Cho [154, 188] published works about Kalman filter evaluation.

They analyze Kalman filter performance degradation due to uncertainties in process and

measurement noise statistics. They use sensitivity analysis, covariance analysis, and con-

sistency check. Their covariance analysis is similar to our steady-state error covariance
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descriptor [190, 129, 192]. The consistency check evaluates the consistency between theoret-

ical and simulation results for the error covariance matrix, performed through graphical

interpretation. The difference between their consistency check and our confidence bounds de-

scriptor is that, as described by Zarchan and Musoff [48], we define an acceptable maximum

disagreement between simulation and theoretical/true value.

Finally, we base our evaluation method on Zarchan and Musoff’s [48]. Three out of four

descriptors are inspired by tests proposed by Zarchan and Musoff [48]. We then reintroduce

them as part of a method for filter evaluation and for process method selection. Yet one

more descriptor, introduced in this thesis, relates specifically to the selection of process

models for signals whose physical modelling is hard to define.

The higher the trust in sensor data, the more corrective the filter is, indicating a poor

prediction step, defined by the process model and its noise. From this, it is possible to infer

that, in steady state, higher Kalman gains represent poor trust in the process description,

and conclusively, the process candidate and its error description might not be the best

representation of the physical behaviour of the system.

4.7.4 Process Model Determination

The variable we are interested in estimating is deflection at the free edge of the beam. So,

the essential state variable is position. Considering that position is not constant in time,

an estimate of velocity is needed. Also, an acceleration estimate might be used. Lower

order filters have the advantage of converging to the steady-state error covariance faster

than higher order filters. On the other hand, higher order filters tend to track higher order

derivatives of the estimate better than lower order filters [48].

Firstly, good candidates for the process model should be hypothesized. For plucking

motions, the best guess according to the physical behaviour of the beam and to the sensor
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data is a damped sinusoidal model. This model is based on two parameters: the undamped

angular frequency (ω) and the damping ratio (d). A simpler guess would be a sinusoidal

model that depends on only one parameter: the undamped angular frequency (ω). These

parameters are determined by physical modeling of sensor data. It seems reasonable to

inquire if simpler state-space models — derived from i-order polynomial functions — would

perform as well as the physical model described above.

The specification of a process model for bending motions is more complicated as there

is no predictable physical behaviour, that is, duration, frequency, and magnitude of the

deflection are totally unknown. First, we select between polynomial and non-polynomial

models. For polynomial models, we tested first- and second-order polynomial functions. For

non-polynomial models, we tested damped and undamped sinusoidal functions.

Therefore, four process models were studied for both motions: first- and second-order

polynomial models and damped and undamped sinusoidal models. All candidate models

were declared observable after attaining the observability rank condition [124].

All models are analyzed according to the descriptors for each of the motions. In order to

fine-tune each of the 8 possible process model and motion pairs, we adapted the algorithm

to run in a Monte Carlo optimizer. The optimizer consists of a uniformly distributed

number of values for the tuning constant Cmc (Equation 4.10) and for the initial error

covariance matrix P0. The initial error covariance matrix represents the confidence in the

error covariance matrix in steady-state regime. Setting P0 as a null matrix is equivalent

to expecting no errors on the estimate. Setting P0 with non-zero entries implies that

some errors are expected in the estimate. Also, the main diagonal of P0 determines the

settling time for the error covariance matrix Pk [48]. The optimization process registers the

constants along with the resultant descriptors presented in Section 4.7.3.
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4.8 System Integration

In order to clarify the description of the proposed solution, this section discusses the data

flow and the integration between the steps of the framework. Offline tasks – those to be done

before the actual fusion – and online tasks – those performed in real-time – are described as

follows.

4.8.1 Offline Tasks

Some preliminary tasks are needed before the system can be put into operation. These

initial tasks are: segmenting the motions; defining the measurement functions for each

sensor and motion (regression); evaluating filters in order to select the best process model

Φk, process error covariance matrix Qk, measurement matrix Hk and tuning parameter

Cmc
k . Figure 4.10 shows the tasks and their inputs and outputs when applicable. The tasks

were introduced in Section 4.6.

Motion segmentation aims to distinguish signals that have: different sensor responses,

different durations or frequencies, different complexity levels, and different knowledge about

the state variables with which they may be described. Prior knowledge of the nature of the

underlying signals, direct observation of the signal, signal processing techniques (including

frequency analysis, normalization, and derivative calculation) and machine learning tools

for clustering are useful techniques to carry out motion segmentation.

The regression task uses one motion at a time to define a measurement function for each

sensor through linear regression. One of the outcomes of the regression task is definition of

the coefficients for the polynomial measurement functions per sensor and motion. The other

outcome is the definition of the regression errors in comparison to the deflection reference.

These errors are fitted to a Gaussian distribution and will form the measurement error
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covariance matrix Rk.
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Fig. 4.10 Offline tasks: motion segmentation; DSI regression for each motion
and process model selection for each motion. The iteration indexes were
excluded for clarity.

The evaluation tasks are based on the selection of process model candidates. The

candidates are defined by physical modelling of the signals when possible. Process model

candidates Φk, the process error covariance matrix Qk, and the measurement matrix Hk are

fed in Monte Carlo runs. The output of the Monte Carlo optimization are the descriptors’

values (Section 4.7.3) and consequently, the tuning parameter Cmc
k .

4.8.2 Classifier

There are two possible topologies to integrate the gesture classification and the Kalman filter

implementation (Figure 4.11). The first topology is based on setting a classifier immediately

after gesture acquisition. The classification output activates either the Kalman filter for
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bending or the Kalman filter for plucking. The classifier output also selects the measurement

functions (coefficients a1, a2, ..., a10), the measurement error covariance matrix Rk, the

state-propagation matrix Φk, the process error covariance matrix Qk, the measurement

matrix Hk and the tuning constant Cmc
k . The sensor data, the a posteriori state estimate at

step k − 1 (x̂k−1) and the a posteriori error covariance matrix at step k − 1 (Pk−1) are sent

to the selected filter. We call this topology the online classifier. This classifier is designed

using cross-zero detection, logic (operators such as AND, OR, etc), and first-derivative

analysis. A simplified solution for classifying between the different motion models would

be the use of an extra sensor detecting the grip to the beam. Although this is particularly

possible when it comes to classifying motion for the The Rulers, we have chosen to offer a

more general solution, applicable to a broader variety of problems.

The second topology runs the Kalman filters for bending and plucking in parallel, without

any previous gesture classification. The outputs of both filters are compared to the sensor

output presenting the lowest random error for each motion—given by the DSI regression

(Figure 4.9): strain gages for bending motion and infrared for plucking motions. In summary,

the residuals between the two filters and the two sensors are calculated. These residuals are

used to train a layer recurrent network in Matlab with a single hidden layer of five units. A

layer recurrent network has recurrent connections with associated tapped delays for each

layer [193]. That is, given the residuals, the desired network output specified in training is 1

when the motion corresponds to bending and -1 when the motion corresponds to plucking.

In this way, the network output indicates which of the two filters is appropriate for a given

motion [194]. The affirmative output is the right match between motion and filter. We call

this topology the machine learning classifier.

The online classifier is simpler and more straightforward, as the models are easily

distinguishable. The machine learning classifier presents faster transition from one model
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Fig. 4.11 Possible classifier applications: online classifier or machine learning
classifier. x̂k is the a posteriori state estimate at step k, x̂k−1 is the a posteriori
state estimate at step k − 1, Pk is the error covariance matrix at step k, Pk−1

is the error covariance matrix at step k − 1, Φ is the state-propagation matrix,
Qe

k is the process error covariance matrix, Hk is the measurement matrix, Rk

is the measurement error covariance matrix and Cmc
k is the tuning constant.

SGv, IRv, HLv indicate the digitized sensor output in Volts, while SGmm,
IRmm, HALLmm indicate the sensor data in millimeters. Indexes b refer to
parameters or data for bending motions, while indexes p refer to parameters
or data for plucking motions.

to another, however it requires learning. In this work, the online classifier was chosen due

to simplicity. The integration filter-classifier for both approaches is shown in Figure 4.11.

Online Classifier Implementation

The online classifier simply consists of two tests that examine the frequency content of both

types of motion. While plucking presents higher constant frequency, bending has variable

lower frequency. The first test is to count the distance between the samples that cross zero.

Exhaustive tests show that users do not bend the beam in opposite directions passing by
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the rest position faster than the plucking oscillations. The second test involves calculating

the derivative of the signal by subtracting the current from the previous sample values.

This simplified derivative operates as a high pass filter, attenuating the slow rate of change

in bending motions. For plucking motions, the derivative output is an attenuated version of

the deflection oscillations, maintaining the same frequency content. The plucking derivative

has a considerably higher magnitude than the bending derivative. The online classifier

pseudocode is presented in Figure 4.12. Cell A arbitrarily classifies the first 20 samples

as bending, due to classifier design constraints. Cell B evaluates the current (SGv) and

previous (SGant) strain gage value and determines whether there is zero crossing. In case

no zero crossing is detected, a counter is incremented (variable numberOfNonZeros). Cell C

counts the number of samples since the last zero crossing. Due to the mechanical properties

of the beam, plucking motions intercept zero approximately every 17-18 samples. Bending

motions are slower than plucking, according to exhaustive testing. If two consecutive zero

crossings are less than 20 samples apart, there is a strong belief that the current motion is

plucking, otherwise it is bending.

The implementation of Cells A,B and C results in two artifacts. The first one is a delay

in detecting the transition from bending to plucking motions. The second is an oscillation

between classifier outputs during low amplitude plucking deflections. These artifacts are

solved by Cells E and F. Cell D calculates the difference between the current and the

previous strain gage value (variable deriv). The difference is then used in Cell E in order

to detect the beam release, that is, the start of a plucking motion. In order to prevent

alternating classifier outputs during low amplitude plucking deflections, when the classifier

switches from plucking to bending, the variable lockOnBending is set to one, preventing the

classifier output to return to plucking unless the derivative of the signal (variable deriv) is

greater than the threshold (line 30).



4 Multiple-model Linear Kalman Filter Framework for Unpredictable Signals 129

⊲ Initialize with zeros: crossedZero, numberOfNonZeros, lockOnBending, deriv
⊲ A: classify first 20 samples as bending

1: if k < 21 then
2: motion = bending
3: end if

⊲ B: test zero crossing
4: if ((SGV ≥ 0 & SGant < 0)||(SGV ≤ 0 & SGant > 0)) then
5: crossedZero = 1
6: else
7: numberOfNonZeros + = 1
8: crossedZero = 0
9: end if

⊲ C: count number of samples since last zero crossing
10: if crossedZero = 1 then
11: if numberOfNonZeros ≤ 20 & lockOnBending = 0 then
12: motion = plucking
13: else
14: motion = bending
15: end if
16: else if numberOfNonZeros > 20 then
17: motion = bending
18: end if

⊲ D: calculate derivative for SG data
19: deriv = SGV − SGant

⊲ E: corrects transition from bending to plucking
20: if motion = bending & deriv > 1 then
21: motion = plucking
22: lockOnBending = 0;
23: end if

⊲ F: corrects transition from plucking to bending
24: if motion−motionant = −2 then
25: lockOnBending = 1;
26: end if

⊲ Store:
27: SGant = SGV ;
28: motionant = motion

Fig. 4.12 Code for the online classifier: cross zero detection, first derivative
analysis and logic. The subscript ant denotes the value of a quantity in the
previous iteration.
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4.8.3 Online Tasks

The online tasks are performed in real-time and consist of data acquisition, classification

and Kalman filter loop (Figure 4.13). Right after the data acquisition, the strain gage

voltage output is used as input for the online classifier described in the previous section.

data acquisition

a1, a2 ... a10
Φ, Qe, H, R, Ccm

for bending[ ]
a1, a2 ... a10
Φ, Qe, H, R, Ccm

for plucking[ ]
a1, a2 ... a10
Φ, Qe, H, R, Ccm

S
G

V

IR
V

H
A

L
L

V

classi!er

SGmm = a1 x + a2
IRmm = a3 x3 + a4 x2 + a5 x + a6 

HALLmm = a7 x3 + a8 x2 + a9 x + a10

Linear Kalman

equations

Pkx^k
for each k

Fig. 4.13 Online tasks: classification; selection of parameters according to
the classifier output; linear Kalman filter loop. The parameters to be selected
according to the classifier output are: coefficients for the measurement functions,
the state-propagation matrix Φk, the process error covariance matrix Qe

k, the
measurement matrix Hk, the measurement error covariance matrix Rk and
the tuning constant Cmc

k . The iteration indexes were excluded for clarity.

The strain gages’ values in Volts are used for the following reasons:

• as the transfer function between the strain value in Volts and in millimeters is linear,

the value in Volts can be used for classification without requiring a CSI regression;

• the strain gage is the sensor type that presents greater difference between bending

and plucking motions (Section 4.4.1), concerning the measurement errors.

The classifier output selects the parameters calculated during the offline tasks according

to the motion. The coefficients a1, a2, ..., a10 are used to define the measurement vector z.

The remaining parameters are used in the filter algorithm. The state estimate vector and

the error covariance matrix are fed into the system at every new iteration.
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4.9 Results

This section presents the descriptor values for each process model and motion pair, culmi-

nating in the selection of the best process model for both motions: bending and plucking.

Some descriptors are used to disqualify non-efficient or incoherent simulation runs. Other

descriptors are used to find the best tuning parameter for each process model and motion

pair.

Next, we report the improvement in the sensing design using segmented gestures multiple-

model sensor fusion as opposed to a single-sensor and single-model sensing approaches.

4.9.1 Process Model Selection

Firstly, we examine the qualitative descriptor where the process error covariance matrix is

set to a null matrix. Figure 4.14 and Figure 4.15 show examples of process model comparison

for bending and plucking motions, setting the process error covariance to zero.

Clearly, polynomial models are the better for bending motions, while non-polynomial

models are better for plucking motions. For instance, Figure 4.14 shows that the damped

sinusoidal model does not estimate any deflection for bending. For plucking motions, as

shown in Figure 4.15, it is clear that the damped sinusoidal model is the most suitable

process model for the motion, presenting small deflection estimate error (bottom graph),

while the first-order polynomial model is not capable of tracking the deflection variation.

Additionally, we impose a minimum value of 68% for the confidence bounds descriptor,

as mentioned in Section 4.7.3. It means that only optimizer trials that accomplish this goal

are going to be evaluated. Lastly, we analyze the steady-state error covariance for deflection

estimate (P)ss1,1 and the bandwidth.
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Fig. 4.14 Effects of setting the process error covariance matrix as a null
matrix, for bending motions. The top graph displays the deflection given by
the reference measuring system, the deflection estimate given by a first-order
polynomial filter, and by a damped sinusoidal filter (which does not estimate
any deflection). The bottom graph compares the algorithm standard deviation
for both model settings.

Bending Motions

A comparison between process models for bending motions reports no significant difference

between first- and second-order polynomial filters. As lower order filters are faster and as

we are interested in position estimate and not in its derivatives, we selected the first-order

filter. Two types of first-order filters were evaluated: one where only velocity is considered

noisy (denoted by noisy vel.) and another where velocity and deflection are considered

noisy (denoted by noisy vel. pos.). Refer to Table 4.1 for the descriptors’ results on bending

motions.

One might think that the non-polynomial filters are comparable to the polynomial ones
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Fig. 4.15 Effects of setting the process error covariance matrix as a null
matrix, for plucking motions. The top graph displays the deflection given by
the reference measuring system, the deflection estimate given by a first-order
polynomial filter and by a damped sinusoidal filter. The bottom graph compares
the algorithm standard deviation for both model settings. The estimate given
by the damped sinusoidal filter and the reference deflection are overlapped,
reflecting a small random error in the bottom graph.

since their error covariance for deflection estimation (P)ss1,1 is similar. However, the non-

polynomial filters make significant use of the sensor data, that is, have a higher bandwidth

(Table 4.1), which reflects a low trust in the process model selected.

Plucking Motions

A comparison between process models for plucking motions (Table 4.2), reveals a sig-

nificant difference in performance between polynomial and non-polynomial filters. The

non-polynomial filters present the best performance not only concerning the steady-state

covariance for deflection estimation but also the bandwidth.
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Table 4.1 Comparison between candidate process models for bending mo-
tions. Bold font represents the best results.

ΦBENDING (P)ss1,1 [10−3 mm2] bandwidth

first- noisy vel. 5.4 0.69
order noisy vel. pos. 6.4 0.71

second-order 6.6 0.74
sinusoidal 8.7 0.96

damped sinusoidal 8.5 0.95

Two choices of process error covariance matrix Qk (Equation 4.10) for the sinusoidal

filters were tested. The first one is based on the actual state-propagation matrix Φk for

sinusoidal model. The alternative simplified Qk is based on a first-order polynomial state-

propagation equation. There were no significant advantages in using the simplified Qk

concerning any of the descriptors, except by its faster processing. Finally, the best option is

the damped sinusoidal filter, matching the physical modeling of the signals.

Table 4.2 Comparison between candidate process models for plucking mo-
tions. Bold font represents the best results.

ΦPLUCKING (P)ss1,1 [10−3 mm2] bandwidth

first-order 17.6 0.70
second-order 15.1 0.60

sine
process model error 6.3 0.25
process model as

6.2 0.25
in 1st order filter

damped sinusoidal 4.8 0.19

The bandwidth reduction obtained due to a better description of the process model is

remarkable. It can be seen that the bandwidth value of 0.69 was obtained for the bending

filter, whereas a bandwidth of 0.19 was obtained for the plucking filter. This strengthens the
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idea that correct knowledge of the process model is essential. This work proposes that in the

case of partial knowledge of the process model, motion segmentation and multiple-model

filters should be implemented in order to reduce the bandwidth for noise whenever the

process model is known accurately.

4.9.2 Selected Process Model and Motion Pairs

Given the results presented in Tables 4.1 and 4.2, we introduce the state-propagation

matrices that best describe the system behaviour while in the bending or plucking regimes.

For bending motions, the best model is the first-order polynomial model. Its state-space

representation (Φb) is presented in Equation 4.17:

Φb
k =







1 ts

0 1






(4.17)

where ts is the sampling time.

For plucking motions, the best model is the damped sinusoidal model described by its

state-space representation (from Equation 4.18 to Equation 4.22):

Φp
11 = edw ts (−dw sin(b ts) + b cos(b ts)) (4.18)

Φp
12 = edw ts sin(b ts) (4.19)

Φp
21 = −w2 edw ts sin(b ts) (4.20)

Φp
22 = edw ts (dw sin(b ts) + b cos(b ts)) (4.21)

Φp =
1

b







Φp
11 Φp

12

Φp
21 Φp

22






(4.22)
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where w is the undamped angular frequency, d is the damping ratio and b is the

underdamped angular frequency given by b = w
√
1− d2. The iteration index ‘k’ was

excluded for clarity.

4.9.3 Sensor Fusion Contribution

In order to make clear the advantages of using fusion techniques in the present problem, we

compared the filter output for each motion with the use of individual sensors in terms of

the error covariance for deflection. Table 4.3 compares the best filter and the best sensor

for each motion. The contribution of fusing data from different sensors varies according

to the motion regime. For both motions, the error covariances are better than any of the

sensors individually. The improvement factor for bending motions is 2.2 and for plucking

motions is 12.7.

Table 4.3 Filter performance in comparison to the best sensor for each
motion. Bold font represents the best results.

filter versus error covariance

single-sensor approach for deflection [10−3 mm2]

bending
filter 5.4
SG 12

plucking
filter 4.8
IR 61

Note that the lowest measurement error covariance for plucking motions (6.1 10−2 mm2)

is about five times worse than the lowest measurement error covariance for bending. Lastly,

the most predictive physical behaviour is the one in which the sensor performance is the

worst. Consequently, The Rulers is a good testbed to demonstrate that the proposed

framework is satisfactory.

Additionally, it is worth comparing the proposed filter to a single-model filter approach.
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In the case of a single-model, the most advantageous would be the one that reflects, at

least partially, the physical behaviour of the system: damped sinusoidal function. The

comparison is shown in Table 4.4. Even if the error covariance ranges are not significantly

different, the bandwidth for the noisy sensor data is high, reflecting a disagreement between

the selected process model and the motion being performed. Therefore, it is possible to

conclude that the use of a multiple-model filter improves not only the error covariance for

deflection but the robustness to sensor noise.

Table 4.4 Filter performance in comparison to the single-model approach.
Bold font represents the best results.

filter versus error covariance
bandwidth

single-model approach for deflection [10−3 mm2]
implemented filter 4.8 – 5.4 0.19 – 0.69

single-model approach 4.8 – 8.5 0.19 – 0.95

Comparison with other Bayesian methods

A comparison between Bayesian solutions for sensor fusion is far from trivial. A comparison

itself implies common evaluation variables between all approaches. Some methods are based

on explicit functions whereas others are based on simulation. Such characteristics produce

different sets of variables, and most of them cannot be compared.

The algorithm error covariance given by different filter solutions can be the real measure

of the error or an estimate of its value. Consequently, these variables cannot be used.

Fortunately, there exists only one variable in all approaches that can be used for comparison:

the estimate. The estimates given by different Bayesian methods can be compared to the

true value, resulting in the real error of each method. However, it is hard to guarantee that

this comparison would be fair. For instance, an optimal Kalman filter design cannot be
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compared to a less rigorous particle filter design.

Each filter topology — Kalman, particle, etc — has several frameworks and enhancements

for specific applications and goals (tracking, correction, error covariance reduction, etc). For

example, Doucet and Johansen provided a tutorial on the particle filter, including several

frameworks [178]. We strongly believe that one contribution does not dismiss another. All

of them may be valuable for diverse cases. A comparison between frameworks within the

realm of a single filter type is feasible, as multiple variables are present across frameworks.

The same does not apply to comparison across filter topologies.

4.10 Applying the Framework

This section presents recommendations for filter designers who might be interested in

replicating the framework.

4.10.1 Motion Segmentation

The main goal of segmenting motions is to define dedicated solutions (process and measure-

ment descriptions) for each of the operation modes. The segmentation requires a strong

knowledge of the system and its signals.

In some cases, the differences between the operation modes can be as clear as they were

for The Rulers. On the other hand, sometimes the differences are less pronounced. An

example is a human body segment moving in different modes: uniform velocity, uniform

acceleration or having its acceleration changing over time. In this case, all modes are

described by different order polynomial functions. Then, these functions describe different

process models in a multiple-model filter design.

Among all the possible operation modes, there are the modes in which a physical model
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is not possible to be determined, especially in human-computer interfaces. Therefore, after

having a clear differentiation between all possible operation modes, each of them have to be

labelled according to the knowledge of their process model. Next, all the modes that have a

clear process model definition should be described by their physical model. Alternatively,

unknown signals require evaluation of candidate process models, as will be described in

section 4.10.4.

4.10.2 Classification

The more distinct the modes are, the easier it is to classify an incoming sample. We

presented two different classification topologies. One classifies the sample just after its

acquisition and therefore selects the correct filter design for the sample. Another classifies

the sample based on the output of two filters running in parallel.

The classification can be designed in terms of physical parameters of the operation

modes (frequency, amplitude, phase) or in terms of the residual analyses. In some cases,

machine learning tools are recommended.

4.10.3 Multi-model Design

A multi-model design implies that every operation mode has its dedicated system, measure-

ment description and tuning parameters. The description of system and measurements is

composed of a state space matrix, process error covariance matrix, measurement matrix

and measurement error covariance matrix.

In cases where the implemented classifier selects a single filter design at a time (online

classifier), the feedback of the state estimate vector and the error covariance matrix alternates

between the multiple filter models. Sometimes, the dimensions of these vectors and matrices

are different and need to be adapted, as is well described in several studies [190, 129, 171].
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4.10.4 Evaluation

The evaluation task is performed in order to select the best process model for each operation

mode, especially for unknown signals. The evaluation occurs offline and requires a reference

measuring system. The evaluation we proposed is based on a list of descriptors and their

thresholds.

4.11 Conclusion

We have presented a sensor fusion technique based on a multiple-model linear Kalman filter

for deflection estimation using strain gages, infrared and Hall effect sensors. The system of

clamped beams has two distinguishable physical behaviours: a free damping motion (called

plucking) and a driven motion controlled by the user (called bending). The problem lies in

the unpredictability of bending motions, which make the physical modeling of this motion

impossible.

Our solution derives from segmenting the motions according to the knowledge of their

physical model, that is, according to their eligibility for physical modeling. Then, a classifier

defines the gesture being performed and activates the correct measurement and process

model parameters accordingly. This approach makes the design of a more predictive filter

possible whenever the process model is known, i.e., free motions; while reducing the filter

efficiency when the process model is impossible to be determined, i.e., user-driven motions.

The problem of selecting a process model for unknown signals is solved by defining a set

of descriptors that evaluate candidate process models. Forcing threshold values for some of

the descriptors exclude trials with low noise reduction and/or high risk of divergence. The

remaining descriptors are used to select the model parameters. Therefore, this framework

facilitates the process model selection for unknown signals and evaluates the robustness of
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the filter design, inherently at high risk due to the limited knowledge of the process model.

Through experiments, it was shown that the suggested framework results in improved

error estimate covariance for deflection compared to the measurement error covariance

of any of the sensors individually. The application of fusion filters in the present case

is appropriate, since the worst measurement errors happen for plucking gestures, whose

process model is known.

We recommend the application of the framework in cases where one or more of the

conditions apply:

• there are signals for which process model determination is unclear;

• the system has more than one operation mode and there is no clear transition between

the modes;

• measurement functions and errors differ considerably between the operation modes;

• a better error covariance for the known signals estimate is desired, without compro-

mising the estimate of unknown signals, and;

• a better error covariance for the unknown signals estimate is desired.

Although other works in NIME have used an implementation of sensor fusion, this work

differs significantly from those. One example is the work by Benning et al., which used

an IMM filter, an alternative mentioned in Section 4.2 [168, 169]. We have not pursued

this path, since we intended to obtain a method for applying a fusion filter that would

not be restricted to rules, probabilities, sequences or patterns. Their work is an example

of a successful implementation of a type of Kalman filter, seen from a control engineering

perspective. In contrast, our work is a framework for the implementation of a type of linear

Kalman filter for cases that fit the criteria listed in Section 4.10, using the premises and

requirements of signal processing research. In both cases, the Kalman filter formulations
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are widely known. However, our framework includes not only this formulation, but also

motion segmentation, classification, advanced regression, filter evaluation, process model

selection, and optimization. Finally, a comparison between them does not hold because

while Benning et al.’s work is a single-sensor filter with model selection driven by likelihood,

our framework is multi-sensor with model selection given by motion classification, without

any imposition of rules, patterns or probabilities.
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Chapter 5

Conclusions

This dissertation focused on sensing design in input devices for musical expression. From

reviewing five years of NIME publications, we have shown that there is room for improvement

for instrumentation design and sensor signal processing in the context of Digital Musical

Instruments. We believe that robust, reproducible, responsive, and accurate sensing design

in DMIs can improve learnability and controllability [34]. Therefore, we proposed advanced

instrumentation and sensor signal processing techniques which can improve sensing in DMIs.

The main sensor signal processing technique explored was a sensor fusion algorithm: the

linear Kalman filter.

The techniques presented might be obvious for sensing and controlling systems where

human input is not the main variable. However, in systems where human input is the

raison d’être, we have shown that other variables come into play. We focused on proposing

techniques that could account for not only the robustness and reproducibility, but also the

adaptability, i.e. allowing the user to attain full potential.

In Chapter 2, we intended to raise awareness of limitations and possibilities for in-

strumentation design and sensor signal processing. Given the review of DMI designs as

2015/04/15
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manifested in the NIME Conference from 2009 to 2013, we observed that most designs are

based on uncomplicated sensing design. We offered possibilities to enhance instrumentation

and signal processing for the most commonly used sensor technologies. We also reinforced

the importance of calibration and coherent regression techniques for achieving measurements

with quality [6]. In order to illustrate the panorama of sensing in DMIs, we cited successful

and limited sensing choices in DMI design. The techniques briefly reviewed in Chapter 2

are further explored in the remaining chapters.

In Chapter 3, we chose one DMI used in performance—The Rulers—as a testbed to

explore some of the techniques suggested in Chapter 2. The main advanced sensing technique

explored in this chapter was the use of specialized sensors, strain gage sensing in this case.

We also explored the analysis of quantitative and qualitative evaluation descriptors for

sensing in the context of DMIs, and the introduction of techniques that can potentially

improve response for low performance sensors, such as sensor placement and better regression

analysis.

In Chapter 4, we performed the improvements mentioned in the previous chapter: better

mechanical structure, sensor placement, calibration, and regression. Aside from this, in

order to apply sensor fusion techniques to a DMI, we developed a method to deal with the

unpredictable nature of human input. The method models the system and measurements

according to the knowledge of their real behaviour. That is, the application of the method

results in better error covariance improvement for non-driven motions, as compared with

driven motions. Improvements on the error covariance of driven motions rely on the best

measurements, with less correction given by the system model.

We claim that modeling gestures and DMI systems and signals require a deep knowledge

of the system and its signals. Therefore, the techniques suggested in this thesis need to be

adapted to the designer’s problem. We attempted, as much as possible, to provide guidelines
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and describe potential methods, in order for them to be reproduced in other HCIs.

5.1 Main Findings

In this section, we present the main findings of this thesis.

5.1.1 Trends in sensor use in DMIs

First, we reported that approximately 34% of sensor occurrences in DMIs are related to force

assessment, using either an accelerometer or FSR sensors. The average use of accelerometers

per year from 2009 – 2013 increased by more than 100% in comparison to the average use per

year in the previous interval (2001–2008). The use of switches, buttons, and potentiometers

in the 2009–2013 interval decreased to a third of the 2001–2008 interval’s average use.

Unsurprisingly, we identified a substantial use of portable consumer electronic devices

as input controllers: 71 occurrences in 266 publications. Also, this trend shows a monotonic

increase on their use since 2010. The use of the embedded sensors in these devices is

significant, especially the use of MARG sensors: a MARG sensor was used in 44 out of 71

occurrences for portable consumer electronic devices. A hypothesis for the decreasing trend

of using video as a sensing technology might be related to the increasing trend of using the

Kinect c©.

Some sensors tend to be frequently used with other sensor types, whereas others tend

to be applied alone. For instance, accelerometers, gyroscopes, and magnetometers tend

to be applied concomitantly. Simple analog sensing techniques such as infrared, FSR,

and potentiometers/switches present similar co-occurrence levels. That is, the amount of

concomitant use for each of these sensors with other sensor types is similar. The highest co-

occurrence belongs to the accelerometers and gyroscopes. The highest degree—the number of
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sensor types with which one sensor can be concomitantly used—belongs to the accelerometer,

followed by potentiometers and FSRs. The most obvious co-occurrence cluster involves the

MARG sensors, followed by a cluster including accelerometers, potentiometers and FSRs.

Another interesting cluster is the co-occurrence of light, video, and microphone—sensing

tools which have been used in audio and video processing for decades [13, 1].

5.1.2 Specialized Sensors

In Chapter 2, we showed that the most common sensor types in DMIs measure kinetic

parameters, e.g. force. Given the most common issues found in the application of these

sensors, we suggested better instrumentation techniques for FSRs and better sensor signal

processing for accelerometers. Also, through case studies, we indicated when the use of

strain gages can be a valuable alternative for measuring kinetic parameters. In Chapter 3,

we presented an in-depth review of strain gages, applying them to a DMI: The Rulers. The

comparison between SGs and low performance sensors pointed to several advantages of SGs

over their non-linear counterparts. In Chapter 4, we compared strain gages’ performance to

low performance sensors with improved instrumentation and sensor signal processing. Even

if the quality of measurements supplied by ordinary sensors have improved drastically with

those measures, the linear behaviour of SGs is a desired feature worth exploring. The cost

of applying SGs lies on the complexity of their application to the specimen, as well as their

intricate conditioning circuit.

Aside from that, considering the The Rulers as a testbed, the SG has promoted new

mapping possibilities. In Chapter 4, we have shown that SG responses present the most

significant difference across gestures being performed, which means that among the three

sensor technologies used, the SG is the one whose responses to the two distinct gestures are

the least similar. This has allowed for gesture classification, since the system response for
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driven and free motions is different when it comes to the stress analysis of their mechanical

structure.

5.1.3 Advanced Electronic Instrumentation

We introduced advanced electronic instrumentation in Chapter 2, by presenting an enhanced

version of a voltage divider and the advantages of the use of buffers, instrumentation

amplifiers, and comparators with hysteresis. In Chapter 3, we presented important factors

to consider when it comes to selecting polarization resistors, as well as an in-depth application

of the Wheatstone Bridge’s principles - a balancing circuit whose output reflects the amount

of variation in the sensing elements. Finally, in Chapter 4, we presented the importance

of sensor placement and polarization resistors in order to obtain monotonic measurement

ranges and an output free of saturation.

5.1.4 Advanced Sensor Signal Processing

Regarding advanced sensor signal processing, we first insisted on coherent calibration and

data regression in Chapter 2. A discrete calibration and a regression using CSI is used

in Chapter 3. Chapter 4 presented enhanced calibration—continuous and dynamic—and

regression using DSI. This type of regression was essential in performing the multiple-model

linear Kalman filter, resulting in a performance superior to that of a single model linear

Kalman filter based on CSI. The choice for regression techniques is tied to the knowledge of

system and measurement functions, as well as to what extent they differ from one gesture

to another. Another possibility for improving regression errors is the use of DSI regression

for high hysteresis sensors, as is the case for the Hall effect response in Chapter 3. For these

cases, the reduction of the measurement error covariance is directly proportional to the

hysteresis level.
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In Chapter 3, we identified the advantages and disadvantages of each sensor type

evaluated. We also showed that the requirements for stage context might differ from those

for non-interactive systems. We concluded that none of the sensor types are superior in all

evaluation descriptors. Therefore, the obvious solution would be to take advantage of each

of the sensor technologies’ positive features, and minimize the effects of the negative ones.

This could be obtained by the use of sensor fusion. Among the sensor fusion techniques

available, the fastest—for real-time purposes—is the weighted output of Complementary

Filtering. However, we are interested in a more complex algorithm that could provide

the error covariance of the estimates at each sampling time, accounting for each distinct

gesture’s system and measurements. Extended Kalman filters and particle filters were

excluded as alternatives due to their processing time and cost. We ended up choosing a

linear Kalman filter, as it offers optimal estimation with the requirement of accurate system

and measurement variable knowledge.

In order to account for the high requirements imposed by the implementation of a

linear Kalman filter, we developed a framework in Chapter 4 in order to apply the linear

Kalman filter to human input signals, whose nature is inherently unpredictable and leads

to signals that cannot be trivially modeled. Our solution is based on gesture segmentation

and classification, along with multiple models for system and measurement functions. The

framework proved to be efficient and stable: it improved the error covariance of the estimate

by a factor of 2.2 for driven motions and 12.7 for free motions, compared to single-sensor

filter design. Also, the comparison of multiple-model filtering with single-model filtering

pointed to a smaller error covariance for the multiple-model approach.

Finally, better error covariance and more mapping possibilities are improvements brought

by the framework, which is well-suited for multi-gesture devices where the system behaviour

is only partially known. We believe that by segmenting and classifying gestures, we can
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offer a flexible layer on top of an accurate measurement layer, providing adaptability for

performance applications. The fusion of position- and force-related sensor data proved to be

successful. The distinct kinetic and kinematic responses of systems and measurements seem

to be fruitful when it comes to segmenting and classifying gestures, which characterizes the

best scenario for the proposed framework’s replication.

5.2 Contribution

In order to understand the unique contributions of this thesis, it is important to first

develop an understanding of the context which has defined and made it necessary. First, the

field of new interfaces for musical expression (NIME) is, as a formalized research domain,

a rather young and strongly multidisciplinary area. Since the first NIME workshop in

2001, a yearly event has been held to discuss advances in this field coming from areas

such as music performance and composition, electrical and computer engineering, design,

and human-computer interaction. Because of these characteristics — augmented by the

recent trend of Do-It-Yourself devices using user-friendly physical computing platforms and

widely available, inexpensive sensors — the field of NIME tends to present a plethora of

new devices that do not rely on advanced sensing systems [11]. In our view, these design

choices present several limitations if used by skilled performers. It is commonly agreed upon

that musicians rely on responsive and precise acoustic musical instruments to achieve a

degree of expressiveness and perhaps virtuoso performance. Therefore, these devices with

simple electronic instrumentation fall short in providing advanced characteristics such as

robustness, and accuracy. We believe that this is one of many reasons hindering widespread

and/or advanced musical use of such devices.

Secondly, it is extremely rare that new interfaces for musical expression are characterized
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by their mechanical and/or electronic behaviour, as manifested by the NIME papers reviewed

in this thesis. One exception is the Radio Baton, because of the extensive work by Andy

Schloss and Peter Driessen group at University of Victoria. However, we are not aware of

many other examples of the detailed characterization of sensing systems in DMIs, and in

our opinion, it is imperative to perform such a characterization if one is to improve their

response to fit musical performance requirements.

This thesis’ main contribution relates to the design of sensing in DMIs. Although most

of the techniques for instrumentation design used here are commonplace for instrumentation

engineers, these techniques are not used in DMI design, as shown in a five-year review of

NIME publications. In regards to sensor signal processing, our major contribution relies

on the framework for a multiple-model linear Kalman filter application. To the best of

our knowledge, this is a unique method to account for uncertainties in the knowledge of

process and measurements, given the unpredictable nature of human input. Alternative

methods rely on probability, rules, patterns, or sequences, which might limit user control to

undesirable levels.

In this work, we have carefully reviewed all contributions—266 articles using sensing—in

the last 5 years of the NIME conference (2009-2013). We then demonstrate the point

that the engineering solutions applied to NIME devices are mostly suboptimal and many

times inadequate. This inadequacy comes from misuse but also from the lack of proper

characterization of the devices. Furthermore, we showed that most of the devices use only a

few simple sensors, whereas many other options are available for similar instrumentation

needs. We therefore set out to show how one can dramatically improve instrument response

by using advanced sensors for musical instrumentation or by using techniques such as the

Kalman filter for a system that includes multiple sensor measurements.

However, in order to make an efficient sensor fusion on unpredictable human input
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signals, the popular implementation of a linear Kalman filter would not be possible, due

to the limitations on describing the processes and their errors for unpredictable signals.

Due to that, we have proposed a novel framework for a multiple-model multi-sensor linear

Kalman filter for implementations where no probabilities, rules, patterns, or sequences are

imposed on the human input. This framework contains a novel evaluation method for linear

Kalman filters that can be applied for any Kalman filter implementation. This evaluation

method not only tests the stability and convergency of the filter, but can also be used for

selecting candidate process models. Our framework is based on judicious description of the

observations, their measurement functions and errors, given by calibration.

These are novel contributions which improve upon previous work that applies a similar,

albeit simpler, Kalman filter to another existing device, the Radio Baton [168, 169]. The

main contribution of this thesis in comparison to Benning’s publications is that we introduce

a framework for the application of the Kalman filter on DMI signals, whereas Benning et al.

present a Kalman filter implementation. Our framework includes sensor characterization,

statistics for sensor data, gesture segmentation, gesture classification, selection of process

model, filter evaluation, and filter optimization. We, as well as Benning et al., make use of

multiple models to describe different gestures, but they tune the models arbitrarily while

we have defined a method for evaluating and selecting candidate models. This evaluation

method is novel for the Kalman filter field [59], and is a contribution to the works of

Jwo, Cho, Zarchan, Musoff, Gelb and Maybeck [154, 188, 48, 190, 192, 129]. It includes

evaluation descriptors proposed by these authors in a systematic and procedural manner, and

introduces a novel descriptor. Also, Benning et al. make use of a single sensor technology,

while we use three sensor technologies with different popularity levels among DMI designers.

Finally, Benning’s implementation uses model weighing according to the models’ likelihood,

whereas we use gesture classification driven by the similarity between sensor data and the
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most predictive model. That is, gesture classification in our work does not impose rules,

patterns, sequences, or probabilities for each model, or for the transition between them.

In summary, the uniqueness of this work is supported by the following summary of its

major contributions:

• Careful review of 5 years of the main conference in this field (NIME 2009-2013,

266 papers in total), deriving hard evidence to support the claim of sub-optimal or

inadequate engineering solutions applied in most devices (Chapters 1-2);

• Development of a novel framework for the use of a Kalman filter to unpredictable

inputs (to differentiate between two very dissimilar gestures, plucking and bending)

using all the three sensor solutions available in the device. This expands over previous

papers that used related techniques to improve the response of one sensing technology

(Chapter 4);

• Formalization of a method for evaluating candidate models and filter design, including

evaluation techniques proposed by several authors and a novel technique created by

us (Chapter 4);

These novel contributions shed new light into the design of DMIs and will hopefully be

used by the NIME community to achieve advanced instrumentation solutions to improve

novel and existing devices and eventually allow for responsive DMIs for expert musical use.

5.3 Future Directions

One interesting direction is the application of sensor fusion methods for human motion

analysis. The current challenge is to fuse kinetics and kinematics to better analyze human

motion. Our future work is devoted to algorithms for biomechanical analyses fusing positional



5 Conclusions 153

data—given by infrared-based motion capture—with sensor data—given by MARG sensors.

Also, another publication currently being prepared proposes advanced instrumentation for

low-performance sensors, such as FSRs and infrared [101].
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Appendix A

Modular Design for Sensor

Calibration and Placement

This section briefly discusses the benefits of using modular design, based on LEGOs and

3D printing, for sensing design. We build LEGO structures for sensor calibration and

placement. This choice provides design flexibility and high dimension accuracy—LEGO

company reports a “machine tolerance” as small as 0.01 mm [152]. A further development

stage of our LEGO buildings is based on 3D printing. However, the LEGO choice tends to

be cheaper, and allows for quicker modularization and changes.

Some examples of modular buildings used in this research follow:

2015/04/15
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Fig. A.4 Building for infrared sensor calibration (assisted by Mailis Ro-
drigues). LEGO box blocks infrared light from the motion capture cameras.
The right hand displaces the sensor inside the box, which fixture only allows
vertical displacement. The left hand is the obstacle for the sensor’s infrared
light—common scenario in DMI applications. Pictured: Mailis Rodrigues.
Reproduced with permission.

Fig. A.5 Building for MARG sensors calibration. The design has a space in
the center for the hand. This allows the operator to perform random motions in
all directions. The perpendicularity of the sensor placement allows verification
of heading angle. Collaboration with MIT Media Lab Responsive Environments
Group, Eric Berkson, and Tom Kepple.
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